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Outline

Part 1: Characterizing Alzheimer’s Disease

Joint work with Kevin Bradley, Radiologist at OPTIMA (Oxford Project to
Investigate Memory and Ageing).

Part 2: Magnetic Resonance Imaging of Brain Structure

Joint work with Jonathan Marchini (EPSRC-funded D.Phil student).
Data, background and advice provided by Peter Styles (MRC Biochemical
and Clinical Magnetic Resonance Spectroscopy Unit, Oxford)

Part 3: Statistical Analysis of Functional MRI Data

Joint work with Jonathan Marchini.
Data, background and advice provided by Stephen Smith (Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain) and Nick Lange
(McLean Hospital, Harvard).



Magnetic Resonance Imaging



Magnetic resonance imaging is a non-invasive way of examining a living
brain as it functions. We will only consider human brains, but work is also
done on rat brains, which are smaller and can be given more interference.

In MRI can trade temporal, spatial and spectral resolution. Data is acquired
in Fourier domain over a period, down to around 3 seconds. The subject
is immersed in a strong magnetic field (needs powerful magnets—that in
Oxford is 3 Tesla) and responses to input signals allow information to be
collected simultaneously spatially. The sorts of information are

• spin decay rates of hydrogen atoms, longitudinally and transversally
(T1 and T2).

• BOLD, measurements of presence of oxygenated blood.

• perfusion of blood.

• presence of specific chemicals.

Collect one or more over ca 45 minutes in the scanner.



Data rates

A typical experiment will collect information on up to 256×256×30 voxels.
This could be collected at up to 200 time points, and on several quantities.

Typically one experiment yields 1–100 million observations. There are be
a few hundred sessions (a few on up to 100 subjects) in the course of a
medical/psychological/drug study.

Data collection is expensive, especially on research machines.

Computation

Everything you see (except the movies) was computed in S on a modest
machine, typically a 300–500 Mhz chip with 128–512Mb of RAM.



Part 1:

Characterizing Alzheimer’s Disease
via serial structural MRI



Structural MRI of Ageing and Dementia

Everyone’s brain shrinks with age (0.4% per year), and not uniformly.

Disease processes, for example Alzheimer’s Disease (AD) change both the
overall rate and the differences in rates in different parts of the brain.

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•
•

•

Age

%
 v

en
tr

ic
le

55 60 65 70 75 80 85

1
2

3
4

5
6

7
8



Use serial structural MRI, probably of two measurements n months apart.

How large should n be?

How many patients are needed? (Parallel study by Fox et al, 2000, Archives
of Neurology.)

Study with 39 subjects, most imaged 3 or 4 times over up to 15 months.

Three groups, ‘normal’ (32), ‘possible’ (2) and ‘probable (5).

Given the ages, expect a substantial fraction of ‘normals’ to have pre-clinical
AD.
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Statistical Analysis

Major source of variation is between subjects. Not many ‘abnormals’, and
usually the diseased group is more variable than the normals.

Choose to use linear mixed-effects models (NLME of Pinheiro & Bates).
Relative size of the random effects answers the questions.

How not to do it

Fox et al has 18 normals, 18 AD, 9 of each sex in each group. They used
the elementary sample-size formulae for detecting differences between two
arms of the trial.

Hypothesis was that a drug would give a 20% reduction in the excess overall
brain shrinkage in AD patients. Concluded that 168 subjects were needed in
each arm of the trial.

That’s the two-sided formula! What is the variability in the treatment group
(pilot size 0)?



Part 2:

Magnetic Resonance Imaging of Brain Structure



Neurological Change

Interest is in the change of tissue state and neurological function after
traumatic events such as a stroke or tumour growth and removal. The aim
here is to identify tissue as normal, impaired or dead, and to compare images
from a patient taken over a period of several months.

In MR spectroscopy the aim is a more detailed chemical analysis at a
fairly low spatial resolution. In principle chemical shift imaging provides a
spectroscopic view at each of a limited number of voxels: in practice certain
aspects of the chemical composition are concentrated on.



Pilot Study

Our initial work has been exploring ‘T1’ and ‘T2’ images (the conventional
MRI measurements) to classify brain tissue automatically, with the aim
of developing ideas to be applied to spectroscopic measurements at lower
resolutions.

