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Themes

lllustrate new features &-PLUS 2000 andMASS3 library.

Modest departures from linearity via smooth terms.

Be robust!

‘Eye-balling’ is not good enough for large-scale datasets.

Build complex analyses from smaller ideas and tools.



Programme

e looking at data

— density estimation
— visualization of data matrices

e regression & beyond

— diagnostics and robust fits
— bootstrapping
— smooth terms

e random effects and mixed models

— methods: ()LME, GLMM, GEE
— examples using thelme3.x library

— lunch —



— lunch —

e survival analysis

— smooth models for hazards
— adding smooth terms igloxph andsurvreg

e Mmultivariate analysis
— correspondence analysis
— discriminant analysis

e case study: MRI brain imaging



Looking at Data



Density estimation

Close look at data in one or perhaps two dimensions. Not many uses of
density estimation other than visualization.

Kernel methods

are very well known:

f(x)—%ji[(<xbxj>

for a samplery, ..., x,, a fixed kernelK () and a bandwidtl.

Main issue is the choice of bandwidthState-of-the-art methods in libraries
MASS andKernSmooth (Matt Wand).

Boundary effects can be severe: no sophistic&adplementations (?)



Local polynomial methods

Do density estimation via smoothing: effectively take a fine grid and count
the number of points in each interval, then smooth that.
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Left: Logspline (solid line) and kernel density (dashed) estimates fgydthexies data.
Right: Local polynomial estimates byocpoly with linear (solid) and quadratic
(dashed) local fits.



Smooth log-densities

There are several closely-related proposals to use a univariate density esti-
mator of the form

fly) =expg(y; 0)

for a parametric family(-; ¢) of smooth functions, most often splines. The
fit criterion is maximum likelihood, possibly with a smoothness penalty.

It iIs necessary to ensure that the estimated density has unit mass, most
conveniently by

fly) = expg(y;0)/ [ exp g(y; ) dy

The librarylogspline by Charles Kooperberg implements one variant on
this theme. This uses a cubic regression spling;fawith smoothness by
backwards selection on the knots. There is an AIC-like penalty; the number
of the knots is chosen to maximize

29@2'5 §> —nlog [ expg(y; 5) dy — a x #params a=logn ?
1=1



Splines

I nterpolation splines A smooth curve through the data poirts, y;) that
IS as smooth as possible in the sense

[ (@ as

IS minimized. Turns out to be a piecewise cubic with breaks atthe

Smoothing splines A smoothing spline minimizes a compromise between
the fit and the degree of smoothness of the form

sz +)\/(f (2))* dz

over all (measurably twice-differentiable) functiofisAgain a piece-
wise cubic with breaks at the, but does not interpolate the data points
for A > 0 and the degree of fit is controlled by

How smooth? Various forms of cross-validation.



Regression splines Take the idea of cubic splines, but choose the knots to
control the smoothness. Get cubic splinesbyandns.
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Local likelihood methods

Use a parametric model fofy) = log f(y) (e.g9. quadratic) fitted locally at
T

g(ys: 0(x)) —nlog [ K (5*) exp g(y; 0(x)) dy
Once again have to choose the bandwidtbossibly depending on.

locfit by Clive Loader (+ recent Springer book).
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locfit density estimates for thealaxies dataset. The solid line is the default, the

dotted line has a variable bandwidth chosen by AIC, and the dashed line uses a surrogate
Poisson model.



Series Estimation

Con

J
Zzb 0j¢j(x) + Z ]{é§>CTJ1n(n)/n}9j¢j<f’3>
§=0

j=J+1
then take the positive part, remove small bumps, rescale to unit integral.

Here(¢,(x)) is an orthogonal basiéj are the ‘Fourier’ coefficients.

‘universal orthogonal series estimator’ of
S. Efromovich (1999Nonparametric Curve Estimation, Springer.



Multidimensional analogues

All (except series estimation) generalize easily to 2 or more dimensions, but

¢ ‘Dandwidth’ now involves shape as well as size

e ‘curse of dimensionality’ means ‘local’ is a rather large neighbour-
hood.

e computation can be very slow.

e What are you going to do with this?

Survival data

Typically has partially observed data, e.d. > ¢ is all that is known for
some cases. Straightforward for likelihood-based methods, but localization
IS less clear-cut.

Examples this afternoon.



Visualization

Challenge is to explore data in more than two or three dimensions.
via projections

Principal components is the most obvious technidti®projection of data
with largest variance matrix (in several senses). Usually ‘shear’ the view to
give uncorrelated axes.

Lots of other projections looking for ‘interesting’ views, for example group-
Ings, outliers, clumping.

Implementation viaXGobi for Unix, and for Windows using an X server.
multidimensional scaling

Aim is to represent distances between points well.



Suppose we have distances;) between all pairs of. points, or adissim-
llarity matrix. Classical MDS plots the firgt principal components, and

minimizes
9 P
> A~
i#]

where(d;;) are the Euclidean distances in ttié space.

More interested in getting small distances right. Sammon (1969) proposed

. ~ 1 (di; — d;;)?
E(d,d) = 7~ %y

Implemented in functiogammon in library MASS.




Kruskal and Shepard proposed only to preserve the ordering of distances,
minimizing N
Sol00dy) - dig)”

D iy
over both the configuration of points and an increasing fundiohmple-
mented in functiorisoMDS in library MASS. (This method igsotonic, hence

the function name.)

STRESS? =

The optimization task is quite difficult and this can be slow.



Leptograpsus variegatus Crabs

200 crabs from Western Australia. Two colour forms, blue and orange;
collected 50 of each form of each sex.

Measurements of carapace (shell) lengthand widthCw, the size of the
frontal lobeFL and rear widtiRW.
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(@) (b)

() (d)

Projections of thd_eptograpsus crabs data found by projection pursuit. View (a) is a
random projection. View (b) was found using the natural Hermite index, view (c) by
the Friedman—Tukey index and view (d) by Friedman’s (1987) index.



Multidimensional scaling
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After re-scaling to (approximately) constant carapace area.



A Forensic Example

Data on 214 fragments of glass. Each has a measured refractive index and
composition (weight percent of oxides of Na, Mg, Al, Si, K, Ca, Ba and Fe).

