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Neural networks are increasingly being seen as an addition to the statistics toolkit which should be
considered alongside both classical and modern statistical methods. Reviews in this light have been
given by one of us1,2,3,4,5 and Cheng and Titterington,6 and it is a point of view which is being widely
accepted by the mainstream neural networks community. There are now many texts5,7,8,9 covering
the wide range of neural networks methods; we concentrate here on methods which we see as most
appropriate generally in medicine, and in particular on methods for survival data which have not to our
knowledge been reviewed in depth (although Schwarzer et al.10 review a large number of applications
in oncology). In particular, we point out the many different ways classification networks have been
used for survival data, as well as their many flaws.

Most applications of neural networks to medicine are classification problems; that is the task is on
the basis of the measured features to assign the patient (or biopsy or EEG or . . . ) to one of a small set of
classes. Baxt11 gives a table of applications of neural networks in clinical medicine which are almost all
of this form, including those in laboratories. 12 Classification problems include diagnosis, some prog-
nosis problems (‘will she relapse within the next three years?’), establishing depths of anaesthesia 13

and classifying sleep state. 14 Other prognosis problems are sometimes converted to a classification
problem with an ordered series of categories, for example time to relapse as 0–1, 1–2, 2–4 or 4 or more
years15 and prognosis after head injury.16,17,18 We discuss neural networks for classification and their
main competitors in section 1.

Regression problems are less common in medicine, especially those which would require sophisti-
cated non-linear methods such as neural networks. We can envisage them being used for some calibra-
tion tasks in the laboratory, but a simpler example is to predict time to death of a patient with advanced
breast cancer. As methods for regression can often be applied in a clever or modified way to solve
classification or survival problems, we consider them in section 2. The general idea is to replace a
linear function by a neural network, which can be done within many areas of statistics.

Most prognosis problems have the characteristic that for some patients in the study set the outcome
has not yet happened (or they have been lost to follow-up or died from a unrelated cause). This is
known as censoring and has generated much statistical interest19,20,21,22 over the last three decades.
Researchers have begun to consider how neural networks could be used within this framework, and we
review this work and add some suggestions in section 3.

One important observation is that neural networks provide ‘black box’ methods; they may be very
good at predicting outcomes but are not able to provide explanations of, say, the diagnosis or prognosis.
Some of the other modern methods are able to provide explanations, and one promising idea is to fit
these to the predictions of the neural network and come up with an explanation. Neural networks also
lack another of the characteristics of expert systems, the ability to incorporate (easily; there is some
work on ‘hints’ 23) qualitative information provided by domain experts.

Neural networks are powerful, and like powerful cars are difficult to drive well. For many users
the power will be an embarrassment, and they may do better to use the simpler tools from modern
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statistics. Because of the ‘hype’ surrounding neural networks many expensive programs have been
produced which have had much more effort (and understanding) devoted to the user interface than to
the algorithms used. In section 4 we point out a few of the pitfalls, but would-be users are advised to
read one of the better books on the subject (or to consult an expert statistician). The statistical view has
pointed out many ways to use neural networks better, but unfortunately these are still only very rarely
implemented. We used the S-PLUS24 statistical environment on both a PC and a Unix workstation to
compute the examples, but the code used to fit neural networks was written by ourselves. (The basic
code is freely available as part of the on-line material for reference 25.)

Examples

We use two cancer datasets to illustrate some of our points; note that their use here is pure illustrative
and is not intended as an analysis of those sets of data. The first is on survival in months (up to 18
years, but with a median of 23 months) from advanced breast cancer, supplied by Dr J.-P. Nakache.
There are 981 patients and 12 explanatory features all of which are categorical. We randomly divided
this into a test set of size 500 and a training set of size 481, and assessed the methods on predictions of
survival for 24 months; only 3% of the patients did not have complete follow-up to that time.

The second dataset is of 205 patients with malignant melanoma following a radical operation, and
has five explanatory features. This is taken from reference 21; it is the same dataset which was analysed
(with additional explanatory variables) in reference 26. Figure 1 shows that there appears to be long-
term survival (from melanoma) for 65% of patients, so the survival distribution does not follow any
of the standard distributions. Only 57 of the patients died from the melanoma during the study. We
assessed methods on their ability to predict survival to 2500 days, by which point 86 of the patients had
incomplete follow-up; our analysis shows that we expect 82 of these to have survived for 2500 days.
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Figure 1: Plots of the Kaplan-Meier estimates of survival curves for the full (left) breast cancer and
(right) melanoma datasets.

