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Themes

• Illustrate new features ofS-PLUS 2000 andMASS3 library.

• Modest departures from linearity via smooth terms.

• Be robust!

• ‘Eye-balling’ is not good enough for large-scale datasets.

• Build complex analyses from smaller ideas and tools.



Programme

• looking at data

– density estimation

– visualization of data matrices

• regression & beyond

– diagnostics and robust fits

– bootstrapping

– smooth terms

• random effects and mixed models

– methods: (N)LME, GLMM , GEE

– examples using thenlme3.x library

— lunch —



— lunch —

• survival analysis

– smooth models for hazards

– adding smooth terms incoxph andsurvreg

• multivariate analysis

– correspondence analysis

– discriminant analysis

• case study: MRI brain imaging



Looking at Data



Density estimation

Close look at data in one or perhaps two dimensions. Not many uses of
density estimation other than visualization.

Kernel methods

are very well known:

f̂(x) =
1

b

n∑
j=1

K

(
x− xj

b

)

for a samplex1, . . . , xn, a fixed kernelK() and a bandwidthb.

Main issue is the choice of bandwidthb. State-of-the-art methods in libraries
MASS andKernSmooth (Matt Wand).

Boundary effects can be severe: no sophisticatedS implementations (?)



Local polynomial methods

Do density estimation via smoothing: effectively take a fine grid and count
the number of points in each interval, then smooth that.
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Left: Logspline (solid line) and kernel density (dashed) estimates for thegalaxies data.
Right: Local polynomial estimates bylocpoly with linear (solid) and quadratic
(dashed) local fits.



Smooth log-densities

There are several closely-related proposals to use a univariate density esti-
mator of the form

f (y) = exp g(y; θ)

for a parametric familyg(·; θ) of smooth functions, most often splines. The
fit criterion is maximum likelihood, possibly with a smoothness penalty.

It is necessary to ensure that the estimated density has unit mass, most
conveniently by

f (y) = exp g(y; θ)/
∫

exp g(y; θ) dy

The librarylogspline by Charles Kooperberg implements one variant on
this theme. This uses a cubic regression spline forg, with smoothness by
backwards selection on the knots. There is an AIC-like penalty; the number
of the knots is chosen to maximize

n∑
i=1

g(yi; θ̂) − n log
∫

exp g(y; θ̂) dy − a× #params, a = log n ?



Splines

Interpolation splines A smooth curve through the data points(xi, yi) that
is as smooth as possible in the sense∫

(f ′′(x))2 dx

is minimized. Turns out to be a piecewise cubic with breaks at thexi.

Smoothing splines A smoothing spline minimizes a compromise between
the fit and the degree of smoothness of the form

∑
wi[yi − f (xi)]

2 + λ

∫
(f ′′(x))2 dx

over all (measurably twice-differentiable) functionsf . Again a piece-
wise cubic with breaks at thexi, but does not interpolate the data points
for λ > 0 and the degree of fit is controlled byλ.

How smooth? Various forms of cross-validation.



Regression splines Take the idea of cubic splines, but choose the knots to
control the smoothness. Get cubic splines bybs andns.
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Splines created byns(times, df=10).



Local likelihood methods

Use a parametric model forg(y) = log f (y) (e.g. quadratic) fitted locally at
x:

n∑
i=1

K
(
yi−x
b

)
g(yi; θ(x)) − n log

∫
K

(
y−x
b

)
exp g(y; θ(x)) dy

Once again have to choose the bandwidthb, possibly depending onx.

locfit by Clive Loader (+ recent Springer book).
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locfit density estimates for thegalaxies dataset. The solid line is the default, the
dotted line has a variable bandwidth chosen by AIC, and the dashed line uses a surrogate
Poisson model.



Series Estimation

f̂ (x) =
Ĵ∑
j=0

ŵjθ̂jφj(x) +

cJM∑
j=Ĵ+1

I{θ̂2
j>CT d̄ ln(n)/n}θ̂jφj(x)

then take the positive part, remove small bumps, rescale to unit integral.

Here(φj(x)) is an orthogonal basis,̂θj are the ‘Fourier’ coefficients.

‘universal orthogonal series estimator’ of
S. Efromovich (1999)Nonparametric Curve Estimation, Springer.



Multidimensional analogues

All (except series estimation) generalize easily to 2 or more dimensions, but

• ‘bandwidth’ now involves shape as well as size

• ‘curse of dimensionality’ means ‘local’ is a rather large neighbour-
hood.

• computation can be very slow.

• what are you going to do with this?

Survival data

Typically has partially observed data, e.g.X > t is all that is known for
some cases. Straightforward for likelihood-based methods, but localization
is less clear-cut.

Examples this afternoon.



Visualization

Challenge is to explore data in more than two or three dimensions.

via projections

Principal components is the most obvious technique:kD projection of data
with largest variance matrix (in several senses). Usually ‘shear’ the view to
give uncorrelated axes.

Lots of other projections looking for ‘interesting’ views, for example group-
ings, outliers, clumping.

Implementation viaXGobi for Unix, and for Windows using an X server.

multidimensional scaling

Aim is to represent distances between points well.



Suppose we have distances(dij) between all pairs ofn points, or adissim-
ilarity matrix. Classical MDS plots the firstk principal components, and
minimizes ∑

i 	=j
d2
ij − d̃2

ij

where(d̃ij) are the Euclidean distances in thekD space.

More interested in getting small distances right. Sammon (1969) proposed

minE(d, d̃) =
1∑

i 	=j dij

∑
i 	=j

(dij − d̃ij)
2

dij

Implemented in functionsammon in library MASS.



Kruskal and Shepard proposed only to preserve the ordering of distances,
minimizing

STRESS2 =

∑
i 	=j

[
θ(dij) − d̃ij

]2∑
i 	=j d̃

2
ij

over both the configuration of points and an increasing functionθ. Imple-
mented in functionisoMDS in library MASS. (This method isisotonic, hence
the function name.)

The optimization task is quite difficult and this can be slow.



Leptograpsus variegatus Crabs

200 crabs from Western Australia. Two colour forms, blue and orange;
collected 50 of each form of each sex.
Measurements of carapace (shell) lengthCL and widthCW, the size of the
frontal lobeFL and rear widthRW.
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(a) (b)

(c) (d)

Projections of theLeptograpsus crabs data found by projection pursuit. View (a) is a
random projection. View (b) was found using the natural Hermite index, view (c) by
the Friedman–Tukey index and view (d) by Friedman’s (1987) index.