Consider image to be made up of ‘white matter’, ‘grey matter’, ‘CSF’
(cerebro–spinal fluid) and ‘skull’.

Initial aim is reliable automatic segmentation. To be applied to a set of
patients recovering from severe head injuries.



Some Data

T1 (left) and T2 (right) MRI sections of a ‘normal’ human brain.

This slice is of 172 × 208 pixels. Imaging resolution was 1 x 1 x 5 mm.



Data from the same image in T1–T2 space.



Imaging Imperfections

The clusters in the T1–T2 plot were surprising diffuse. Known imperfec-
tions were:

(a) ‘Mixed voxel’ / ‘partial volume’ effects. The tissue within a voxel may
not be all of one class.

(b) A ‘bias field’ in which the mean intensity from a tissue type varies across
the image; mainly caused by inhomogeneity in the magnetic field.

(c) The ‘point spread function’. Because of bandwidth limitations in the
Fourier domain in which the image is acquired, the true observed image
is convolved with a spatial point spread function of ‘sinc’ (sin x/x) form.
The effect can sometimes be seen at sharp interfaces (most often the
skull / tissue interface) as a rippling effect, but is thought to be small.



Modelling the data

Each data point (representing a pixel) consists of one T1 and one T2 value

Observations come from a mixture of sources so we use a finite normal
mixture model

f(y; Ψ) =

g∑

i=1

πiφ(y; µi, Σi)

where the mixing proportions, πi, are non-negative and sum to one and
where φ(y; µi, Σi) denotes the multivariate normal p.d.f with mean vector
µ and covariance matrix Σ.

Don’t believe what you are told: almost everything we were told about
image imperfections from the physics was clearly contradicted by the data.



Application/Results

6 component model

• CSF

• White matter

• Grey matter

• Skull type 1

• Skull type 2

• Outlier component (fixed mean and large variance)

Initial estimates chosen manually from one image and used in the classifi-
cation of other images.



A Second Dataset

T1 (left) and T2 (right) MRI sections of another ‘normal’ human brain.



Classification image (left) and associated T1/T2 plot (right), training the 6-component

mixture model from its fit on the reference subject.



Part 2:

Statistics of Functional MRI Data



‘Functional’ Imaging

Functional PET (positron emission spectroscopy: needs a cyclotron) and
MRI are used for studies of brain function: give a subject a task and see
which area(s) of the brain ‘light up’.

Functional studies were done with PET in the late 1980s and early 1990s,
now fMRI is becoming possible. Down to 1 × 1 × 3 mm voxels.

PET has lower resolution, and relies on injecting agents into the blood
stream. Comparisons are made between PET images in two states (e.g.
‘rest’ and ‘stimulus’) and analysis is made on the difference image. PET
images are very noisy, and results are averaged across several subjects.

fMRI has a higher spatial and temporal resolution. So most commonly
stimuli are applied for a period of 10–30 secs, images taken around every 3
secs, with several repeats of the stimulus being available for one subject.



The commonly addressed statistical issue is ‘has the brain state changed’,
and if so where?

Left: A pain experiment. Blue before drug administration, green after, yellow both.

Right: A verbal/spatial reasoning test, averaged over 4 subjects. 12 slices, read row-

wise from bottom of head to top. Blue=spatial, red=verbal.
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A real response (solid line) from a 100-scan (TR=3sec) dataset in an area of activation
from the visual experiment. The periodic boxcar shape of the visual stimulus is shown

below.



The GLM approach

A SAS-ism: it means linear models. May take the autocorrelation of the
noise (in time) into account.

• May or may not remove overall mean.

• May or may not remove trends.

• Design matrix may contain

– An overall mean

– A linear or other trend

– The signal convolved with a linearly-parametrized HRF: often a
couple of gammas or a gamma density and its derivative.

• The signal is usually filtered by a matrix S, so the model becomes

SY = SXβ + Sε, ε ∼ N(0, σ2V (θ))



Variations on the theme in a series of papers by Friston et al:

Analysis of functional MRI time-series

Analysis of functional MRI time-series revisited

Analysis of functional MRI time-series revisited—again

All fit β by least-squares, but differ in the estimate used of σ2. The third
paper suggests a scaled version of the residual MSq.