1 Classification

Suppose for the moment that we wish to classify a patient into one of two classes (for example, survival
for five years or not); for many purposes it will be more helpful to know the predicted probability
of survival. A simple but much neglected method is logistic regression or discrimination, 5 which is
specified by

P (class 2 | x) =
eη

1 + eη
, η = β0 + β1x1 + · · · + βpxp

P (class 1 | x) = 1 − P (class 2 | x) =
1

1 + eη

2

P (class 2 | x)
P (class 1 | x)

= eη

so the explanatory variables linearly control the log-odds η in favour of class 2 (survival). The param-
eters β are chosen by maximum likelihood, that is by maximizing the log-likelihood

L =
∑

i

log P (classi | xi) (1)

the sum being over patients. Then given the features x on a future patient we will be able to predict
P (class 2 | x), her probability of survival.

There have been many non-linear extensions of logistic regression. There are several variants of
generalized additive models27,28,29 in which

η =
∑

gi(xi)

where smooth functions gi of one (or perhaps two) of the features are chosen as part of the estimation
procedure, and classification trees30,5 in which the patients are divided into groups with a common η
for each group.

The extension of logistic regression to neural networks is straightforward; we take η to be the (lin-
ear) output of a neural network with inputs x and write η = g(x; θ) where the parameters θ are known
as ‘weights’ in the neural network literature. (Note that we can also regard this as a neural network
with a single logistic output unit giving P (class 2 | x), but that is rather coincidental.) Fitting the
neural network by maximum likelihood is known as ‘entropy’ fitting in that literature and is definitely
not common (and supported by amazingly few packages). It is more common to use the regression
methods we discuss in section 2, which may be adequate for predicting the class (survival or death) but
will be less good for predicting probabilities.

The extension to k > 2 classes is even less well known, although it has a long history. The idea is
to take the log-odds of each class relative to one class, so the model becomes

P (class j | x)
P (class 1 | x)

= eηj , j = 2, . . . , k

and so

P (class j | x) =
eηj

∑k
c=1 eηc

, η1 ≡ 0 (2)

With ηj = βT
j x this is known as multiple logistic regression. 5 The parameters (βj) are fitted by max-

imizing the log-likelihood L given in (1). There have been surprisingly few non-linear extensions in
the statistics literature; there is some recent work on additive multiple logistic regression called POLY-
CLASS31 models. The extension to neural networks is easy; use (2) with (η1, . . . , ηk) the k (linear)
outputs of a neural network. (Only k − 1 outputs are needed, but for symmetry we do not insist that
η1 = 0.) Bridle32,33 gave this the pretentious title of softmax. Once again, softmax networks are not
implemented in most neural network packages; rather they provide networks with k logistic outputs,
which amounts to using

P (class j | x) =
eηj

1 + eηj
, j = 1, . . . , k

This is an appropriate model for diagnosis where a patient might have none, one or more out of k
diseases, but not for general classification problems.

Classification for prognosis problems

It is surprising how often classification networks have been applied to prognosis problems, especially
as it would seem that the methods we consider in section 3 would often be more appropriate. (This is
probably due to the ready availability of software for classification networks.) There are many variants.
We usually have to take censoring into account, that is that follow-up on some patients may end before
the event (which we describe as ‘death’).
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1. The simplest idea34,35,36 considers survival for some fixed number of months or years, and ig-
nores patients censored before that time, thereby giving a standard two-class classification prob-
lem. Omitting censored patients may bias the result, however. Imagine a study of survival for
five years after an operation where most deaths occur in the post-operative phase, all patients
have been followed up for three years but few for the full five years. Then the censored patients
are very likely to have survived for five years, and the estimates of the survival probabilities will
be biased downwards. This bias may not be important in explaining the variations in survival
from the explanatory features, but these studies are concerned with predicting not explaining.

Ravdin and Clark37 give an example of this effect: in their study 268 patients had known follow-
up for 60 months, of whom 213 had died although the Kaplan-Meier estimate of the survival
probability was 50%. We can also see this in our melanoma example. Of those patients with
complete follow up to 10 years, 23 out of 80 survived, yet the Kaplan-Meier estimate of survival
for this time is 64.5%.

