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Part 1:

Stochastic Models in Image Analysis



Overview

Statistics has two senses:

• State–istics, the collection and summarization of data.

• Handling uncertainty

Although the first is important in image processing and analysis, we con-
centrate on the second.



Formalizing Uncertainty

We think of the image formation process in two steps:

• From image descriptionS to true imageX.

• From true imageX to observed imageZ.

We can usually describe these fairly accurately: the first is the image
representation and the second is determined by the physics of imaging. The
observation process will often involve considerable uncertainty, from noise
processes or the uncertainty inherent in e.g. Poisson statistics.

We ought then to be able to describeP (Z |S) up to a few parameters: many
examples will follow. So we assume we know

P (Z |S; θ)



Representations

• X directly, e.g. in optical astronomy or MRI the true response.

• A pixel-based classification ofX, that is each pixel is assigned to one
of a small number of classes. Used in remote sensing of, say, land use
or forest quality.

• A representation of boundaries of objects (in continuous space).

• A scene description. E.g.
‘there are three pedestrians in this image, and the one highlighted is
behaving suspiciously’,

or
‘this mammogram contains a 2mm tumour at the coordinates given by
the cross-hairs, and some fibrous tissue highlighted in blue’

Over time, interest has moved down this list.



Prior Information

We want to invert the process: having seenZ we want to understandS. This
inverse is not well-determined: many aspects ofS are not distinguishable
from noise. This has lead to ideas ofregularization, the infamousMaximum
Entropy principle, and much else.

We prefer to be much less prescriptive. The inverse can be controlled in two
ways:

• The mapping fromS toX, the representation.

• Asserting prior opinions aboutS, via probability models.

Note that both express opinions about the space of true imagesZ, but the
first is more rigid (and possibly more fruitful).



Prior Information and Data

Given one or more observed imagesZ, we obtain alikelihood for the image
descriptionS and any parametersθ by

�(S, θ;Z) ∝ P (Z |S; θ)

We can combine the prior information and the information from observa-
tions by Bayes’ formula (lemma, theorem,. . . ). So theinformation we have
about the image representation after the observation(s) is

P (S |Z) ∝ P (Z |S)P (S) ∝ �(S, θ;Z)P (S)



Posterior Information

The P (S |Z) is known as theposterior: we only need to know it up to
a normalizing constant as it sums/integrates to one. In general it is a
probability distribution over a very large space (possibly a finite discrete
space). How do we summarize it?

• Show the most probableS (the MAP estimate)

• Show some typicalS

• Show the most probable values of aspects of interest inS (MPM).

Suppose we want to ‘restore’ a pixel-based image. Then the first option will
show one image, the second a number of images which may help us judge
our uncertainty in the restoration, and the third might plot an image showing
the most likely land use (say) at each pixel. But if we are really interested in
the area of wheat in the image, we should aim to find a distribution of that,
and summarize it. So our goal may be specific functionsφ(S).



Traps

This process is much misunderstood: indeed there is a whole school of
‘Bayesian’ physicists who fall into most of the following traps.

1. P (S |Z) is a density. Unlike MLEs, MAP estimates do not transform:
the MAP ofφ(S) is not (usually)φ(Ŝ). And often what this is a density
with respect to is rather arbitrary (grey-levels on linear, log, gamma-
corrected scales)?

2. The mode (which is the MAP estimate) may be a very poor summary
of a distribution.

3. Some aspects of the answer will be what you specified in the prior.

4. There are no ‘uninformative’ priors: a prior can be ‘uninformative’ for
S but informative forφ(S).



Remote Sensing of Land Use

We will considerS = X as a grid of pixels with either a finite discrete set
of true types (colours).

Simplest case is two colours. ForK colours we have the Potts-Strauss model

P (Xs = c | Xt, t �= s)

∝ exp β#{nhbrs ofs with colourc}

or, as a joint density

P (X1 = x1, . . . , Xn = xn)

∝ expβ#{nhbr pairs of the same colour}

More generally, Markov random fields.
[Ideas here mainly from Don and Stu Geman, also Besag,. . . .]