Multidimensional scaling
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A Forensic Example

Data on 214 fragments of glass. Each has a measured refractive index and
composition (weight percent of oxides of Na, Mg, Al, Si, K, Ca, Ba and Fe).

Grouped as window float glass (70), window non-float glass (76), vehicle
window glass (17) and other (containers, tableware, headlamps) (22).
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Regression

and

Beyond



Regression

Usually means least-squares fitting of a linear model. Assumptions:

• Only one sort of ‘error’, measurement error.

• Distribution of measurement errors is roughly normal.

• Distribution of measurement errors does not depend on the regressors.

• Regressors have been transformed suitably.

• Response has been transformed suitably.

• Linear relationship is adequate.

• All the regressors are relevant, and none have been over-looked.

Some related ideas are fitting functional relationships (errors in regressors),
and the linear mixed models of next session.

Ideas here of diagnostics, non-least-squares fitting, and smooth transforma-
tions.



Scottish Hill Races

Data on record times in 35 Scottish hill races. Have overall race distance
(miles), the total height climbed (feet) and the record time (minutes).

> hills.lm <- lm(time ~ dist + climb, hills)

> hills.lm

....

Coefficients:

(Intercept) dist climb

-8.992 6.218 0.011048

Degrees of freedom: 35 total; 32 residual

Residual standard error: 14.676

Do some standard diagnostics

‘Studentized residuals’ refit the model (in theory) dropping the current
observation.

Look for ‘high leverage’
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> hills.hat <- lm.influence(hills.lm)$hat

> cbind(hills, lev=hills.hat)[hills.hat > 3/35, ]

dist climb time lev

Bens of Jura 16 7500 204.617 0.42043

Lairig Ghru 28 2100 192.667 0.68982

Ben Nevis 10 4400 85.583 0.12158

Two Breweries 18 5200 170.250 0.17158

Moffat Chase 20 5000 159.833 0.19099

that is points that influence the fit unduly.



If we look at Knock Hill we see that the prediction is over an hour less
than the reported record:

> cbind(hills,
pred=predict(hills.lm))["Knock Hill", ]

dist climb time pred
Knock Hill 3 350 78.65 13.529

and Atkinson (1988) suggests (guesses?) that the record is one hour out. We
drop this observation to be safe.

> hills1.lm <- lm(time ~ dist + climb, hills[-18, ])
> hills1.lm

....
Coefficients:
(Intercept) dist climb

-13.53 6.3646 0.011855

Degrees of freedom: 34 total; 31 residual

Residual standard error: 8.8035

SinceKnock Hill did not have a high leverage, deleting it did not change
the fitted model greatly.



On the other hand,Bens of Jura had both a high leverage and a large
residual and so does affect the fit:

> lm(time ~ dist + climb, hills[-c(7,18), ])

....

Coefficients:

(Intercept) dist climb

-10.362 6.6921 0.0080468

Degrees of freedom: 33 total; 30 residual

Residual standard error: 6.0538



Cook’s statistic is often used to examine this graphically:
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We can also look for evidence of heteroscedasticity by the Cook-Weisberg
(1983) test:
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(lots of evidence fromBens of Jura).

and for a transformation, via the Box–Cox family.



Is this adequate?

A number of unsatisfactory features:

• the predictions are negative for short races

> summary(hills1.lm)

....

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -13.530 2.649 -5.108 0.000

dist 6.365 0.361 17.624 0.000

climb 0.012 0.001 9.600 0.000

....

Notice the significantly negative intercept.



• we would not expect the predictions of times that range from 15
minutes to over 3 hours to be equally accurate. Try weighting

> summary(lm(time ~ dist + climb, hills[-18, ],

weight=1/dist^2))

....

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -5.809 2.034 -2.855 0.008

dist 5.821 0.536 10.858 0.000

climb 0.009 0.002 5.873 0.000

Residual standard error: 1.16 on 31 df

The intercept is still significantly non-zero.



If we are prepared to set it to zero on physical grounds, we can achieve
the same effect by dividing the prediction equation by distance, and
regressing inverse speed (time/distance) on gradient (climb/distance).

> lm(time ~ -1 + dist + climb, hills[-18, ],

weight=1/dist^2)

Coefficients:

dist climb

4.9 0.0084718

Degrees of freedom: 34 total; 32 residual

Residual standard error (on weighted scale): 1.2786

> hills$ispeed <- hills$time/hills$dist

> hills$grad <- hills$climb/hills$dist

> hills2.lm <- lm(ispeed ~ grad, hills[-18, ])

> hills2.lm

Coefficients:

(Intercept) grad

4.9 0.0084718

Degrees of freedom: 34 total; 32 residual

Residual standard error: 1.2786



• there are some possible outliers.
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and points of high(ish) leverage

> hills2.hat <- lm.influence(hills2.lm)$hat

> cbind(hills[-18,], lev=hills2.hat)

[hills2.hat > 1.8*2/34, ]

ispeed grad lev

Bens of Jura 12.7886 468.75 0.11354

Creag Dubh 6.5542 500.00 0.13915



Robust Regression

Regression diagnostics can only tinker with leaving one or two points out.

Robust regression assumes a long-tailed distribution of errors.

Resistant regression tries to make a good fit to the majority of the data,
discarding as much as it needs to.

Both are relatively computationally intensive.

Note there are conceptual issues here: can there be outlyingx points, and if
so, should they be discardable?

lmsreg andltsreg are resistant methods, but unfortunately differ markedly
between versions (andltsreg is no longer resistant inS-PLUS 2000!) and
are based on 15-year old methods and slow algorithms.rreg is also an old
design implementing an old method. Will uselqs andrlm in library MASS.



Hill races again

> hills.lm

Coefficients:

(Intercept) dist climb

-8.992 6.218 0.011048

Residual standard error: 14.676

> hills1.lm # omitting Knock Hill

Coefficients:

(Intercept) dist climb

-13.53 6.3646 0.011855

Residual standard error: 8.8035

> rlm(time ~ dist + climb, hills)

Coefficients:

(Intercept) dist climb

-9.6067 6.5507 0.0082959

Scale estimate: 5.21



> summary(rlm(time ~ dist + climb, hills,

weights=1/dist^2, method="MM"), cor=F)

Coefficients:

Value Std. Error t value

(Intercept) -1.804 1.665 -1.084

dist 5.244 0.233 22.546

climb 0.007 0.001 9.389

Residual standard error: 4.85 on 32 df

Method"MM" is in some sense the best of both worlds. Also inlmRobMM.

> lqs(time ~ dist + climb, data=hills,

nsamp="exact")

Coefficients:

(Intercept) dist climb

-1.26 4.86 0.00851

Scale estimates 2.94 3.01

Notice that the intercept is no longer significant in the robust weighted fits.