2. A refinement is to divide the survival time into one of a set of non-overlapping intervals, giving
an ordered series of k classes. (For definiteness let us take the classes ‘death in year 1’, ‘death
in year 2’, ‘death in year 3’ and ‘survive 3 or more years’.) This can be done in a number of
ways. Perhaps the most natural is to use a proportional odds model 38 for the ordered outcomes.
It is much more common to ignore the ordering of the classes, and to use a k-class classification
network.39,40,15 The perceived difficulty is how to handle censoring: sometimes all censored
patients are ignored (but this causes a bias in the predictions). The remedy is in fact theoretically
easy: for example the contribution to the log-likelihood L for a patient who was lost to follow up
after 2 years is

log
{
P (death in year 3 | x) + P (survive 3 or more years | x)

}

This does however need modifications to the software, so standard methods for fitting classifi-
cation networks cannot be used. If this is done there is only a small bias, due to the fact that
censored patients will have survived some of the interval in which they were lost to follow-up.

These methods produce a crude estimate of the survivor curve S(t) = P (alive at time t) by tak-
ing one minus the cumulative probabilities across classes. If a prediction of prognosis is required
we clearly should not take the class with the largest predicted probability (especially if the in-
tervals are of unequal length); a good choice would be the interval over which the cumulative
probability of death moves from below 50% to above 50%.

3. Other authors use k separate networks. This can be done in one of two ways: in our example
we could use networks for either (a) the original four classes 41 or (b) for the three classes 42,43,44

‘death in year 1’, ‘death in year 1 or 2’ and ‘death in years 1, 2 or 3’. In either case we can train
each network on those patients with follow-up past the end of the interval, so that later networks
are trained on less data, and once again there are problems of bias.

It is easy for networks trained with option (b) to give inconsistent answers, for example to give
a higher predicted probability for ‘death in year 1 or 2’ than for ‘death in years 1, 2 or 3’. This
was reported by Ohno-Machado and Musen44, who try to circumvent this by using the output of
one network (say ‘death in year 1 or 2’) as an input to the others. However, such difficulties are
indicative of a wrong formulation of the problem. (Surprisingly, that paper does not mention the
more satisfactory approach40 of using a k-output network used on the same dataset by one of its
authors!)

Lapuerta et al.39 used a network with four outputs corresponding to death in one of three 40-
month periods or survival for ten years for their final predictions. However, during training they
coped with censored data by imputing a death period for those patients lost to follow-up. This
was done by training separate networks for death in periods 2 and 3. The features on a patient
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lost to follow-up during period 1 were input to the period 2 network; if that predicted death, death
in period 2 was assigned but if not the period 3 network was used to impute either death in period
3 or survival for ten years.

Ravdin et al.45 have a variation on theme (b), in which they combine the k separate networks into
one network with an additional input, the number of years for which survival is to be predicted.
The training set repeats each patient for all the numbers of years for which survival or death is
known. Ravdin and Clark37 extend this approach by attempting to ameliorate the problems of
bias by randomly selecting a proportion of the deaths to match the proportion given by a classical
Kaplan-Meier estimate of the survival curve. (This is not an exact procedure; if it is to be used it
would be better to weight cases than to randomly choose them.)

4. Another alternative19 is to model the conditional probabilities

P (die in ith interval | survive first i − 1 intervals, x) = g(ηi)

where g is usually the logistic function ex/(1 + ex). Then a patient dying in the ith interval
contributes log{g(ηi)[1 − g(ηi−1)] · · · [1 − g(η1)]} to the log-likelihood, and a patient lost to
follow up in that interval log{[1 − g(ηi−1)] · · · [1 − g(η1)]}, and from this the log-likelihood L
can be computed. The ‘scores’ η1, . . . , ηk are given by the output of a neural network with k
linear outputs. (This model can be regarded as a ‘life-table’ or discrete-time survival model, 20

and is sketched in those terms by Liestøl et al. 26 It is sometimes known as a ‘chain-binomial’
model.)

It is possible 46,47 to fit this model using standard neural-network software (although the predic-
tions do have to be post-processed.) We can expand the contribution to the log likelihood as a
sum of log g(ηi) or log[1 − g(ηi)] over the intervals for which that patient is at risk. This is
computed by having an additional input to the neural network specifying the time interval i for
which g(ηi) is required, and entering each patient into the training set for each time interval until
death or the end of follow-up. Thus the training set (both inputs and outputs) is similar to that
used by Ravdin et al., but patients are not entered after death and the fitted network is used in
a different way. Note that although this technique is possible, special-purpose software will be
substantially more efficient.

This method also has only a small bias due to censoring; it is equivalent to approach 2 but uses a
different parametrization of the survival probabilities.