Grouped as window float glass (70), window non-float glass (76), vehicle
window glass (17) and other (containers, tableware, headlamps) (22).
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Isotonic multidimensional scaling representation.
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Regression
and

Beyond



Regression

Usually means least-squares fitting of a linear model. Assumptions:

e Only one sort of ‘error’, measurement error.

e Distribution of measurement errors is roughly normal.

e Distribution of measurement errors does not depend on the regressors.

e Regressors have been transformed suitably.

e Response has been transformed suitably.

e Linear relationship is adequate.

e All the regressors are relevant, and none have been over-looked.
Some related ideas are fitting functional relationships (errors in regressors),
and the linear mixed models of next session.

Ideas here of diagnostics, non-least-squares fitting, and smooth transforma-
tions.



Scottish Hill Races

Data on record times in 35 Scottish hill races. Have overall race distance
(miles), the total height climbed (feet) and the record time (minutes).

> hills.1lm <- 1Im(time ~ dist + climb, hills)
> hills.1lm

Coefficients:
(Intercept) dist climb
-8.992 6.218 0.011048

Degrees of freedom: 35 total; 32 residual
Residual standard error: 14.676

Do some standard diagnostics

‘Studentized residuals’ refit the model (in theory) dropping the current
observation.

Look for ‘high leverage’
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> hills.hat <- 1lm.influence(hills.1lm)$hat
> cbind(hills, lev=hills.hat) [hills.hat > 3/35, ]
dist climb time lev
Bens of Jura 16 7500 204.617 0.42043
Lairig Ghru 28 2100 192.667 0.68982
Ben Nevis 10 4400 85.583 0.12158
Two Breweries 18 5200 170.250 0.17158
Moffat Chase 20 5000 159.833 0.19099

that is points that influence the fit unduly.



If we look atKnock Hill we see that the prediction is over an hour less
than the reported record:
> cbind(hills,

pred=predict(hills.1lm)) ["Knock Hill", ]

dist climb time  pred
Knock Hill 3 350 78.65 13.529

and Atkinson (1988) suggests (guesses?) that the record is one hour out. We
drop this observation to be safe.

> hillsl.1lm <- 1m(time ~ dist + climb, hills[-18, 1)
> hillsl.1m

Coefficients:
(Intercept) dist climb
-13.53 6.3646 0.011855

Degrees of freedom: 34 total; 31 residual
Residual standard error: 8.8035

SinceKnock Hill did not have a high leverage, deleting it did not change
the fitted model greatly.



On the other handgens of Jura had both a high leverage and a large
residual and so does affect the fit:

> Im(time ~ dist + climb, hills[-c(7,18), 1)
Coefficients:
(Intercept) dist climb

-10.362 6.6921 0.0080468

Degrees of freedom: 33 total; 30 residual
Residual standard error: 6.0538



Cook’s statistic is often used to examine this graphically:

Cook’s Distance

11 34

Index



We can also look for evidence of heteroscedasticity by the Cook-Weisberg
(1983) test:
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(lots of evidence fronBens of Jura).

and for a transformation, via the Box—Cox family.



Is this adequate?

A number of unsatisfactory features:

e the predictions are negative for short races

> summary(hillsl.lm)

Coefficients:

Value Std. Error t value Pr(>|t])

(Intercept) -13.530 2.649 -5.108 0.000
dist 6.365 0.361 17.624 0.000

climb 0.012 0.001 9.600 0.000

Notice the significantly negative intercept.



e Wwe would not expect the predictions of times that range from 15
minutes to over 3 hours to be equally accurate. Try weighting

> summary(lm(time ~ dist + climb, hills[-18, ],
weight=1/dist"2))

Coefficients:

Value Std. Error t value Pr(>|tl)

(Intercept) -5.809 2.034 -2.855  0.008
dist 5.821 0.536 10.858 0.000

climb 0.009 0.002 5.873 0.000

Residual standard error: 1.16 on 31 df

The intercept is still significantly non-zero.



If we are prepared to set it to zero on physical grounds, we can achieve
the same effect by dividing the prediction equation by distance, and
regressing inverse speed (time/distance) on gradient (climb/distance).

> Im(time ~ -1 + dist + climb, hills[-18, 1],
weight=1/dist"2)
Coefficients:
dist climb
4.9 0.0084718

Degrees of freedom: 34 total; 32 residual
Residual standard error (on weighted scale): 1.2786
> hills$ispeed <- hills$time/hills$dist
> hills$grad <- hills$climb/hills$dist
> hills2.1m <- 1m(ispeed ~ grad, hills[-18, 1)
> hills2.1m
Coefficients:

(Intercept) grad

4.9 0.0084718

Degrees of freedom: 34 total; 32 residual
Residual standard error: 1.2786



e there are some possible outliers.

Bens of Jura *

studres(hills2.Im)

Black Hill Creag Dubh

100 200 300 400 500

grad

and points of high(ish) leverage

> hills2.hat <- 1m.influence(hills2.1lm)$hat
> cbind(hills[-18,], lev=hills2.hat)
[hills2.hat > 1.8%2/34, ]
ispeed grad lev
Bens of Jura 12.7886 468.75 0.11354
Creag Dubh 6.5542 500.00 0.13915

studres(hills2.Im)

-2 -1 0 1 2

Quantiles of Standard Normal




Robust Regression
Regression diagnostics can only tinker with leaving one or two points out.

Robust regression assumes a long-tailed distribution of errors.

Resistant regression tries to make a good fit to the majority of the data,
discarding as much as it needs to.

Both are relatively computationally intensive.

Note there are conceptual issues here: can there be outlypomts, and if
so, should they be discardable?

1lmsreg andltsreg are resistant methods, but unfortunately differ markedly
between versions (ancsreg is no longer resistant i8-PLUS 2000!) and
are based on 15-year old methods and slow algorithmsg is also an old
design implementing an old method. Will usgs andrlm in library MASS.



Hill races again

> hills.1lm
Coefficients:
(Intercept) dist climb
-8.992 6.218 0.011048
Residual standard error: 14.676

> hillsl.1lm # omitting Knock Hill
Coefficients:
(Intercept) dist climb
-13.53 6.3646 0.011855
Residual standard error: 8.8035

> rlm(time ~ dist + climb, hills)
Coefficients:
(Intercept) dist climb
-9.6067 6.5507 0.0082959
Scale estimate: 5.21



> summary(rlm(time ~ dist + climb, hills,
weights=1/dist”2, method="MM"), cor=F)

Coefficients:
Value Std. Error t value
(Intercept) -1.804 1.665 -1.084
dist 5.244 0.233 22.546
climb 0.007 0.001 9.389

Residual standard error: 4.85 on 32 df

Method"MM" is in some sense the best of both worlds. Als@nRobMM.