If we move to the model for inverse speed:

> summary(hills2.lm) # omitting Knock Hill

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 4.900 0.474 10.344 0.000

grad 0.008 0.002 5.022 0.000

Residual standard error: 1.28 on 32 df

> summary(rlm(ispeed ~ grad, hills), cor=F)

Coefficients:

Value Std. Error t value

(Intercept) 5.176 0.381 13.593

grad 0.007 0.001 5.431

Residual standard error: 0.869 on 33 df

# method="MM" results are very similar.



> summary(lmRobMM(ispeed ~ grad, data=hills))

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 5.0754 0.4210 12.0563 0.0000

grad 0.0077 0.0016 4.8817 0.0000

Residual scale estimate: 0.8189 on 33 df

> lqs(ispeed ~ grad, data=hills)

Coefficients:

(Intercept) grad

4.75 0.00805

Scale estimates 0.608 0.643

Let us take a closer look at this last fit.

hills.lts <- lqs(ispeed ~ grad, data=hills,

nsamp="exact")

eqscplot(hills.lts$fitted, hills$ispeed)

abline(0, 1, lty=2)

identify(hills.lts$fitted, hills$ispeed,

row.names(hills))
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Knock Hill is clearly way off and is rejected. We commented on the high
influence ofBens of Jura.

Let us zoom in:

hills1 <- hills[-c(7,18),]

hills1.lts <- lqs(ispeed ~ grad, data=hills1,

nsamp="exact")

eqscplot(hills1.lts$fitted, hills1$ispeed)

abline(0, 1, lty=2)

identify(hills1.lts$fitted, hills1$ispeed,

row.names(hills1))

We see thatBlack Hill is run at less than 4 minutes for each mile, for a
4.5 mile hill race gaining 1000 feet! That is none too plausible.
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Lessons

This example has been used as an example of regression diagnostics and in
a textbook on robust methods. None spotted the rampant heteroscedasticity,
nor the anomalousBlack Hill. Even small and simple datasets are worth
examining carefully.

Subject-matter knowledge is important.



Bootstrapping Regressions

Distribution theory for more advanced methods is approximate or unknown.
Does the bootstrap help? Less than commonly supposed!

In frequentist inference we have to consider what might have happened but
did not. Linear models can arise exactly or approximately in a number of
ways. The most commonly considered form is

Y = Xβ + ε

in which only ε is considered to be random. This supposes that in all
(hypothetical) repetitions the samex points would have been chosen, but
the responses would vary.

Another form of regression is sometimes referred to as therandom regressor
case in which the pairs(xi, yi) are thought of as a random sample from
a population and we are interested in the regression functionf (x) =

E{Y |X = x} which is assumed to be linear.



However, it is common to perform conditional inference in this case and
condition on the observedxs, converting this to a fixed-design problem.

For example, in the hill races the inferences drawn depend on whether
certain races, notablyBens of Jura, were included in the sample. As
they were included, conclusions conditional on the set of races seems most
pertinent.

These considerations are particularly relevant when we consider bootstrap
resampling. The most obvious form of bootstrapping is to randomly sample
pairs(xi, yi) with replacement (case-based resampling) which corresponds
to randomly weighted regressions. However, this may not be appropriate
in not mimicking the assumed random variation and in some examples of
producing singular fits with high probability. The main alternative,model-
based resampling, is to resample the residuals. After fitting the linear model
we have

yi = xiβ̂ + ei

and we create a new dataset byyi = xiβ̂ + e∗i where the(e∗i ) are resampled
with replacement from the residuals(ei).



There are a number of possible objections to this procedure.First, the
residuals need not have mean zero if there is no intercept in the model, and it
is usual to subtract their mean.Second, they do not have the correct variance
or even the same variance. Thus we can adjust their variance by resampling
themodified residuals ri = e1/

√
1 − hii which have varianceσ2.

No real need for bootstrapping with least-squares fitting of linear regression,
but a useful test of the code. We use Canty’s libraryboot.

library(boot)

fit <- lm(time ~ dist + climb, hills, weights=1/dist^2)

tmp <- data.frame(hills, res=resid(fit), fitted=fitted(fit))

tmp.fun <- function(data, i) {

d <- data

d$time <- d$fitted + d$res[i]

coef(update(fit, data=d))

}

lm.boot <- boot(tmp, tmp.fun, R=499)



lm.boot

Bootstrap Statistics :

original bias std. error

t1* 3.6271497 2.3858e+00 10.7492437

t2* 5.9395994 1.4032e-02 2.3299815

t3* 0.0038374 -5.1356e-05 0.0053167

boot.ci(lm.boot, index=2, type="norm")

Level Normal

95% ( 1.359, 10.492 )

boot.ci(lm.boot, index=2, type=c("perc", "bca"))

Level Percentile BCa

95% ( -1.031, 9.362 ) ( -2.971, 8.525 )



fit <- rlm(time ~ dist + climb, hills, weights=1/dist^2, method="MM")

tmp <- data.frame(hills, res=resid(fit), fitted=fitted(fit))

rlm.boot <- boot(tmp, tmp.fun, R=499)

rlm.boot

Bootstrap Statistics :

original bias std. error

t1* -1.8038475 8.6192e-01 4.6642743

t2* 5.2441154 -3.2647e-02 1.0971856

t3* 0.0074503 5.4427e-05 0.0020185

boot.ci(rlm.boot, index=2, type="norm")

Level Normal

95% ( 3.126, 7.427 )

boot.ci(rlm.boot, index=2, type=c("perc", "bca"))

Level Percentile BCa

95% ( 2.865, 7.175 ) ( 2.800, 7.123 )



Predicting Computer Performance

Ein-Dor & Feldmesser (1987) studied data on the performance on a bench-
mark of a mix of minicomputers and mainframes. The measure was
normalized relative to an IBM 370/158–3.

There were six machine characteristics, the cycle time (nanoseconds), the
cache size (Kb), the main memory size (Kb) and number of channels. (For
the latter two there are minimum and maximum possible values; what the
actual machine tested had is unspecified.)

The original paper gave a linear regression for the square root of perfor-
mance, but log scale looks more intuitive.

We can consider the Box–Cox family of transformations.

boxcox(perf ~ syct+mmin+mmax+cach+chmin+chmax,

data=cpus, lambda=seq(0, 1, 0.1))

which tends to suggest a power of around 0.3 (and excludes both 0 and 0.5
from its 95% confidence interval).
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However, this does not allow for the regressors to be transformed, and many
of them would be most naturally expressed on log scale.