It may be helpful to re-state the censoring problem in mathematical terms. Suppose we have k+1 time
intervals, [0 = t0, t1), [t1, t2), . . . , [tk−1, tk), [tk ,∞), and let si = S(ti) be the probability that a patient
survives to time ti, and suppose we are particularly interested in sk. Approaches 1 and 3 estimate sk

directly. Approach 2 estimates pi = P (ti−1 ≤ T < ti) and then sk = pk+1 = 1 − p1 − · · · − pk.
Approach 4 estimates gi = P (ti−1 ≤ T < ti | T > ti−1), and then sk = (1 − g1) · · · (1 − gk).
Approaches 2 and 4 are able to (approximately) adjust for censoring since a patient lost to follow-up
in the interval [ti−1, ti) is counted as a survivor in estimating p1, . . . , pi−1 or g1, . . . , gi−1 rather than
being ignored.

Unfortunately, the only methods that deal correctly with censoring use a different log-likelihood
from that used in standard packages, and hence need software modifications or use the software inef-
ficiently. The approaches of Biganzoli et al.47 and Lapuerta et al.39 are the most satisfactory of those
using standard software.
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2 Regression problems

Many neural network packages can only tackle regression problems; that is they are confined to fitting
functions gj(x; θ) by least squares, minimizing

∑
i

k∑
j=1

[yij − gj(xi; θ)]
2

the first sum being over patients. This corresponds to k ≥ 1 non-linear regressions on the explanatory
variables x. The most common usage is a neural network with a single linear output (for calibration in
pyrolis mass spectrometry, for example) or with a logistic output for a two-class classification problem.
It would seem obvious to take y = 1 for survival and y = 0 for death, but as we saw in section 1, the
use of least-squares is not really appropriate and ‘fudges’ have grown up such as coding survival as
y = 0.9 and death as y = 0.1. The extension to a k-class classification problem is to take yij = 1 for
the class which occurred and yij = 0 for the others; then when the network is used for the prediction
the class with the largest output is chosen. (Other ways to use regression methods for classification
problems are discussed in chapter 4 of reference 5.)

There has been a parallel development of nonlinear regression methods in statistics. Additive mod-
els are of the form

gj(x; θ) = αj +
p∑

s=1

βjsgs(xs; θ)

which allow a nonlinear transformation of each of the features. The functions gs can be chosen nonpara-
metrically27 or by smoothing splines 28; some implementations such as MARS48 also allow functions
of more than one feature. Perhaps the most wide-ranging generalization of additive models is pro-
jection pursuit regression 49 which is an additive model in linear combinations of the features. This
subsumes neural networks with a single hidden layer, but the algorithms developed in the statistical
literature for fitting projection pursuit regressions are less powerful than those now known for fitting
neural networks.

Classification trees have a counterpart, regression trees,30 in which once again the patients are
grouped and a constant value assigned to each group; the groups are found by a tree-structured set of
rules.

Great ingenuity has been shown in finding ways to apply existing regression methods and software
to other problems. For example, Therneau et al.50 suggest applying regression trees to the residuals
from a linear survival analysis to provide a nonlinear survival method using existing software, and this
idea could equally be applied to neural networks.

3 Survival analysis

The conventional setup in survival analysis is that there is a time-to-outcome T which is measured
continuously plus a censoring indicator δ which indicates whether the outcome was ‘death’ (δ = 1)
or the patient was lost to follow-up (δ = 0). The standard statistical procedures 20,22,25 relate the
distribution of T to explanatory variables x via a linear predictor η = βTx. For example, proportional
hazards models have the hazard at time t (the rate of death at time t of those who are still alive)

h(t) = h0(t)eη (3)

where h0() is known as the baseline hazard, and an accelerated life model fits a standard distribution
to Te−η , so the linear predictor speeds up or slows down time for that patient. We discuss below how
these models can be generalized to use neural networks.

Parametric models for survival analysis can be very useful but are often neglected. Common
choices for a parametric proportional hazards model are the Weibull distribution and its special case
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the exponential, and for accelerated life models the Weibull (again) and the log-logistic. However,
following Cox,19 the semi-parametric proportional hazard model has become extremely popular. This
assumes (3) with no assumption on the baseline hazard and η is estimated by partial or marginal likeli-
hood methods.20

Nonlinear models in survival analysis are surprisingly rare in the statistical literature. There are
a few references51,52,53,54 suggesting additive extensions of Cox models as well as a fully local ap-
proach,55 and a modest literature56,57,58,59,60 on tree-structured survival analysis.