> 1gs(time ~ dist + climb, data=hills,
nsamp="exact")

Coefficients:
(Intercept) dist climb
-1.26 4.86 0.00851

Scale estimates 2.94 3.01

Notice that the intercept is no longer significant in the robust weighted fits.



If we move to the model for inverse speed:

> summary(hills2.1lm) # omitting Knock Hill
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 4.900 0.474 10.344 0.000
grad 0.008 0.002 5.022 0.000

Residual standard error: 1.28 on 32 df

> summary(rlm(ispeed ~ grad, hills), cor=F)

Coefficients:
Value Std. Error t value
(Intercept) 5.176 0.381 13.593
grad 0.007 0.001 5.431

Residual standard error: 0.869 on 33 df
# method="MM" results are very similar.



> summary (1lmRobMM(ispeed ~ grad, data=hills))
Coefficients:
Value Std. Error t value Pr(>|tl)
(Intercept) 5.0754 0.4210 12.0563 0.0000
grad 0.0077 0.0016 4.8817 0.0000

Residual scale estimate: 0.8189 on 33 df

> 1gs(ispeed ~ grad, data=hills)

Coefficients:
(Intercept) grad
4.75 0.00805

Scale estimates 0.608 0.643

Let us take a closer look at this last fit.

hills.1lts <- 1lgs(ispeed ~ grad, data=hills,
nsamp="exact")
eqscplot(hills.lts$fitted, hills$ispeed)
abline(0, 1, 1lty=2)
identify(hills.lts$fitted, hills$ispeed,
row.names (hills))
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Knock Hill is clearly way off and is rejected. We commented on the high
Influence ofBens of Jura.

Let us zoom In:

hillsl <- hills[-c(7,18),]
hillsl.1lts <- 1lgs(ispeed ~ grad, data=hillsl,
nsamp="exact")
eqscplot(hillsl.lts$fitted, hillsi$ispeed)
abline(0, 1, 1lty=2)
identify(hillsl.lts$fitted, hillsi$ispeed,
row.names (hills1))

We see thaBlack Hill is run at less than 4 minutes for each mile, for a
4.5 mile hill race gaining 1000 feet! That is none too plausible.
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Lessons

This example has been used as an example of regression diagnostics and Iin
a textbook on robust methods. None spotted the rampant heteroscedasticity,
nor the anomalouBlack Hill. Even small and simple datasets are worth

examining carefully.

Subject-matter knowledge is important.



Bootstrapping Regressions

Distribution theory for more advanced methods is approximate or unknown.
Does the bootstrap help? Less than commonly supposed!

In frequentist inference we have to consider what might have happened but
did not. Linear models can arise exactly or approximately in a number of
ways. The most commonly considered form is

Y =X(G+e¢€

In which only € is considered to be random. This supposes that in all
(hypothetical) repetitions the samepoints would have been chosen, but
the responses would vary.

Another form of regression is sometimes referred to asah@om regressor
case in which the pairsr;, y;) are thought of as a random sample from
a population and we are interested in the regression function =
FE{Y | X =z} which is assumed to be linear.



However, it is common to perform conditional inference in this case and
condition on the observeds, converting this to a fixed-design problem.

For example, in the hill races the inferences drawn depend on whether
certain races, notablgens of Jura, were included in the sample. As
they were included, conclusions conditional on the set of races seems most
pertinent.

These considerations are particularly relevant when we consider bootstrap
resampling. The most obvious form of bootstrapping is to randomly sample
pairs(x;, y;) with replacement (case-based resampling) which corresponds
to randomly weighted regressions. However, this may not be appropriate
In not mimicking the assumed random variation and in some examples of
producing singular fits with high probability. The main alternatvegdel-

based resampling, is to resample the residuals. After fitting the linear model
we have

Y = i + €

and we create a new datasetipy= ::;ZB + e¢f where the(e?) are resampled
with replacement from the residudls).



There are a number of possible objections to this proceditest, the
residuals need not have mean zero if there is no intercept in the model, and it
IS usual to subtract their meafecond, they do not have the correct variance

or even the same variance. Thus we can adjust their variance by resampling
the modified residuals r; = e;/+/1 — h;; which have variance?.

No real need for bootstrapping with least-squares fitting of linear regression,
but a useful test of the code. We use Canty’s libragyt.

library(boot)
fit <- Im(time ~ dist + climb, hills, weights=1/dist"2)
tmp <- data.frame(hills, res=resid(fit), fitted=fitted(fit))
tmp.fun <- function(data, i) {
d <- data
dftime <- d$fitted + dPres[i]
coef (update(fit, data=d))
+
1lm.boot <- boot(tmp, tmp.fun, R=499)



lm.boot
Bootstrap Statistics :

original bias std. error
tlx 3.6271497 2.3858e+00 10.7492437
t2% 5.9395994 1.4032e-02  2.3299815
t3*% 0.0038374 -5.1356e-05 0.00563167

boot.ci(lm.boot, index=2, type="norm")

Level Normal

95% ( 1.359, 10.492 )

boot.ci(lm.boot, index=2, type=c("perc", "bca"))
Level Percentile BCa

95% ( -1.031, 9.362 ) ( -2.971, 8.525 )



fit <- rlm(time ~ dist + climb, hills, weights=1/dist”2, method="MM")
tmp <- data.frame(hills, res=resid(fit), fitted=fitted(fit))
rlm.boot <- boot(tmp, tmp.fun, R=499)
rlm.boot
Bootstrap Statistics :
original bias std. error
tlx -1.8038475 8.6192e-01 4.6642743
t2x 5.2441154 -3.2647e-02 1.0971856
t3*x 0.0074503 5.4427e-05 0.0020185

boot.ci(rlm.boot, index=2, type="norm")

Level Normal

95Y% ( 3.126, 7.427 )

boot.ci(rlm.boot, index=2, type=c("perc", "bca"))
Level Percentile BCa

957% ( 2.865, 7.175 ) ( 2.800, 7.123)



Predicting Computer Performance

Ein-Dor & Feldmesser (1987) studied data on the performance on a bench-
mark of a mix of minicomputers and mainframes. The measure was
normalized relative to an IBM 370/158-3.

There were six machine characteristics, the cycle time (nanoseconds), the
cache size (Kb), the main memory size (Kb) and number of channels. (For

the latter two there are minimum and maximum possible values; what the

actual machine tested had is unspecified.)

The original paper gave a linear regression for the square root of perfor-
mance, but log scale looks more intuitive.