One way to allow the variables to be transformed is to discretize them and
use them as factors.

cpus1 <- cpus

attach(cpus)

for(v in names(cpus)[2:6])

cpus1[[v]] <-

cut(cpus[[v]], unique(quantile(cpus[[v]])),

include.lowest = T)

detach()

boxcox(perf ~ syct+mmin+mmax+cach+chmin+chmax,

data = cpus1, lambda = seq(-0.25, 1, 0.1))
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which does give a confidence interval including zero.



The purpose of this study is to predict computer performance. We randomly
select 100 examples for fitting the models and test the performance on the
remaining 109 examples.

First linear models on discretized variables with subset selection:

> set.seed(123)

> cpus2 <- cpus1[, 2:8]

# excludes names, authors’ predictions

> cpus.samp <- sample(1:209, 100)

> cpus.lm <- lm(log10(perf) ~ ., data=cpus2[cpus.samp,2:8])

> test.cpus <- function(fit)

sqrt(sum((log10(cpus2[-cpus.samp, "perf"]) -

predict(fit, cpus2[-cpus.samp,]))^2)/109)

> test.cpus(cpus.lm)

[1] 0.20329

> cpus.lm2 <- stepAIC(cpus.lm, trace=F)

> cpus.lm2$anova

Step Df Deviance Resid. Df Resid. Dev AIC

1 83 3.2300 -309.27

2 - syct 3 0.033248 86 3.2632 -314.25

test.cpus(cpus.lm2)

[1] 0.1955531



So selecting a smaller model does improve the prediction a little. Is the
difference significant?

> res1 <- log10(cpus1[-cpus.samp, "perf"]) -

predict(cpus.lm, cpus0[-cpus.samp,])

> res2 <- log10(cpus1[-cpus.samp, "perf"]) -

predict(cpus.lm2, cpus2[-cpus.samp,])

> wilcox.test(res1^2, res2^2, paired=T, alternative="greater")

signed-rank normal statistic Z = 3.3135,

p-value = 5e-04



Automated Transformations

For linear regression we have a dependent variableY and a set of predictor
variablesX1, . . . ,Xp, and model

Y = α +

p∑
j=1

βjXj + ε

So-called‘additive’ models replace the linear functionβjXj by a non-linear
function to get

Y = α +

p∑
j=1

fj(Xj) + ε (1)

We could usegam, but that does not choose the degree of smoothness of the
fj.

Library mda of Hastie and Tibshirani provides functionsbruto andmars.
BRUTO fits additive models with smooth functions selected by smoothing
splines and will choose between a smooth function, a linear term or omitting
the variable altogether.



library(mda)

cpus0 <- cpus[, 2:8]

for(i in 1:3) cpus0[,i] <- log10(cpus0[,i])

cpus.bruto <- bruto(Xin, log10(cpus[cpus.samp,8]))

test2(cpus.bruto)

[1] 0.21336

cpus.bruto$type

[1] excluded smooth linear smooth smooth linear

cpus.bruto$df

syct mmin mmax cach chmin chmax

0 1.5191 1 1.0578 1.1698 1

The result indicates that the non-linear terms have a very slight curvature, as
might be expected from the equivalent degrees of freedom that are reported.
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MARS

mars implements the MARS method of Friedman (1991). By default this is
an additive method, fitting splines of order 1 (piecewise linear functions) to
each variable; again the number of pieces is selected by the program so that
variables can be entered linearly, non-linearly or not at all.

cpus.mars <- mars(Xin, log10(cpus[cpus.samp,8]))

> test2(cpus.mars)

[1] 0.21366

> cpus.mars2 <- mars(Xin, log10(cpus[cpus.samp,8]), degree=2)

> test2(cpus.mars2)

[1] 0.21495

> cpus.mars6 <- mars(Xin, log10(cpus[cpus.samp,8]), degree=6)

> test2(cpus.mars6)

[1] 0.20604

Allowing pairwise interaction terms (bydegree=2) or allowing arbitrary
interactions makes little difference to the effectiveness of the predictions.
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Response Transformation Models

If we want to predictY , it may be better to transformY as well, so we have

θ(Y ) = α +

p∑
j=1

fj(Xj) + ε (2)

for an invertible smooth functionθ(), for example the log function.

The ACE (alternating conditional expectation) algorithm of Breiman &
Friedman (1985) chooses the functionsθ and f1, . . . , fj to maximize the
correlation between the predictorα +

∑p
j=1 fj(Xj) andθ(Y ).

Tibshirani’s (1988) procedure AVAS (additivity and variance stabilising
transformation) aims to achieve constant variance of the residuals for mono-
toneθ.



CPUs data

We can consider thecpus data: we have already log-transformed some of
the variables. AVAS accepts the log-scale for the response.

The strange shape of the transformations forchmin andchmax is probably
due to local collinearity as there are five machines without any channels.
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Random Effects

and

Mixed Models



Linear Mixed Models

Y = Xβ + Zb + ε

whereX andZ are specified design matrices,β is a vector of fixed effect
coefficients,b andε are random, mean zero, Gaussian if needed.

Usually think ofb being constant over subjects, theε as independent between
subjects, possibly correlated within subjects. Letω denote free parameters
in the variance specification.



Likelihood

We observen r.v.’s Y . Once the error structure is fully specified, and
cov(b, ε) = 0,

Y ∼ N (Xβ, V (ω))

V (ω) = var(ε) + Zvar(b)ZT

so minus twice the log-likelihood is

(Y −Xβ)TV −1(ω)(Y −Xβ) + log |V (ω)|

Thus, givenω we find the MLE ofβ by generalized least squares.



One-way layout

yij = µ + τi + εij, i = 1, ..., ni

If we treat theτi ∼ N
(
0, σ2

b

)
, we have a special case. The log-likelihood

depends onβ through the group meansmi = yi· . Now

mi ∼ N
(
µ, σ2

b + σ2/ni
)

which suggests that we take a weighted mean ofmi with weights inversely
proportional to var(mi). This is MVUE and is in fact the MLE ofµ (using
the special structure ofV ).

What if the variances are unknown? For a balanced layout the estimator
does not depend on them. In general it depends onσ2

b/σ
2.

We can find the MLEs ofσ2
b andσ2, but even in the balanced case they are

not the traditional ones: they have no adjustment for fitting means.



REML

Restricted / residual / reduced maximum likelihood: a method of estimation
in LMEs.

Suppose that we can find some linear combinationsAY whose distribution
does not depend onβ. In fact we can find up ton − p linearly independent
such. One choice is anyn−p of the least-squares residuals of the regression
of Y onX.