Now suppose we observeZs ∼ fSs
(zs) independently from pixel to pixel.

Then the posterior distribution is also a Potts-Strauss model;forK = 2 we
have

log P (S = s | Z) = const+
n∑
i=1

λisi +
∑

i,j nhbrs

β[sisj + (1 − si)(1 − sj)]

for eλi = f1(Zs)/f0(Zs).

In the caseK = 2 (only) this can be maximized by network-flow algorithm
(Greig, Porteous & Seheult, 1989).

In other cases we usesimulated annealing, which simulates from

P (S |Z)1/T

for T ↘ 0 as the sweep number increases.

Simulation-based inference, for MPM via counting frequencies.



Optical Astronomy

‘Cleaning’ images on a, say,2048 × 2048 CCD detector. The response is a
count of photons (after a photon multiplier), typically500 to 20 000 counts.

Noise arises from two sources. Thermal noise in the detector has a constant
variance over the detector, and in addition there is Poisson noise arising from
the discrete nature of photons.

Blurring is caused by the motion of the earth’s atmosphere.

the point-spread functionh can be modelled as

h(r) = (β/πR2)
[
1 + (r/R)2

]−β
wherer is the distance from the source to the receiving pixel andβ is about
3. In our studiesR ≈ 3.5, so a point source is effectively spread over a few
hundred pixels. The form ofh can be checked, since most images contain
true point sources (stars).

[ With Rafael Molina (Granada) and colleagues. ]



Spatially smooth priors

The conditional autoregression (CAR) is defined by a symmetric matrixC

such thatI − C is positive definite, and hasS ∼ N
(
µ, κ(1− C)−1

)
so that

E(Si | Sj, j �= i) = µi +
∑
j

Cij(Sj − µj)

The matrixC is chosen to reflect spatial proximity. LetN be the neighbour
incidence matrix (Nij = 1 if i and j are neighbours, 0 otherwise). Then
C = φN with φ just less than1/r, r the number of neighbours, will give
rise to spatially smooth realization ofS.

Applied toY = log(X + p), p ≈ 100. P (Z |X = S) is given by blurring by
the PSF, and then using independent Poisson counts of photons.



Tomography

Tomography is a class of indirect observation techniques: nothing is differ-
ent in principle, although the modelP (Z |X) is far more complex.

In all the examples here, the uncertainly come from Poisson-distributed
counts. Invasive techniques.

Positron Emission Tomography

Where the event is a pair of photons being detected on a line.

Shepp & Vardi (1982)IEEE Trans. Med. Imaging considered maximum
likelihood estimation by the EM algorithm. Up to 10 million events.

SPECT

beingsingle photon emission computerized tomography. Photons are emit-
ted as a space-time Poisson process. Lower counts, have to deal with
absorption in tissue.



The prior information is rather different: medical images tend to have large
areas of fairly constant intensity with sharp (and often complex) boundaries.
Geman & McClure (1987) introduced a prior that was like a CAR process
for small differences between neighbours, but had a much larger penalty for
large differences.

P (X) =
∑

s nhbr oft

βφ(Xs −Xt)

where, for example,φ(x) = −1/[1 + (x/δ)2].



Continuum Models

A radically different approach is to makeS a model of the content of the
image, and have a complexS → X mapping.

• HANDS (Chow, Grenander, Keenan, 1989; GCK, 1991)

• Galaxy shapes (Ripley & Sutherland, 1990)

• Nematodes (Ripley, 1992)

• Mitochondria (Grenander & Miller, 1994)

• Faces (Phillips & Smith)

• ‘Snakes’, tracking (Andrew Blake’s group, Gary Jacob,. . . ).

All of these have a simpleS in continuous space, usually one or more closed
contours. The model forS is usually multivariate normal, and certainly
simple.

Simulation-based inference again.
Usually of samples from posterior density.