The only previous attempt of which we are aware to apply neural networks directly to survival anal-
ysis is by Faraggi and Simon, 61 applied by Mariani et al.62 They consider partial-likelihood estimation
of model (3) with η = f(x; θ) the output of a neural network. We have implemented this and the para-
metric models mentioned earlier. We should point out that there is a much easier way to fit Cox models
with η given by a neural network, which is to use an iterative idea.52,59 This alternates estimating the
baseline cumulative hazard H0(t) by the Breslow estimator and choosing θ to maximize

∑
i

{
δiηi − H0(ti) exp ηi

}
ηi = f(xi; θ)

(the sum being over patients) starting with ηi ≡ 0 or with a linear fit. Normally only a couple of
iterations are required. The solution is a (local) maximum of the partial likelihood.

4 Fitting neural networks

Perhaps the major cause of difficulty in fitting neural networks is the ease with which it is possible
to overfit, that is to tune the neural network to the peculiarities of the examples to hand rather than
to extract the salient dependencies of the whole population. In a phrase borrowed from psychology,
we want to fit a network to achieve good generalization. Why is this an especial problem for neural
networks? In using classical statistical methods we build up from simple models, perhaps first fitting a
linear model and then allowing quadratic or interaction terms and at each stage testing for a significant
improvement in fit. There is no analogue for neural networks, and there are results5 that show that with
enough hidden units we can make (essentially) arbitrarily complicated models.

For good generalization we do not want to use maximum likelihood fitting (or least-squares fitting).
We borrow the ideas of regularization from the numerical methods field, and penalize ‘rough’ functions
f(x; θ). This is most conveniently done using weight decay in which we maximize

L − λ
∑

weights

w2
ij

How do we choose λ? There are some very effective guidelines5 based on statistical ideas, but as with
the number of hidden units it is best chosen by a validation experiment.

Not only does weight decay help to achieve good generalization, it also makes the optimization
task easier and so faster. Thus it is very surprising that (yet again) it is omitted from most packages, yet
most experts in the field believe that it should always be used. Instead, most packages use the older idea
of early stopping with an inefficient method of optimization; this will usually work but can be one or
two orders of magnitude slower and is responsible for the reputation that neural networks have of being
very computationally demanding. (None of the application studies we reviewed used weight decay nor
explained how training was stopped nor how the number of hidden units were chosen. Mariani et al.62

are a commendable exception which appeared whilst this paper was in preparation.)
Although a neural network can handle complicated relationships, it is likely to generalize better if

the problem is simplified, so as much care in preparing the data and transforming the inputs should be
used for neural networks as for conventional statistical methods.

In the vast majority of neural network fitting problems there will be multiple local optima, so
if the optimization is run from a different set of initial weights, different predictions will be made.
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Sometimes the differences between predictions at different local optima will be small, but by no means
always. (Reference 5 has some simple examples for a medical diagnosis problem.) It is not a good
idea to choose the best-fitting solution (that is probably the one that overfits the most); it is better to
combine the predictions from the multiple solutions. The idea of averaging the probability predictions
across, say, 25 fits is rather effective, and many other averaging ideas63,64,65,66 have been suggested.

Several studies claimed that their neural network model outperformed a Cox regression and/or
clinicians, but such findings need to be examined critically. None of the studies considered using
non-linear terms nor interaction terms in the Cox regression, and this would be standard practice for
a statistical expert using such models. However, the basis of the comparison is flawed. Cox models
are not designed to estimate the probability of survival at a fixed time (usually the end of the study);
they are intended to show the dependence of the survivor curve on the explanatory features. Even when
used for prediction, they are able to predict the whole survivor curves, and it is not surprising that they
are less able to predict one point on that curve than methods designed to predict just that point (for
example, logistic discrimination). Further, censoring biases in the test set will almost always favour the
neural network models, which estimate the probability of survival to a fixed time conditional on the
patient still being under follow-up, not the unconditional probability estimated by a survival-analysis
model or being assessed by the clinicians. The only way to ensure a fair comparison on a test set is
to impute an outcome to each patient whose follow-up is for less than the fixed time. We suggest that
this is best done by grouping test-set patients on the basis of survival experience (perhaps using a tree-
structured analysis to do the grouping), fitting a Kaplan-Meier survival curve to each group and using
this to estimate the probability of survival of those patients in the group whose follow-up period is too
short.