In REML we treatAY as the data and use maximum-likelihood estimation
of ω (the parameters inV ).

The REML estimates do not depend on the choice ofA, so this procedure is
not as arbitrary as it sounds. Indeed, the REML estimates minimize

(Y −Xβ)TV −1(ω)(Y −Xβ) + log |V (ω)| + log |XTV −1(ω)X|
Clearly the REML estimator ofβ is still GLS, plugging in the REML
estimate ofω: slightly simpler to compute than MLEs.



Another perspective

The REML fit criterion is the marginal likelihood, integratingβ out with a
vague prior.

Relationship to classical ideas

In balanced designs REML gives the classical moment estimates of variance
components (constrained to be non-negative).

Consider a paired comparison: REML will give the pairedt–test analysis,
ML will get the variance consistently low (by a factor of a half).



Drawbacks

No equivalents of likelihood-ratio tests (REMLs on models with different
fixed effects are not comparable).

May be able to use Wald-like tests of extra parameters, but relevant asymp-
totic theory is hard to find.

Usual to quote GLS-based variancesXTV −1(ω̂)X for β̂ in both ML and
REML procedures.



BLUPs

Best linear unbiased predictions. In an LME it is not clear what fitted values
and hence residuals are. Our best prediction for subjecti is not given by the
mean relationship. We need to specify just what is common with an example
we have already seen.

BLUPs replace the random effectsb by their conditional meanŝb given the
data, and then make predictions using those values,

Ŷ = Xβ̂ + Zb̂

Since everything is Gaussian, these are linear functions of the data, and
as everything is linear, they are unbiased. They have minimum variance
amongst such estimators.

Obviously if we have a new subject,b̂ = 0, and similarly in multilevel mod-
els. Therefore find several (in general) fitted values and several residuals.



Effects of Free Trytophan

James McGuire measured mood (POMS score) and abundance of free
trytophan in the blood for 15 post-operative patients.
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Classical model is

yij = µ + αi + βxij + εij, ε ∼ N (0, σ2)

a parallel line for each patient.

LME is
yij = µ + ηi + βxij + εij, η ∼ N (0, σ2

η)

We could also consider a random effect for slope. This is hopeless in the
classical case. The LME becomes

yij = µ+ ηi + (β + ζ)xij + εij, ζ ∼ N (0, σ2
ζ)

where either we allowη andζ to be correlated or we centrex carefully. The
estimate ofβ and its estimated s.e. are almost unchanged. The BLUPs for
each patient are very different from the classical fits.



Linear Mixed-Effects Example

Gasoline data (Prater, 1956). Apparently 10 crude oil samples, 2–4 mea-
surements on each.

Classical analysis

> pet1.lm <- lm(Y ~ No/EP - 1, Petrol)

> pet2.lm <- lm(Y ~ No - 1 + EP, Petrol)

> anova(pet2.lm, pet1.lm)

Terms RDf RSS Df Sum of Sq F Value Pr(F)

No - 1 + EP 21 74.132

No/EP - 1 12 30.329 9 43.803 1.9257 0.1439

> pet3.lm <- lm(Y ~ SG + VP + V10 + EP, Petrol)

> anova(pet3.lm, pet2.lm)

Terms RDf RSS Df Sum of Sq F Value Pr(F)

SG + VP + V10 + EP 27 134.80

No - 1 + EP 21 74.13 6 60.672 2.8645 0.033681



10

20

30

40

A

200 250 300 350 400 450

B C

200 250 300 350 400 450

D

E F G

10

20

30

40

H

200 250 300 350 400 450

10

20

30

40

I J

200 250 300 350 400 450

ASTM end point (deg. F)

Y
ie

ld
 a

s 
a 

pe
rc

en
t o

f c
ru

de

Yield versus ASTM end point within samples.



(Notice thatSG, VP andV10 are constant within the levels ofNo so these two
models are genuinely nested.) The result suggests that differences between
intercepts arenot adequately explained by such a regression.

Mixed model

A promising way of generalizing the model is to assume that the 10 crude
oil samples form a random sample from a population where the intercepts
after regression on the determining variables depend on the sample:

yij = µ + ei + β1SGi + β2VPi + β3V10i + β4EPij + εij

wherei denotes the sample andj the observation on that sample, andei ∼
N (0, σ2

1) andεij ∼ N (0, σ2), independently.



pet3.lme <- lme(Y ~ SG + VP + V10 + EP, random = ~ 1 | No, data = Petrol)

summary(pet3.lme)

Linear mixed-effects model fit by REML

Data: Petrol

AIC BIC logLik

166.38 175.45 -76.191

Random effects:

Formula: ~1 | No

(Intercept) Residual

StdDev: 1.4447 1.8722

Fixed effects: Y ~ SG + VP + V10 + EP

Value Std.Error DF t-value p-value

(Intercept) 19.707 0.56827 21 34.679 <.0001

SG 0.219 0.14694 6 1.493 0.1860

VP 0.546 0.52052 6 1.049 0.3347

V10 -0.154 0.03996 6 -3.860 0.0084

EP 0.157 0.00559 21 28.128 <.0001

....

using REML, and



> pet3.lme <- update(pet3.lme, method="ML")

> summary(pet3.lme)

Linear mixed-effects model fit by maximum likelihood

Data: Petrol

AIC BIC logLik

149.38 159.64 -67.692

Random effects:

Formula: ~ 1 | No

(Intercept) Residual

StdDev: 0.92889 1.8273

Fixed effects: Y ~ SG + VP + V10 + EP

Value Std.Error DF t-value p-value

(Intercept) 19.694 0.478 21 41.188 0.000

SG 0.221 0.123 6 1.802 0.122

VP 0.549 0.441 6 1.246 0.259

V10 -0.153 0.034 6 -4.469 0.004

EP 0.156 0.006 21 26.620 0.000

....

by ML.

We can dropSG andVP.



> pet4.lme <- update(pet3.lme, fixed = Y ~ V10 + EP)

> anova(pet4.lme, pet3.lme)

Model df AIC BIC logLik Test Lik.Ratio p-value

pet4.lme 1 5 149.61 156.94 -69.806

pet3.lme 2 7 149.38 159.64 -67.692 1 vs. 2 4.2285 0.1207

Finally we check if we need both random regression intercepts and slopes
onEP, so we fit the model

yij = µ + ei + β3V10i + (β4 + ηi)EPij + εij

where(ei, ηi) andεij are independent, butei andηi can be correlated.