We can consider the Box—Cox family of transformations.

boxcox(perf ~ syct+mmin+mmax+cach+chmin+chmax,
data=cpus, lambda=seq(0, 1, 0.1))

which tends to suggest a power of around 0.3 (and excludes both 0 and 0.5
from its 95% confidence interval).
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However, this does not allow for the regressors to be transformed, and many

of them would be most naturally expressed on log scale.



One way to allow the variables to be transformed is to discretize them and
use them as factors.

cpusl <- cpus
attach(cpus)
for(v in names(cpus) [2:6])
cpusi[[v]] <-
cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = T)
detach()
boxcox(perf ~ syct+mmin+mmax+cach+chmin+chmax,
data = cpusl, lambda = seq(-0.25, 1, 0.1))
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which does give a confidence interval including zero.



The purpose of this study is to predict computer performance. We randomly
select 100 examples for fitting the models and test the performance on the
remaining 109 examples.

First linear models on discretized variables with subset selection:

set.seed(123)
cpus2 <- cpusi[, 2:8]
excludes names, authors’ predictions
cpus.samp <- sample(1:209, 100)
cpus.lm <- 1m(loglO(perf) ~ ., data=cpus2[cpus.samp,2:8])
test.cpus <- function(fit)
sqrt (sum((loglO(cpus2[-cpus.samp, "perf"]) -
predict(fit, cpus2[-cpus.samp,]))~2)/109)
> test.cpus(cpus.lm)
[1] 0.20329
> cpus.lm2 <- stepAIC(cpus.lm, trace=F)
> cpus.lm2$anova

V V V # V V

Step Df Deviance Resid. Df Resid. Dev AIC
1 83 3.2300 -309.27
2 - syct 3 0.033248 86 3.2632 -314.25

test.cpus(cpus.1lm2)
[1] 0.1955531



So selecting a smaller model does improve the prediction a little. Is the
difference significant?

> resl <- loglO(cpusl[-cpus.samp, "perf"]) -
predict(cpus.lm, cpusO[-cpus.samp,])
> res2 <- loglO(cpusl[-cpus.samp, "perf"]) -
predict(cpus.1lm2, cpus2[-cpus.samp,])
> wilcox.test(resl1”2, res272, paired=T, alternative="greater")
signed-rank normal statistic Z = 3.3135,
p-value = be-04



Automated Transformations

For linear regression we have a dependent varigbdad a set of predictor
variablesX;, ..., X,, and model

p
YZOé—l—Zﬁij—l—é
7=1

So-called additive’ modelsreplace the linear functiofi, X ; by a non-linear
function to get

Y=a+)> fi(Xj)+e (1)
j=1

We could usgam, but that does not choose the degree of smoothness of the
/i

Library mda of Hastie and Tibshirani provides functiohsuto andmars.
BRUTO fits additive models with smooth functions selected by smoothing

splines and will choose between a smooth function, a linear term or omitting
the variable altogether.



library(mda)

cpusO <- cpus[, 2:8]

for(i in 1:3) cpusO[,i] <- loglO(cpusO[,i])
cpus.bruto <- bruto(Xin, loglO(cpusl[cpus.samp,8]))

test2(cpus.bruto)
[1] 0.21336

cpus.bruto$type
[1] excluded smooth linear smooth smooth linear
cpus.bruto$df
syct mmin mmax cach chmin chmax
0 1.5191 1 1.0578 1.1698 1

The result indicates that the non-linear terms have a very slight curvature, as
might be expected from the equivalent degrees of freedom that are reported.
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MARS

mars Implements the MARS method of Friedman (1991). By default this is
an additive method, fitting splines of order 1 (piecewise linear functions) to
each variable; again the number of pieces is selected by the program so that
variables can be entered linearly, non-linearly or not at all.

cpus.mars <- mars(Xin, loglO(cpus[cpus.samp,8]))
> test2(cpus.mars)
[1] 0.21366

> cpus.mars?2 <- mars(Xin, loglO(cpusl[cpus.samp,8]), degree=2)
> test2(cpus.mars2)

[1] 0.21495

> cpus.mars6 <- mars(Xin, loglO(cpusl[cpus.samp,8]), degree=6)
> test2(cpus.mars6)

[1] 0.20604

Allowing pairwise interaction terms (bgegree=2) or allowing arbitrary
Interactions makes little difference to the effectiveness of the predictions.
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Response Transformation Models

If we want to predict’, it may be better to transforivi as well, so we have
p
OY)=a+ > [i(X;) +e (2)
j=1

for an invertible smooth functiof(), for example the log function.

The ACE (alternating conditional expectation) algorithm of Breiman &
Friedman (1985) chooses the functichsind fi, ..., f; to maximize the
correlation between the predictort- ) ', f;(X;) andd(Y').

Tibshirani’s (1988) procedure AVAS (additivity and variance stabilising
transformation) aims to achieve constant variance of the residuals for mono-
toned.



CPUs data

We can consider thepus data: we have already log-transformed some of
the variables. AVAS accepts the log-scale for the response.

The strange shape of the transformationsctorin andchmax is probably
due to local collinearity as there are five machines without any channels.
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Random Effects
and
Mixed Models



Linear Mixed Models

Y =XB8+2Zb+ ¢

where X and Z are specified design matrices,s a vector of fixed effect
coefficientsp ande are random, mean zero, Gaussian if needed.

Usually think ofb being constant over subjects, tha&s independent between

subjects, possibly correlated within subjects. Ledenote free parameters
In the variance specification.



Likelihood

We observen r.v’s Y. Once the error structure is fully specified, and
cov(b, e) = 0,

Y ~ N(X3,V(w))
V(w) = varle) + Zvanb)Z*

so minus twice the log-likelihood is
(Y = XB)'VHw)(Y — XB) +log [V (w)

Thus, givenu we find the MLE of by generalized least squares.



One-way layout

Yij = b+ T; + €5, v=1,...,n

If we treat ther; ~ N (0,07), we have a special case. The log-likelihood
depends ow through the group means; = y;. . Now

m; ~ N (,u, a,? + 02/712')

which suggests that we take a weighted meampivith weights inversely
proportional to vam;). This is MVUE and is in fact the MLE of: (using
the special structure df).

What if the variances are unknown? For a balanced layout the estimator
does not depend on them. In general it depends;¢a-.

We can find the MLEs of7 andc?, but even in the balanced case they are
not the traditional ones: they have no adjustment for fitting means.



REML

Restricted / residual / reduced maximum likelihood: a method of estimation
in LMESs.