Galaxies

Galaxies are classified by their visual shape into

Elliptical E0–E11 according to the degree of ellipticity.

Spiral with (SB) or without (S) bars, with no arms left (0), and by the
tightness of the arms (a, b, or c). Also, if there are arms, by their
length (r, rs, or s). Thus an example classification is SBa(rs).

Irregular Really anoutlier class.



A prior model

We built a prior for a sketchS of a spiral galaxy as

disk + bars + arms

This sketch is subject to global transformations for

scale uniform over a limited range

location uniform over the image

orientation uniform rotation, reflection with probability 0.5

squeeze as the galaxy is at a uniform angle to the celestial sphere.



Tracking

We now bring time into the analysis. The representationS is a contour,
usually represented by the control points of a Bezier curve or a spline. Thus
there is a low-dimensional state for the curve, and a prior distribution over
that state favouring a smooth curve (but the representation excludes rough
curves).

The state evolves according to a simple Gaussian autoregressive process, of
order greater than one to allow ‘momentum’ and Kalman filtering is used to
find a posterior distribution of the state.

Lots of computational dodges, also MCMC to allow non-Gaussian models,
and occasional large excursions (when the tracker loses the object).

Examples (Andrew Blake’s group):
leaves fist cursor marker-free gait tracker



Beating Hearts

Work of Gary Jacob (Medical Imaging / Statistics, Oxford).

A typical echogram taken from the Apical two chamber view showing the
left ventricle of the heart.



‘On any given image frame, a dynamical model makes a prediction as to
the position of the left ventricular boundary on the next frame. Following
the prediction step, measurements are taken by casting normals from the
contour to seek desirable image features.The contour estimate is then up-
dated using the Kalman gain to combine the prediction and the ‘best’ image
feature measurement.’



Part 2:

Statistics of fMRI Data



‘Functional’ Imaging

Functional PET and MRI are used for studies of brain function: give a
subject a task and see which area(s) of the brain ‘light up’.

Functional studies were done with PET in the late 1980s and early 1990s,
now fMRI is becoming possible (needs powerful magnets—that in Oxford
is 3 Tesla). Down to1× 1× 3 mm voxels.

PET has lower resolution, say3 × 3 × 7 mm voxels at best. So although
128 × 128 × 80 (say) grids might be used, this is done by subsampling.
Comparisons are made between PET images in two states (e.g. ‘rest’ and
‘stimulus’) and analysis is made on the difference image. PET images are
very noisy, and results are averaged across several subjects.

fMRI has a higher spatial resolution, and temporal resolution of around one
second. So most commonly stimuli are applied for a period of about 30 secs,
images taken around every 3 secs, with several repeats of the stimulus being
available for one subject.



The commonly addressed statistical issue is ‘has the brain state changed’,
and if so where?



Neurological Change

A longer-term view of function is in the change of tissue state and neurolog-
ical function after traumatic events such as a stroke or tumour growth and
removal. The aim here is to identify tissue as normal, impaired or dead, and
to compare images from a patient taken over a period of several months.

In MRI can trade temporal, spatial and spectral resolution. In MR spec-
troscopy the aim is a more detailed chemical analysis at a fairly low spatial
resolution. In principle chemical shift imaging provides a spectroscopic
view at each of a limited number of voxels: in practice certain aspects of
the chemical composition are concentrated on.

[ Current and future work ]



Pilot Study

Our initial work has been exploring ‘T1’ and ‘T2’ images (the conventional
MRI measurements) to classify brain tissue automatically, with the aim
of developing ideas to be applied to spectroscopic measurements at lower
resolutions.

Consider image to be made up of ‘white matter’, ‘grey matter’, ‘CSF’
(cerebro–spinal fluid) and ‘skull’.

Initial aim is reliable automatic segmentation. Also useful for confining
fMRI activation to just brain tissue (and not, say, eye muscles).



Some Data

T1 (left) and T2 (right) MRI sections of a ‘normal’ human brain.