> pet5.lme <- update(pet4.lme, random = ~ 1 + EP | No)

> anova(pet4.lme, pet5.lme)

Model df AIC BIC logLik Test Lik.Ratio p-value

pet4.lme 1 5 149.61 156.94 -69.806

pet5.lme 2 7 153.61 163.87 -69.805 1 vs. 2 0.0025194 0.9987

The simpler model is good enough.



Non-linear Mixed-Effects Models

Yij = f (xij; β, ηi) + εij

will be general enough for our discussion. What we usually assume is that

Yij = f (xij; β + ηi) + εij

where some components ofηi may always be zero. (Onlyα and θ have
random effects in the next example.)

What is the likelihood? Only rarely can we integrate over(ηi). So ‘MLEs’
of NLMEs are based on approximations.



Blood Pressure in Rabbits

Five rabbits were studied on two occasions, after treatment with saline (control) and
after treatment with the 5-HT3 antagonist MDL 72222. After each treatment ascending
doses of phenylbiguanide (PBG) were injected intravenously at 10 minute intervals and
the responses of mean blood pressure measured. The goal was to test whether the
cardiogenic chemoreflex elicited by PBG depends on the activation of 5-HT3 receptors.

The response is thechange in blood pressure relative to the start of the experiment.

f (x;α, β, λ, θ) = α +
β − α

1 + exp[(x − λ)/θ]
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Fitting NLMEs

1. Fit a non-linear regression to each subject, and treat the parameter
values as the data at subject level. If there is within-subject correlation,
pool estimates of correlation parameters across subjects.

2. Use a Taylor-series expansion about the mean effects. This gives an
LME which we can fit. Repeatedly expand about the fixed effects, that
is write

Yij = f (xij; β̂
0, 0) + X(β − β̂0) + Zηi + εij

3. Use a Taylor-series expansion about estimates of(ηi):

Yij = f (xij; β̂
0, η̂0) + X(β − β̂0) + Z(ηi − η̂0) + εij

Lindstrom–Bates fit by simultaneously minimizing over(β, ηi); this
effectively uses the BLUPs in the local linearization.



Inference in NLMEs

A problem! We have no likelihood to compare, and thenlme software
appears to quote the likelihood of the final linearization.

We can use the estimated variance of the parameters and Wald–like tests.

Rabbits

Note that there are three strata of variation:

1. Animals

2. Occasions within animals

3. Measurements on the animal/occasion combination.

and the effect of interest, the treatment, varies in the second stratum.



We start by fitting separate models for each treatment:

Control:

Log-likelihood: -66.502

Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th

28.332 1.5134 3.7744 0.28957

Random effects:

Formula: list(A ~ 1, ld50 ~ 1)

Structure: General positive-definite

StdDev Corr

A 5.76889 A

ld50 0.17953 0.112

Residual 1.36735



Treatment:

Log-likelihood: -65.422

Fixed: list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1)

A B ld50 th

27.521 1.7839 4.5257 0.24236

Random effects:

Formula: list(A ~ 1, ld50 ~ 1)

Structure: General positive-definite

StdDev Corr

A 5.36549 A

ld50 0.18999 -0.594

Residual 1.44172



Now a combined model

R.nlme1 <-

nlme(BPchange ~ Fpl(Dose, A, B, ld50, th),

fixed = list(A ~ Treatment, B ~ Treatment, ld50 ~ Treatment, th ~ Treatment),

random = A + ld50 ~ 1 | Animal/Run, data = Rabbit, ...)

Random effects:

Formula: list(A ~ 1, ld50 ~ 1)

Level: Animal

Structure: General positive-definite

StdDev Corr

A.(Intercept) 4.6063 A.(Int

ld50.(Intercept) 0.0626 -0.166

Formula: list(A ~ 1, ld50 ~ 1)

Level: Run %in% Animal

Structure: General positive-definite

StdDev Corr

A.(Intercept) 3.2489 A.(Int

ld50.(Intercept) 0.1707 -0.348

Residual 1.4113



Fixed effects:

Value Std.Error t-value p-value

A.(Intercept) 28.326 2.7802 10.188 <.0001

A.Treatment -0.727 2.5184 -0.288 0.7744

B.(Intercept) 1.525 0.5155 2.958 0.0050

B.Treatment 0.261 0.6460 0.405 0.6877

ld50.(Intercept) 3.778 0.0955 39.579 <.0001

ld50.Treatment 0.747 0.1286 5.809 <.0001

th.(Intercept) 0.290 0.0323 8.957 <.0001

th.Treatment -0.047 0.0459 -1.020 0.3135

This suggests that the only difference by treatment is to shift the mean curve
along (λ varies by treatment). If we fit that we find

Value Std.Error t-value p-value

A 28.170 2.4909 11.309 <.0001

B 1.667 0.3069 5.433 <.0001

ld50.(Intercept) 3.779 0.0921 41.036 <.0001

ld50.Treatment 0.759 0.1217 6.233 <.0001

th 0.271 0.0226 11.964 <.0001



Generalized Linear Mixed Models

Suppose we have a binomial or Poisson response. We can apply the same
ideas, with linear predictor

η = Xβ + Zb

and distribution ofYi depending onηi through the link function.

Note that unless we have a Gaussian GLM with identity link, the marginal
distribution ofYi is not binomial, Poisson etc; the(Yi) are always dependent
(and usually positively correlated in clusters).

This is known as asubject-specific model. The alternative is amarginal
or population-averaged model where the marginal distribution of theYi is
binomial, Poisson, etc, but they are correlated in clusters.



Logistic GLMM

Simplest case, a random-intercept model:

Yij ∼ bin(nij, pij), logit pij = bi + (Xβ)ij

Herei labels the cluster.

Methods:

• Conditional analysis, conditional on
∑

j yij, which eliminates the
random intercept.

• Approximate MLEs based on Laplace expansion.

• Approximate MLEs based on numerical integration (and need to esti-
mate the variance ofbi).

• Bayesian analysis by Gibbs sampler.



Marginal Models

Suppose we have several observationsYij on each clusteri. We allow the
meanµij of Yij to depend onηij for a linear predictorη = Xβ, the variance
of Yij to depend on its mean (and possibly a dispersion parameterφ).
Observations on different clusters are independent, but(Yi·) are dependent,
with a correlation matrix depending on parametersω.

Apart from the dependence, this is how we model a GLM.

Identity link

Supposeµij = ηij, and we fitβ by GLS with weight matrixW ,

β̂W = (XTWX)−1XTWY

Then asymptoticallŷβW is unbiased and normal with variance matrix

ΣW =
[
(XTWX)−1XTW

]
var(Y )

[
WX(XTWX)−1

]



• We may be able to estimate var(Y ) some other way (REML from a
saturated model?)