Suppose that we can find some linear combinatidiiswhose distribution
does not depend oft. In fact we can find up ta — p linearly independent
such. One choice is any— p of the least-squares residuals of the regression
of Y onX.

In REML we treatAY as the data and use maximume-likelihood estimation
of w (the parameters ii).

The REML estimates do not depend on the choicd,ado this procedure is
not as arbitrary as it sounds. Indeed, the REML estimates minimize
Y - X3) 'V Hw)(Y — XB) + log |V (w)| + log | X'V (w)X]|

Clearly the REML estimator of} is still GLS, plugging in the REML
estimate ofu: dightly simpler to compute than MLEs.



Another perspective

The REML fit criterion is the marginal likelihood, integratimgout with a
vague prior.

Relationship to classical ideas

In balanced designs REML gives the classical moment estimates of variance
components (constrained to be non-negative).

Consider a paired comparison: REML will give the paitetest analysis,
ML will get the variance consistently low (by a factor of a half).



Drawbacks

No equivalents of likelihood-ratio tests (REMLs on models with different
fixed effects are not comparable).

May be able to use Wald-like tests of extra parameters, but relevant asymp-
totic theory is hard to find.

Usual to quote GLS-based varianc&€V (&)X for 3 in both ML and
REML procedures.



BLUPs

Best linear unbiased predictions. In an LME it is not clear what fitted values
and hence residuals are. Our best prediction for subjsctot given by the
mean relationship. We need to specify just what is common with an example
we have already seen.

BLUPs replace the random effedtby their conditional meansgiven the
data, and then make predictions using those values,

Y = X3+ Zb
Since everything is Gaussian, these are linear functions of the data, and

as everything is linear, they are unbiased. They have minimum variance
amongst such estimators.

Obviously if we have a new subjeét= 0, and similarly in multilevel mod-
els. Therefore find several (in general) fitted values and several residuals.



James McGuire measured mood (POMS score) and abundance of free

Effects of Free Trytophan

trytophan in the blood for 15 post-operative patients.
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Classical model is
y¢j=u+ozi+ﬁx¢j+e¢j, €NN<0,0'2>

a parallel line for each patient.

LME is
Yij = W+ 0 + Bxy; + €5, n~ N(Q@%)

We could also consider a random effect for slope. This is hopeless in the
classical case. The LME becomes

Yij = 1+ 10 + (8 + C)zyj + €, CNN<0>U§>

where either we allowy and( to be correlated or we centrecarefully. The
estimate ofg and its estimated s.e. are almost unchanged. The BLUPs for
each patient are very different from the classical fits.



Linear Mixed-Effects Example

Gasoline data (Prater, 1956). Apparently 10 crude oil samples, 2—4 mea-
surements on each.

Classical analysis

> petl.1lm <- 1m(Y ~ No/EP - 1, Petrol)
> pet2.1m <- 1m(Y ~ No - 1 + EP, Petrol)

> anova(pet2.lm, petl.lm)
Terms RDf RSS Df Sum of Sq F Value Pr(F)
No - 1 +EP 21 74.132
No/EP - 1 12 30.329 9 43.803 1.9257 0.1439

> pet3.1m <- 1m(Y ~ SG + VP + V10 + EP, Petrol)

> anova(pet3.1lm, pet2.1lm)
Terms RDf RSS Df Sum of Sq F Value Pr (F)
SG + VP + V10 + EP 27 134.80
No -1+ EP 21 74.13 6 60.672 2.8645 0.033681
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(Notice thatSG, VP andV10 are constant within the levels b6 so these two
models are genuinely nested.) The result suggests that differences between
Intercepts ar@ot adequately explained by such a regression.

Mixed model

A promising way of generalizing the model is to assume that the 10 crude
oil samples form a random sample from a population where the intercepts
after regression on the determining variables depend on the sample:

Yij = pb+ € + 018G; + BoVP; + 03V10; + B4EP;; + €

where: denotes the sample anidhe observation on that sample, and-
N(0,0%) ande;; ~ N(0,0%), independently.



pet3.1lme <- 1lme(Y ~ SG + VP + V10 + EP, random = ~

summary (pet3.1lme)
Linear mixed-effects model fit by REML
Data: Petrol
AIC BIC 1logLik
166.38 175.45 -76.191

Random effects:
Formula: ~“1 | No
(Intercept) Residual
StdDev: 1.4447 1.8722

Fixed effects: Y © SG + VP + V10 + EP

Value Std.Error DF t-value p-value

(Intercept) 19.707 0.56827 21 34.679
SG  0.219 0.14694 6  1.493

VP 0.546 0.52052 6 1.049

Vio0 -0.154 0.03996 6 -3.860

EP 0.157 0.00559 21 28.128

using REML, and

<

0
0
0
<

.0001
.1860
.3347
.0084
.0001

1 | No, data

Petrol)



> pet3.1lme <- update(pet3.lme, method="ML")
> summary (pet3.1lme)
Linear mixed-effects model fit by maximum likelihood
Data: Petrol
AIC BIC 1logLik
149.38 159.64 -67.692

Random effects:

Formula: ~ 1 | No
(Intercept) Residual
StdDev: 0.92889 1.8273

Fixed effects: Y © SG + VP + V10 + EP
Value Std.Error DF t-value p-value

(Intercept) 19.694 0.478 21 41.188  0.000
SG  0.221 0.123 6 1.802 0.122
VP 0.549 0.441 6 1.246 0.259
V10 -0.153 0.034 6 -4.469 0.004
EP  0.156 0.006 21 26.620  0.000
by ML.

We can drosG andVp.



> petd.lme <- update(pet3.lme, fixed = Y ~ V10 + EP)
> anova(pet4.lme, pet3.lme)
Model df AIC BIC logLik Test Lik.Ratio p-value
petéd.1lme 1 5 149.61 156.94 -69.806
pet3.1lme 2 7 149.38 159.64 -67.692 1 vs. 2 4.2285 0.1207

Finally we check if we need both random regression intercepts and slopes
ONnEP, so we fit the model

Yij = pb+ e + B3V10; + (By + 1;)EP;; + €5
where(e;, n;) ande;; are independent, bdt andn; can be correlated.

> pet5.1lme <- update(pet4.lme, random = ~ 1 + EP | No)
> anova(pet4.lme, pet5.lme)
Model df AIC BIC 1logLik Test Lik.Ratio p-value
petéd.1lme 1 5 149.61 156.94 -69.806
petb.1lme 2 7 153.61 163.87 -69.805 1 vs. 2 0.0025194 0.9987

The simpler model is good enough.