Not exactly unknown statistical theory (to statisticians)!

Two main issues:

1. What is the best estimate β̂ of β?

2. What is a good (enough) estimate of its null-hypothesis variability,
var(β̂)?



Multiple comparisons

Finding the voxel(s) with highest SPM values should detect the areas of the
brain with most change, but does not say they are significant changes. The t

distribution might apply at one voxel, but it does not apply to the voxel with
the largest response.

Conventional multiple comparison methods (e.g. Bonferroni) may over-
compensate if the voxel values are far from independent.

Three main approaches:

1. (High) level crossings of Gaussian stochastic processes
(Worsley et al): Euler characteristics.

2. Randomization-based analysis (Holmes et al) across replications.

3. Variability within the time series at a voxel.



Time-Series-based Statistics

The third component of variability is within the time series at each voxel.
Suppose there were no difference between A and B. Then we have a
stationary autocorrelated time series, and we want to estimate its mean and
the standard error of that mean.

This is a well-known problem in the output analysis of (discrete-event)
simulations.

More generally, we want the mean of the A and B phases, and there will
be a delayed response (approximately known) giving a cross-over effect.
Instead, use a matched filter (sin wave?) to extract effect, and estimated
autocorrelations (like Hannan estimation) or spectral theory to estimate
variability. For a sin wave the theory is particularly easy: the log absolute
value of response has a Gumbel distribution with location depending on the
true activation.



fMRI Example

Data on 64 × 64 × 14 grid of voxels. (Illustrations omit top and bottom
slices and areas outside the brain, all of which show considerable activity,
probably due to registration effects.)

A series of 100 images at 3 sec intervals: a visual stimulus (a striped pattern)
was applied after 30 secs for 30 secs, and the A–B pattern repeated 5 times.
In addition, an auditory stimulus was applied with 39 sec ‘bursts’.

Conventionally the images are filtered in both space and time, both high-
pass time filtering to remove trends and low-pass spatial filtering to reduce
noise (and make the Euler characteristic results valid). The resulting t–
statistics images are shown on the next slide. These have variances estimated
for each voxel based on the time series at that voxel.



SPM99 t–statistic images, with spatial smoothing on the right



Slice 5, with spatial smoothing on the right



A Closer Look at some Data

A 10 × 10 grid in an area of slice 5 containing activation.



Alternative Analyses

• Work with raw data.

• Non-parametric robust de-trending, Winsorizing if required.

• Work in spectral domain.

• Match a filter to the expected pattern of response (square wave input,
modified by the haemodynamic response).

• Non-parametric smooth estimation of the noise spectrum at a voxel,
locally smoothed across voxels.

• Response normalized by the noise variance should be Gumbel (with
known parameters) on log scale.

This produced much more extreme deviations from the background varia-
tion, and much more compact areas of response. 30–100 minutes for a brain
(in S on ca 400MHz PC).



Log abs filtered response, with small values coloured as background (red). Threshold

for display is p < 10−5 (and there are ca 20,000 voxels inside the brain here).



Trend-removal
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A voxel time series from the dataset showing an obvious non-linear trend.

We used a running-lines smoother rejecting outliers (and Winsorizing the
results).



Plotting p values

p-value image of slice 5
thresholded to show
p-values below 10−4 and
overlaid onto an image of
the slice. Colours indicate
differential responses
within each cluster. An
area of activation is shown
in the visual cortex, as well
as a single ‘false-positive’,
that occurs outside of the
brain.

10−4

10−5

10−6

10−7

10−8

10−9

10−10



Calibration

Before we worry about multiple comparisons, are the t-statistics (nearly)
t-distributed?

Few people have bothered to check, and those who did (Bullmore, Brammer
et al, 1996) found they were not.

We can use null experiments as
some sort of check.
In our analysis we can use other
frequencies to self-calibrate, but
we don’t need to:
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Bullmore et al.
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Conclusions

• Look at your data (even if it is on this scale: millions of points per
experiment).

• Data ‘cleaning’ is vital for routine use of such procedures.

• Fit your theory to your analysis, not vice versa.

• You need to be sure that the process is reliable, as no one can check
on this scale.

• There is no point in building sophisticated methods on invalid founda-
tions.

• It is amazing what can be done in high-level languages on cheap
computers.