• All we lose by not having the correct weightsW is efficiency.

General link

Still use GLS, ignore the dependence of var(Yi·) onβ:

∑
clustersi

∂µij
∂β

var(Yi·)−1 [Yi· − µi·] = 0

These are the GLM score equations, except for the correlations, which need
to estimate simultaneously.

This approach (including equations forα) is known as GEE,Generalized
Estimating Equations. It has asymptotic theory that shows consistency,
asymptotic normality with estimable variance matrix.



Survival Analysis



Smooth Survival Curves

Classical approaches are parametric (e.g. Weibull) or rough (piecewise
constant) as in Kaplan-Meier.

There are analogues of density estimation for survival data in which we seek
smooth estimates of the survival functionS, the densityf or (especially) the
hazard functionh.

Our main example is on 2 843 AIDS patients in Australia, of whom 1 770
had died by the end of the study. The main covariates were gender, age,
transmission category and state.
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Kernel-based approaches

Approach of Mueller & Wang (1994), in librarymuhaz.

attach(Aids2)

plot(muhaz(death-diag+0.9, status=="D"), n.est.grid=250)

This is slow (takes 30 seconds) and we had to refine the output grid to
produce a fairly smooth result.
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Not very plausible, but some people prefer this method!



Likelihood approaches

The full log-likelihood is

∑
ti:δi=1

log h(ti) −
∑
i

∫ ti

0

h(u) du

HEFT (Kooperberget al., 1995) uses cubic spline model is used for the log
hazard, but with two additional termsθ1 log t/(t+ c) andθ2 log(t+ c) where
c is the upper quartile for the uncensored data. Then the space of fitted
hazards includes the functions

h(t) = eθ0tθ1(t + c)θ2−θ1

which include the Weibull family and the Pareto density

f (t) =
bcb

(t + c)b+1

for givenc. Thus there is some hope that the tail behaviour can be captured
within this parametric family.



library(heft); attach(Aids2)

aids.heft <- heft.fit(death-diag+0.9, status=="D")

heft.summary(aids.heft)

par(mfrow=c(2,2))

heft.plot(aids.heft, what="s", ylim=c(0,1)); heft.plot(aids.heft)
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Survivor curve and hazard fitted toAids by heft.fit.

This is rather slow (20 seconds). The spike at 0 of the hazard reflects the
small number of patients diagnosed at death. Note that this is themarginal
hazard and its shape need not be at all similar to the hazard fitted in a
(parametric or Cox) proportional hazards model.



Local likelihood approach

We can localize the likelihood by adding weighting terms and uses locally
polynomial (e.g. quadratic) form of the hazard.

In theory this can be done by Loader’slocfit, but that fails after several
minutes on this example.



Adding Covariates

There have been a number of approaches to model the effect of covariates
on survival without a parametric model. Perhaps the simplest is a localized
version of the Kaplan-Meier estimator

Ŝ(t | x) =
∏

ti�t,δi=1

[
1 − w(xi − x)∑

j∈R(ti)
w(xj − x)

]

which includes observations with weights depending on the proximity of
their covariates tox. This does not smooth the survivor function, but the
function sm.survival in library sm (Bowman & Azzalini, 1997) plots
quantiles as a function ofx by smoothing the inverse of the survival curve
and computing quartiles of the smoothed fit. Following them, we can plot
the median survival time after transplantation in the Stanford heart transplant
dataheart by

library(sm); attach(heart[heart$transplant==1,])

sm.survival(age+48, log10(stop - start), event, h=5, p=0.50)



age

lo
g1

0(
st

op
 -

 s
ta

rt
)

20 30 40 50 60

0
1

2
3

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

o oo ooo
o oo

ooo o
o

o oo o

o

o
o

o

o

o

Median survival time for the Stanford heart transplant data bysm.survival. Deaths
are marked byx, censorings by a circle.

This shows some evidence of a decline with age.



Likelihood approach

The local likelhood approach easily generalizes to localizing in covariate
space too.
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Smooth functions of covariates

A Weibull model fits the AIDS dataset well, and the fitted baseline survival
is almost exponential.

aids.wei <-

survreg(Surv(survtime + 0.9, status) ~ state + T.categ + sex + age,

data=Aidsp)

summary(aids.wei, correlation=F)

....



Coefficients:

Value Std. Error z p

(Intercept) 6.41825 0.2098 30.5970 1.34e-205

stateOther 0.09387 0.0931 1.0079 3.13e-01

stateQLD -0.18213 0.0913 -1.9956 4.60e-02

stateVIC -0.00750 0.0637 -0.1177 9.06e-01

T.categhsid 0.09363 0.1582 0.5918 5.54e-01

T.categid 0.40132 0.2552 1.5727 1.16e-01

T.categhet 0.67689 0.2744 2.4667 1.36e-02

T.categhaem -0.34090 0.1956 -1.7429 8.14e-02

T.categblood -0.17336 0.1429 -1.2131 2.25e-01

T.categmother -0.40186 0.6123 -0.6563 5.12e-01

T.categother -0.11279 0.1696 -0.6649 5.06e-01

sex -0.00426 0.1827 -0.0233 9.81e-01

age -0.01374 0.0026 -5.2862 1.25e-07

Log(scale) 0.03969 0.0193 2.0572 3.97e-02

Scale= 1.04



We also considered parametric non-linear functions ofage by using a spline
function. We use the P-splines of Eilers & Marx (1996) (‘poor man’s
smoothing splines’) as this is implemented in bothsurvreg andcoxph in
survival5.

> aids.ps <-

survreg(Surv(survtime+0.9,status) ~ state + T.categ + pspline(age,df=6),

data=Aidsp)
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Multivariate Analysis



Correspondence Analysis

A graphical technique, from the French ‘Data Analysis’ school of discrete
multivariate analysis.

Original form applies to two-way tables of counts.

For example, consider Fisher’s (1940) example on colours of eyes and hair
of people in Caithness, Scotland:

fair red medium dark black

blue 326 38 241 110 3

light 688 116 584 188 4

medium 343 84 909 412 26

dark 98 48 403 681 85

Correspondence analysis seeks ‘scores’f andg for the rows and columns
which are maximally correlated (but not constant).