Non-linear Mixed-Effects Models

Yij = flxiy; B,m) + €
will be general enough for our discussion. What we usually assume is that
Yij = fzij; B+mi) + €

where some components gf may always be zero. (Only and# have
random effects in the next example.)

What is the likelihood? Only rarely can we integrate o\gf. So ‘MLES’
of NLMEs are based on approximations.



Blood Pressure in Rabbits

Five rabbits were studied on two occasions, after treatment with saline (control) and
after treatment with the 5-HBRntagonist MDL 72222. After each treatment ascending
doses of phenylbiguanide (PBG) were injected intravenously at 10 minute intervals and
the responses of mean blood pressure measured. The goal was to test whether the
cardiogenic chemoreflex elicited by PBG depends on the activation of seedptors.

The response is thehange in blood pressure relative to the start of the experiment.

06—«
1+ exp|(x — \)/0)]

flzia, 8,1, 0) = a+



Change in blood pressure (mm Hg)

R1 R2 R4 R5

log(Dose) of Phenylbiguanide

Data points and BLUP curves for final fitted NLME model.




Fitting NLMEs

1. Fit a non-linear regression to each subject, and treat the parameter
values as the data at subject level. If there is within-subject correlation,
pool estimates of correlation parameters across subjects.

2. Use a Taylor-series expansion about the mean effects. This gives an

LME which we can fit. Repeatedly expand about the fixed effects, that
IS write
Yi; = f(fl%'j;ﬁo, 0) + X (8 — ")+ Zni + €ij

3. Use a Taylor-series expansion about estimatés,; pf
Yij = flaiy; 8007 + X(B = 8%+ Z(ni — ") + €

Lindstrom—Bates fit by simultaneously minimizing ovgt, »;); this
effectively uses the BLUPs in the local linearization.



Inference in NLMES

A problem! We have no likelihood to compare, and ttiene software
appears to quote the likelihood of the final linearization.

We can use the estimated variance of the parameters and Wald-like tests.

Rabbits

Note that there are three strata of variation:

1. Animals
2. Occasions within animals

3. Measurements on the animal/occasion combination.

and the effect of interest, the treatment, varies in the second stratum.



We start by fitting separate models for each treatment:

Control:
Log-likelihood: -66.502
Fixed: 1list(A ~ 1, B ~ 1, 1d50 " 1, th 7 1)
A B 1450 th
28.332 1.5134 3.7744 0.28957

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Structure: General positive-definite
StdDev Corr
A 5.76889 A
1d50 0.17953 0.112
Residual 1.36735



Treatment:
Log-likelihood: -65.422
Fixed: list(A ~ 1, B 1, 1d50 ~ 1, th ~ 1)
A B 1450 th
27.521 1.7839 4.5257 0.24236

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Structure: General positive-definite
StdDev Corr
A 5.36549 A
1d50 0.18999 -0.594
Residual 1.44172



Now a combined model

R.nlmel <-
nlme (BPchange ~ Fpl(Dose, A, B, 1d50, th),
fixed = 1list(A ~ Treatment, B ~ Treatment, 1d50 ~ Treatment, th ~ Treatment),
random = A + 1d50 ~ 1 | Animal/Run, data = Rabbit, ...)

Random effects:
Formula: list(A ~ 1, 1d50 ~ 1)
Level: Animal
Structure: General positive-definite

StdDev  Corr
A. (Intercept) 4.6063 A.(Int
1d50. (Intercept) 0.0626 -0.166

Formula: 1list(A ~ 1, 1d50 ~ 1)
Level: Run %in’ Animal
Structure: General positive-definite
StdDev  Corr
A. (Intercept) 3.2489 A.(Int
1d50. (Intercept) 0.1707 -0.348
Residual 1.4113



Fixed effects:
Value Std.Error t-value p-value

A.(Intercept) 28.326 2.7802 10.188 <.0001
A.Treatment -0.727 2.5184 -0.288 0.7744

B. (Intercept) 1.525 0.5165 2.958 0.0050
B.Treatment 0.261 0.6460 0.405 0.6877
1d50. (Intercept) 3.778 0.0955 39.579 <.0001
1d50.Treatment 0.747 0.1286 5.809 <.0001
th. (Intercept) 0.290 0.0323 8.957 <.0001
th.Treatment -0.047 0.0459 -1.020 0.3135

This suggests that the only difference by treatment is to shift the mean curve
along (A varies by treatment). If we fit that we find

Value Std.Error t-value p-value
A 28.170 2.4909 11.309 <.0001

B 1.667 0.3069 5.433 <.0001

1d50. (Intercept) 3.779 0.0921 41.036 <.0001
1d50.Treatment 0.759 0.1217 6.233 <.0001
th 0.271 0.0226 11.964 <.0001



Generalized Linear Mixed Models

Suppose we have a binomial or Poisson response. We can apply the same
Ideas, with linear predictor

n=XB+2Zb

and distribution ofY; depending om; through the link function.

Note that unless we have a Gaussian GLM with identity link, the marginal
distribution ofY; is not binomial, Poisson etc; th&;) are always dependent
(and usually positively correlated in clusters).

This is known as aubject-specific model. The alternative is marginal
or population-averaged model where the marginal distribution of theis
binomial, Poisson, etc, but they are correlated in clusters.



Logistic GLMM

Simplest case, a random-intercept model:
Yi; ~ bin(n;;, pi;), logitp;; = b; + (X 3);;

Here: labels the cluster.

Methods:

e Conditional analysis, conditional o y;;, which eliminates the
random intercept.

e Approximate MLEs based on Laplace expansion.

e Approximate MLEs based on numerical integration (and need to esti-
mate the variance df).

e Bayesian analysis by Gibbs sampler.



Marginal Models

Suppose we have several observatidbpson each clustei. We allow the
meany;; of Y;; to depend om,; for a linear predictor, = X 3, the variance
of Y;; to depend on its mean (and possibly a dispersion paramgter
Observations on different clusters are independent(¥jytare dependent,
with a correlation matrix depending on parameters

Apart from the dependence, this is how we model a GLM.
ldentity link
Suppose.;; = n;;, and we fit3 by GLS with weight matrixy/,
By = (XTWX) ' XTwy
Then asymptoticallyd;y is unbiased and normal with variance matrix

Syo= [(XTWX)T'XTW]varY) [WX(XTWX)™!]



e \We may be able to estimate var) some other way (REML from a
saturated model?)

e All we lose by not having the correct weightg is efficiency.