This slice is of172× 208 pixels.

Imaging resolution was1 x 1 x 5 mm.



Data from the same image in T1–T2 space.



Imaging Imperfections

The clusters in the T1–T2 plot were surprising diffuse. Known imperfec-
tions were:

(a) ‘Mixed voxel’ / ‘partial volume’ effects. The tissue within a voxel may
not be all of one class.

(b) A ‘bias field’ in which the mean intensity from a tissue type varies across
the image; mainly caused by inhomogeneity in the magnetic field.

(c) The ‘point spread function’. Because of bandwidth limitations in the
Fourier domain in which the image is acquired, the true observed image
is convolved with a spatial point spread function of ‘sinc’ (sin x/x) form.
The effect can sometimes be seen at sharp interfaces (most often the
skull / tissue interface) as a rippling effect, but is thought to be small.



Modelling the data

Each data point (representing a pixel) consists of one T1 and one T2 value

Observations come from a mixture of sources so we use a finite normal
mixture model

f (y; Ψ) =

g∑
i=1

πiφ(y;µi,Σi)

where the mixing proportions,πi, are non-negative and sum to one and
whereφ(y;µi,Σi) denotes the multivariate normal p.d.f with mean vector
µ and covariance matrixΣ.



Application/Results

6 component model

• CSF

• White matter

• Grey matter

• Skull type 1

• Skull type 2

• Outlier component (fixed mean and large variance)

Initial estimates chosen manually from one image and used in the classifi-
cation of other images.



A Second Dataset

T1 (left) and T2 (right) MRI sections of another ‘normal’ human brain.



Classification image (left) and associated T1/T2 plot (right)



SPM

‘Statistical Parametric Mapping’ is a widely used program and methodology
of Friston and co-workers, originating with PET. The idea is to map ‘t-
statistic’ images, and to set a threshold for statistical significance.

The t-statistic is in PET of a comparison between states over a number of
subjects, voxel by voxel. Thus the numerator is an average over subjects
of the difference in response in the two states, and the denominator is an
estimate of the standard error of the numerator.

The details differ widely between studies, in particular if a pixel-by-pixel or
global estimate of variance is used.



Example PET Statistics Images

From Holmeset al (1996).

Mean difference image. Voxel-wise variance image.



Voxel-wiset–statistic image.

Smoothed variance image. Resultingt–statistic image.



Multiple comparisons

Finding the voxel(s) with highest SPM values should detect the areas of the
brain with most change, but does not say they are significant changes. Thet

distributionmight apply at one voxel, but it does not apply to the voxel with
the largest response.

Conventional multiple comparison methods (e.g. Bonferroni) may over-
compensate if the voxel values are far from independent.

Three main approaches:

1. (High) level crossings of Gaussian stochastic processes
(Worsleyet al): Euler characteristics.

2. Randomization-based analysis (Holmeset al) across replications.

3. Variability within the time series at a voxel.



Euler Characteristics

The Worsleyet al approach is based on modelling the SPM imageXijk

as a Gaussian (later relaxed) stochastic process in continuous space with
a Gaussian autocorrelation function (possibly geometrically anisotropic).
The autocorrelation function must be estimated from the data, but to some
considerable extent is imposed by low-pass filtering.

For such processes there are results (Hasofer, Adler) on the level sets
{x : X(x) > x0}. These will be made up of components, themselves con-
taining holes. The results are on the expected Euler characteristic (number
of sets minus holes) as function ofx0, but for largex0 there is a negligible
probability of a hole, and the number is approximately Poisson distributed.
Thus we can choosex0 such that under the null hypothesis

P (X(x) > x0 for anyx ∈ A) ≈ 5%

Note that this is based on variability within a single image to address the
multiple comparisons point.



Randomization-based Statistics

Classical statistical inference of designed experiments is based on the uncer-
tainly introduced by the randomization, and not on any natural variability.