> corresp(caith)

First canonical correlation: 0.44637

Row scores:

blue light medium dark

-0.89679 -0.98732 0.075306 1.5743

Column scores:

fair red medium dark black

-1.2187 -0.52258 -0.094147 1.3189 2.4518

There are various ways to plot these scores graphically, depending if we
want the rows to explain the columns or the columns to explain the rows or
to treat them symmetrically, as here.
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Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for
visualizing the joint properties ofp � 2 categorical variables that doesnot
reduce to correspondence analysis (CA) forp = 2, although the methods are
closely related.
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Discriminant Analysis

Discriminant analysis means several things:

• Fisher’s (1936) LDF showing the difference between two groups,
by maximizing the ratio of the between-group to the within group
variance.

• The extensions to more than two groups by Rao (1948), Bryan (1951)
and others, which maximizes a ratio of (co)variance matrices (in some
senses).

• ‘Allocation’ procedures based on normal distributions and the poste-
rior probabilities of allocating observations to the different groups.

– Linear discriminant analysis, where the populations are assumed
to have different means but the same variance matrix.

– Quadratic discrminant analysis, where the populations are as-
sumed to have different (but normal) distributions.

– Variations in which the variance matrices are restricted.



The MASS library has hadlda and qda for many years (indeed, prior to
MASS1), andS-PLUS 2000 now has the closely relateddiscrim.

All have menu interfaces inS-PLUS 2000.

Some theory

(But not much!)

We have a set ofg classes, and for each ofn cases we know the class
(assumed correctly). We havep measurements on each case.

W is the within-class variance matrix, that is the covariance matrix of the
variables centred on the class means.

B is the between-classes variance matrix, that is, of the predictions by the
class means. Has rank at mostr = min(p, g − 1).

Fisher’s LDF is a linear combinationxTa of the variables maximizing
aTBa/aTWa, originally for just two groups so the numerator was the
squared difference in group means.



Easiest to think of this in two steps:

(i) Sphere the data, that is take a linear transform so thatW is the identity.

(ii) Rotate the space to ther dimensions spanned byB.

Then LDF plots the data on up to ther dimensions given in the second step.

Sphering is done by taking the principal components of the data matrix
centred on the group means, and rescaling each PC to unit variance.

(Lots of traps: suppose a linear combination is constant within a group. Is it
constant between groups? Rounding errors?)

The rotation of the space is done by finding principal components of the
sphered data.

There are different definitions ofB. Most people weight by the observed
group size, Rao did not weight at all, andlda weights by the population
prevalences if these are given.



Examples

First, Edgar Anderson’s data on Irises of the Gaspe Peninsula as used
by Fisher (1936). Three species, 50 specimens from each, 4 physical
measurements ((petal, sepal) × (length, width) ).

Fisher was interested in the genetic makeup of the hexaploidI. versicolor as
a product of the merging the other two. We can reproduce this by finding
the LDF on the ‘outer’ two groups and plotting density plots of all three
(versicolor is dashed).
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Wait a minute! Are the variances equal? Do we not recommend transforma-
tions of size measurements to log scale?
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It is helpful to look at LDA for all three groups, using log-scale:

first linear discriminant
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The result shows that the means are nearly collinear.



Forensic glass data

Six groups, widely different scatters.
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‘Allocation’ approach

Let πc denote the prior probabilities of the classes.

p(x | c) the densities for the observationsx from classc.

The posterior distribution after observing a futurex is

p(c |x) =
πc p(x | c)
p(x)

∝ πc p(x | c)

Bayes rule: choose the class which maximizesp(c |x): has the smallest
expected number of errors.



QDA

p(x | c) is Normal, meanµc, varianceΣc. Bayes rule minimizes

Qc = −2 log p(x | c) − 2 log πc

= (x − µc)Σ
−1
c (x − µc)

T + log |Σc| − 2 log πc (3)

The first term of (3) is the squaredMahalanobis distance to the class centre,
and can be calculated by theS functionmahalanobis.

The difference between theQc for two classes is a quadratic function ofx, o
the method is known asquadratic discriminant analysis and the boundaries
of the decision regions are quadratic surfaces inx space.



LDA

Now suppose that the classes have a common variance matrixΣ. Differences
in theQc are nowlinear functions ofx, and we can maximize−Qc/2 or

Lc = xΣ−1µT
c − µcΣ

−1µT
c /2 + log πc (4)

‘Plug-in’ rules

To use (3) or (4) we have to estimateµc andΣc or Σ. The obvious estimates
are used, the sample mean and covariance matrix within each class, andW

for Σ.

Then LDA coincides with the Bryan version of LDF, but that does not tell
one how to allocate. Choosing the nearest group centre in an LDF plot is
equivalent to assuming equal(πc).



Snags in LDA / QDA

We have made a lot of dubious assumptions.

• Those ‘obvious estimates’ are none too obvious on closer inspection.
We have unbiased estimates ofµc andΣ, but we use them in complex
expressions. Might do better to have unbiased estimates ofp(x | c) or
log p(x | c) or log p(c |x). Last two are option"debiased’ in lda.

• We have assumed that the estimates are the true values, and ignored
the variability in the estimates (even if we correct the bias). Can matter
if the groups are of rather different sizes.Predictive methods average
over the uncertainty in the estimates.

• LDA / QDA are very far from robust to non-normality.

– real distributions might be normal, but might have errors in
measurements.

– real distributions might be non-normal.



All of these can make large differences, and ways around them are provided
for lda andqda.

However, they probably indicate that discriminant analysis is not really a
competitive technique these days, compared to logistic discrimination and
non-linear extensions such as neural networks.
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For the forensic glass data we can assume longer-tailed (t) distributions (left)
or resistant estimates of the variance matrix (right).



Cushing’s syndrome

The data are on diagnostic tests on patients withCushing’s syndrome, a
hypersensitive disorder associated with over-secretion of cortisol by the
adrenal gland.

This dataset has three recognized types of the syndrome represented asa,
b, c. (These encode ‘adenoma’, ‘bilateral hyperplasia’ and ‘carcinoma’,
and represent the underlying cause of over-secretion. This can only be
determined histopathologically.)

The observations are urinary excretion rates (mg/24h) of the steroid metabo-
lites tetrahydrocortisone and pregnanetriol, and are considered on log scale.

There are six patients of unknown type (markedu).

Linear discriminant analysis is clearly inadequate: the various types of QDA
differ quite a bit.
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Linear and quadratic discriminant analysis applied to the Cushing’s syndrome data.



Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Tetrahydrocortisone

P
re

gn
an

et
rio

l

1 2 3 4

-3
-2

-1
0

1
2

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

ua
b

c

Logistic regression and classification trees applied to the Cushing’s syndrome data.



Case Study:

Magnetic Resonance Imaging

of Brain Function

with Jonathan Marchini