General link

Still use GLS, ignore the dependence of(Ya) on j:

Ot _

S U vary;) " Y - ] = 0
- 0p3

clusters

These are the GLM score equations, except for the correlations, which need
to estimate simultaneously.

This approach (including equations faj is known as GEE(Generalized
Estimating Equations. It has asymptotic theory that shows consistency,
asymptotic normality with estimable variance matrix.



Survival Analysis



Smooth Survival Curves

Classical approaches are parametric (e.g. Weibull) or rough (piecewise
constant) as in Kaplan-Meier.

There are analogues of density estimation for survival data in which we seek
smooth estimates of the survival functiSnthe densityf or (especially) the
hazard functiorh.

Our main example is on 2843 AIDS patients in Australia, of whom 1770
had died by the end of the study. The main covariates were gender, age,
transmission category and state.
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Survival of AIDS patients in Australia by transmission category.



Kernel-based approaches

Approach of Mueller & Wang (1994), in libramyuhaz.

attach(Aids2)
plot (muhaz(death-diag+0.9, status=="D"), n.est.grid=250)

This Is slow (takes 30 seconds) and we had to refine the output grid to
produce a fairly smooth result.
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Hazard function fitted to the&ids dataset byhuhaz.

Not very plausible, but some people prefer this method!



Likelihood approaches

The full log-likelihood is

Z log h(t;) — Z/Oh(u) du

HEFT (Kooperberget al., 1995) uses cubic spline model is used for the log
hazard, but with two additional ternéglog ¢ /(¢ + ¢) andf; log(t + ¢) where

c IS the upper quartile for the uncensored data. Then the space of fitted
hazards includes the functions

h(t) = ebt?(t + )"
which include the Weibull family and the Pareto density

be?
(t 4 c)b*t

for givenc. Thus there is some hope that the tail behaviour can be captured
within this parametric family.

f(t) =



library(heft); attach(Aids2)

aids.heft <- heft.fit(death-diag+0.9, status=="D")
heft.summary(aids.heft)

par (mfrow=c(2,2))

heft.plot(aids.heft, what="s", ylim=c(0,1)); heft.plot(aids.heft)
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Survivor curve and hazard fitted &ads by heft.fit.

This is rather slow (20 seconds). The spike at O of the hazard reflects the
small number of patients diagnosed at death. Note that this isdhgnal
hazard and its shape need not be at all similar to the hazard fitted in a
(parametric or Cox) proportional hazards model.



Local likelihood approach

We can localize the likelihood by adding weighting terms and uses locally
polynomial (e.g. quadratic) form of the hazard.

In theory this can be done by Loadet’scfit, but that fails after several
minutes on this example.



Adding Covariates

There have been a number of approaches to model the effect of covariates
on survival without a parametric model. Perhaps the simplest is a localized
version of the Kaplan-Meier estimator

Sitlz)= TJ [1— w(z; — )

t;<t,0,=1 ZjeR(tz-) w<5’7j - 37)

which includes observations with weights depending on the proximity of
their covariates ta.. This does not smooth the survivor function, but the
function sm.survival In library sm (Bowman & Azzalini, 1997) plots
guantiles as a function af by smoothing the inverse of the survival curve
and computing guartiles of the smoothed fit. Following them, we can plot
the median survival time after transplantation in the Stanford heart transplant
dataheart by

library(sm); attach(heart[heart$transplant==1,])
sm.survival (age+48, loglO(stop - start), event, h=5, p=0.50)
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1
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age

Median survival time for the Stanford heart transplant databysurvival. Deaths
are marked by, censorings by a circle.

This shows some evidence of a decline with age.



hazard

Likelihood approach

space too.

The local likelhnood approach easily generalizes to localizing in covariate
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study byleft 1ocfit andright by hazcov.



Smooth functions of covariates

A Weibull model fits the AIDS dataset well, and the fitted baseline survival
IS almost exponential.

aids.wei <-

survreg(Surv(survtime + 0.9, status) ~ state + T.categ + sex + age,
data=Aidsp)
summary (aids.wei, correlation=F)



Coefficients:

(Intercept)
stateOther
stateQLD
stateVIC
T.categhsid
T.categid
T.categhet
T.categhaem
T.categblood
T.categmother
T.categother
sex

age
Log(scale)

Scale= 1.04

Value Std. Error

.41825
.09387
.18213
.00750
.09363
.40132
.67689
.34090
.17336
.40186
.11279
.00426
.01374
.03969

O O O O O O O OO oo o oo

.2098
.0931
.0913
.0637
.15682
. 25562
L2744
.1956
.1429
.6123
.1696
.1827
.0026
.0193

z P
.5970 1.34e-205
.0079 3.13e-01
.9956 4.60e-02
1177 9.06e-01
.5918 5.54e-01
5727 1.16e-01
4667 1.36e-02
7429 8.14e-02
2131 2.25e-01
.6563 5.12e-01
.6649 5.06e-01
.0233  9.81e-01
.2862 1.25e-07
.0572 3.97e-02



We also considered parametric non-linear functionsgefby using a spline
function. We use the P-splines of Eilers & Marx (1996) (‘poor man’s

smoothing splines’) as this is implemented in betlrvreg andcoxph In
survivalb.

> aids.ps <-
survreg (Surv(survtime+0.9,status) ~ state + T.categ + pspline(age,df=6),
data=Aidsp)
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Predicted survival versus age ofNaw hs patient (solid line), with pointwise 95%
confidence intervals (dashed lines) and a rug of all observed ages.



Multivariate Analysis



Correspondence Analysis

A graphical technique, from the French ‘Data Analysis’ school of discrete
multivariate analysis.

Original form applies to two-way tables of counts.

For example, consider Fisher’s (1940) example on colours of eyes and hair
of people in Caithness, Scotland:

fair red medium dark black

blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26
dark 98 48 403 681 85

Correspondence analysis seeks ‘scoreahd g for the rows and columns
which are maximally correlated (but not constant).



> corresp(caith)
First canonical correlation: 0.44637

Row scores:
blue light medium dark
-0.89679 -0.98732 0.075306 1.5743

Column scores:
fair red medium dark black
-1.2187 -0.52258 -0.094147 1.3189 2.4518

There are various ways to plot these scores graphically, depending if we
want the rows to explain the columns or the columns to explain the rows or
to treat them symmetrically, as here.
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Three variants of correspondence analysis plots from Fisher’s data on people in Caith-
ness: (left) ‘symmetric”, (middle) ‘row asymmetric’ and (right) ‘column asymmetric’.