A typical fPET or fMRI experiment compares two states, say A and B. If
there is no difference between the states we can flip the labels within each
pair (for each subject in PET, for each repetition× subject in fMRI). If
there aren pairs, there are2n possible A–B or B–A labellings. If there is
no difference, these all give equally likely values of an observed statistic, so
compared observed statistic to the permutation distribution.

Can choose any statistic one can compute fairly easily.

Holmeset al. actually used a restricted randomization, keep the balance of
their 12 pairs into 6 A–B and 6 B–A pairs.



Time-Series-based Statistics

The third component of variability is within the time series at each voxel.
Suppose there were no difference between A and B. Then we have a
stationary autocorrelated time series, and we want to estimate its mean and
the standard error of that mean.

This is a well-known problem in the output analysis of (discrete-event)
simulations.

More generally, we want the mean of the A and B phases, and there will
be a delayed response (approximately known) giving a cross-over effect.
Instead, use a matched filter (sin wave?) to extract effect, and estimated
autocorrelations (like Hannan estimation) or spectral theory to estimate
variability. For asin wave the theory is particularly easy: thelog absolute
value of response has a Gumbel distribution with location depending on the
true activation.



fMRI Example

Data on64 × 64 × 14 grid of voxels. (Illustrations omit top and bottom
slices and areas outside the brain, all of which show considerable activity,
probably due to registration effects.)

A series of 100 images at 3 sec intervals: a visual stimulus (a striped pattern)
was applied after 30 secs for 30 secs, and the A–B pattern repeated 5 times.
In addition, an auditory stimulus was applied with 39 sec ‘bursts’.

Conventionally the images are filtered in both space and time, both high-
pass time filtering to remove trends and low-pass spatial filtering to reduce
noise (and make the Euler characteristic results valid). The resultingt–
statistics images are shown on the next slide. These have variances estimated
for each voxel based on the time series at that voxel.
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Conventionalt–statistic images – for visual stimulus



A Closer Look at some Data

A 10× 10 grid in an area of slice 4 containing activation.



Alternative Analyses

• Work with raw data.

• Non-parametric robust de-trending, Winsorizing if required.

• Work in spectral domain.

• Match a filter to the expected pattern of response (square wave input,
modified by the haemodynamic response).

• Non-parametric smooth estimation of the noise spectrum at a voxel,
locally smoothed across voxels.

• Response normalized by the noise variance should be Gumbel (with
known parameters) on log scale.

This produced much more extreme deviations from the background varia-
tion, and much more compact areas of response. 30–100 minutes for a brain
(in S / R on ca 400MHz PC).
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Histogram of log filtered response, for an image with activation.

We can validate the distribution theory by looking at frequencies without
stimulus, and ‘null’ images.



Log abs filtered response, with small values coloured as background (red). Threshold

for display isp < 10−5 (and there are ca 20,000 voxels inside the brain here).
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Comparison oft-statistics and our analysis.



slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11 slice 12

The auditory sub-experiment.



A Related Approach

Lange & Zeger (1997)Applied Statistics has a related approach, in which
they model the haemodynamic response by gamma probability density
functions, and fit a regression estimating the autocorrelation structure of the
time series (in Fourier domain).

Thus their model is that the response is a modified square wave of the form

βΛ(t; θ) = β

∫ t

0

λ(t− u; θ) du, 0 ≤ t ≤ 30

continued in the obvious way. The parametersβ andθ are then fitted by
generalized least squares at each voxel, with a general stationary covariance
function for the errors (estimated locally in space).

It is hard to estimate the haemodynamic response where there is little
neurological activity: for local estimation (as in Lange–Zeger) this might
be at a handful of voxels.



In our implementation of the Lange–Zeger procedure we find (2 hours)
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Estimates ofβ from a region in the bottom centre of slice 4.



Conclusions

• Look at your data (even if it is on this scale: 2 million points per
experiment).

• Data ‘cleaning’ is vital for routine use of such procedures.

• Fit your theory to your analysis, notvice versa.

• It is amazing what can be done in high-level languages on cheap
computers.