Note that the symmetric plot (left) has the row points from the asymmetric
row plot (middle) and the column points from the asymmetric column plot
(right) superimposed on the same plot (but with different scales).



Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for
visualizing the joint properties of > 2 categorical variables that doast
reduce to correspondence analysis (CA)fer 2, although the methods are
closely related.
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Multiple correspondence analysis plot of data on 20 farms on the Dutch island of
Terschelling. Numbers represent the farms and labels levels of moisture, grassland
usage, manure usage and type of grassland management.



Discriminant Analysis

Discriminant analysis means several things:

e Fisher’'s (1936) LDF showing the difference between two groups,
by maximizing the ratio of the between-group to the within group
variance.

e The extensions to more than two groups by Rao (1948), Bryan (1951)
and others, which maximizes a ratio of (co)variance matrices (in some
senses).

e ‘Allocation’ procedures based on normal distributions and the poste-
rior probabilities of allocating observations to the different groups.

— Linear discriminant analysis, where the populations are assumed
to have different means but the same variance matrix.

— Quadratic discrminant analysis, where the populations are as-
sumed to have different (but normal) distributions.

— Variations in which the variance matrices are restricted.



The MASS library has hadlda and gda for many years (indeed, prior to
MASS1), andS-PLUS 2000 now has the closely related scrim.

All have menu interfaces 1I8-PLUS 2000.

Some theory

(But not much!)

We have a set of; classes, and for each af cases we know the class
(assumed correctly). We hayaneasurements on each case.

W 1s the within-class variance matrix, that is the covariance matrix of the
variables centred on the class means.

B Is the between-classes variance matrix, that is, of the predictions by the
class means. Has rank at most min(p,g — 1).

Fisher's LDF is a linear combinatiom’a of the variables maximizing
a' Ba/a'Wa, originally for just two groups so the numerator was the
squared difference in group means.



Easiest to think of this in two steps:

() Spherethe data, that is take a linear transform so thais the identity.

(i) Rotate the space to thedimensions spanned by.

Then LDF plots the data on up to thelimensions given in the second step.

Sphering is done by taking the principal components of the data matrix
centred on the group means, and rescaling each PC to unit variance.

(Lots of traps: suppose a linear combination is constant within a group. Is it
constant between groups? Rounding errors?)

The rotation of the space is done by finding principal components of the
sphered data.

There are different definitions ab. Most people weight by the observed
group size, Rao did not weight at all, ahda weights by the population
prevalences if these are given.



Examples

First, Edgar Anderson’s data on Irises of the Gaspe Peninsula as used
by Fisher (1936). Three species, 50 specimens from each, 4 physical
measurements(petal, sepal) x (length, width) ).

Fisher was interested in the genetic makeup of the hexapleadsicolor as

a product of the merging the other two. We can reproduce this by finding
the LDF on the ‘outer’ two groups and plotting density plots of all three
(versicolor is dashed).
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Fisher's observation of a 1:2 mixture is confirmed.



Wait a minute! Are the variances equal? Do we not recommend transforma-
tions of size measurements to log scale?
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Not so clearly 1:2!



It is helpful to look at LDA for all three groups, using log-scale:
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The result shows that the means are nearly collinear.



Forensic glass data

Six groups, widely different scatters.

LD1
2

Dominated by a few outliers.



‘Allocation’ approach

Let 7. denote the prior probabilities of the classes.
p(zx | ¢) the densities for the observatioadrom classc.
The posterior distribution after observing a futures

me.p(x | c)
p(x)

ple|x) = x mep(x | c)

Bayes rule: choose the class which maximizg§: | «): has the smallest
expected number of errors.



QDA
p(zx | ¢) is Normal, meanu,, variance... Bayes rule minimizes

Qc = —2 1ng<w ‘ C) — 2 1Og e
= (& — p)S, (x — pe)' +1og S| — 2 logm, (3)

The first term of (3) is the squarddiahal anobis distance to the class centre,
and can be calculated by tefunctionmahalanobis.

The difference between tlig. for two classes is a quadratic functionaafo
the method is known aguadratic discriminant analysis and the boundaries
of the decision regions are quadratic surfaces gpace.



LDA

Now suppose that the classes have a common variance maMitferences
in the @, are nowlinear functions ofz, and we can maximize-Q)./2 or

Le=axX 'l — pX ' pwl /2 + logm, (4)

‘Plug-in’ rules

To use (3) or (4) we have to estimaigandX.. or X.. The obvious estimates
are used, the sample mean and covariance matrix within each clad$, and
for X..

Then LDA coincides with the Bryan version of LDF, but that does not tell
one how to allocate. Choosing the nearest group centre in an LDF plot is
equivalent to assuming equai. ).



Snags in LDA / QDA

We have made a lot of dubious assumptions.

e Those ‘obvious estimates’ are none too obvious on closer inspection.
We have unbiased estimatesypfand?:, but we use them in complex
expressions. Might do better to have unbiased estimategeqgfc) or
log p(x | ¢) orlog p(c | x). Last two are optiortdebiased’ in 1da.

e \We have assumed that the estimates are the true values, and ignored
the variabllity in the estimates (even if we correct the bias). Can matter
If the groups are of rather different sizd.edictive methods average
over the uncertainty in the estimates.

e LDA/ QDA are very far from robust to non-normality.

— real distributions might be normal, but might have errors in
measurements.

— real distributions might be non-normal.



All of these can make large differences, and ways around them are provided
for 1da andqda.

However, they probably indicate that discriminant analysis is not really a

competitive technigue these days, compared to logistic discrimination and
non-linear extensions such as neural networks.
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For the forensic glass data we can assume longer-ta)ldcs(ributions (left)
or resistant estimates of the variance matrix (right).



Cushing’s syndrome

The data are on diagnostic tests on patients Watishing's syndrome, a
hypersensitive disorder associated with over-secretion of cortisol by the
adrenal gland.

This dataset has three recognized types of the syndrome represemted as
b, c. (These encode ‘adenoma’, ‘bilateral hyperplasia’ and ‘carcinoma’,
and represent the underlying cause of over-secretion. This can only be
determined histopathologically.)

The observations are urinary excretion rates (mg/24h) of the steroid metabo-
lites tetrahydrocortisone and pregnanetriol, and are considered on log scale.

There are six patients of unknown type (markgd

Linear discriminant analysis is clearly inadequate: the various types of QDA
differ quite a bit.
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Linear and quadratic discriminant analysis applied to the Cushing’s syndrome data.
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Logistic regression and classification trees applied to the Cushing’s syndrome data.
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