A frequent mistake is to take too small a test set; several authors have used a test set of less than 20
observations. 10 However, the size of the test set is not the whole story, as there needs to be sufficient
cases that survive and sufficient that die. The study of Bottaci et al.41,67 has gained considerable
publicity, yet is based on the apparent success in predicting the death of just 7 out of 92 patients, and
a higher accuracy (the headline measure used) would have been obtained by predicting survival for all
the patients!

5 Examples

We tried most of the methods described here on one or both of the examples. Selecting the number of
units in the neural networks and the amount of weight decay to be used was done by cross-validation,5

for a set of about a dozen values chosen from past experience. The measure of fit used was the deviance,
summing minus twice the logarithms of the predicted probability of the event over all patients in the
training set. (This provides a more sensitive measure of fit than the success rate, especially in the
survival analysis models where the exact time of death is used.)

Breast cancer

We used a training set of size 500, and tested on a test set of size 476 (ignoring those 5 patients in the
full test set whose follow-up to 24 months was incomplete). All the linear methods used selection of the
input variables by AIC5; for all the methods using neural networks the number of hidden units and the
amount of weight decay was chosen by 10-fold cross-validation within the training set. Our results are
summarized in table 1. There sensitivity is the probability of correctly predicting death, specificity is the
probability of correctly predicting survival, and the accuracy is the percentage of correct predictions.

There is almost nothing to choose between the methods, except that the Weibull survival models
are slightly (but not significantly) poorer. This might have been expected as figure 1 shows that the
overall survival distribution is not very close to Weibull. The regression methods were done with
response the logarithm of survival time (using time directly gave very much worse results). This is
formally equivalent to log-normal survival-analysis model, and further investigations showed that the
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linear neural net
method specificity sensitivity accuracy specificity sensitivity accuracy
binary classification 73 62 67 72 64 68
1-year periods 72 63 68 72 65 68

proportional odds 71 62 66

regression 66 68 67 63 71 67

proportional hazards 70 62 66 71 62 66
Weibull survival 72 58 64 72 61 66
log-logistic survival 70 66 67 68 66 67

Table 1: Results (%) for predictions on the test set of the breast-cancer example.
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Figure 2: Left: Tree used to split the Melanoma data into six groups. At each node the label indicates
the condition to go down the left branch, and the numbers are the hazards for the groups relative to the
whole dataset. Right: Kaplan-Meier plots of survival in the six groups.

bias towards survival of the regression models is due to the exclusion of six cases with incomplete
follow-up to 24 months (which were also excluded for the binary classifications).

Melanoma

This is a small dataset (205 patients) with heavy censoring. We used 5-fold cross-validation to assess
the models: that is we randomly divided the dataset into 5 parts and for each fitted to the remaining four
parts and predicted survival on the single part. Because there was heavy censoring, assessment on just
those patients with complete follow-up to 2500 days would be seriously biased. We used a tree-based
analysis to divide the dataset into six groups (figure 2) with homogeneous survival experience, fitted
Kaplan-Meier survival curves to each groups, and used these to estimate the probability that the patient
would have survived from the end of observed follow up to 2500 days. (This probability was often
one, and never less than 0.45.) These patients were then entered into the test set with both possible
outcomes, weighted by the estimated probabilities.

The multiple-output classification problem had classes as 0–1500, 1500–2000, 2000–2500 and
2500– days, chosen by looking at the pattern of censoring times.

The results are shown in table 2. Despite the use of nested cross-validation (so that evaluating each
neural network method involved 5 × 5 × 12 fits) the total computation time was less than an hour.
Again there are generally small differences between the methods (except for the binary classifications
ignoring censoring), even though the Weibull and log-logistic distributions cannot model long-term
survival as shown in figure 1. The large differences between sensitivity and specificity is not really
surprising given that only about 28.2% of patients die within 2500 days. Thus we would achieve a
higher accuracy than all of the methods by declaring all patients to survive. The underlying difficulty
is that is hard to find prognostic patterns, and the dominance of survival leads to predicted probabilities
of death of individual patients which are above 28% but do not reach 50%. If we consider the cost of
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linear neural net
method specificity sensitivity accuracy specificity sensitivity accuracy
binary classification 45.1 40.1 43.7 63.4 60.7 62.6

full training set 90.9 13.2 69.0 90.9 16.5 69.9
4-class 88.1 21.5 69.3 92.2 14.8 70.4

proportional odds 90.4 23.9 71.6 91.0 18.7 70.6

proportional hazards 84.3 32.8 69.8 87.6 34.3 72.6
Weibull survival 87.0 25.8 69.8 87.0 24.1 69.3
log-logistic survival 86.4 36.2 72.3 84.2 34.3 70.1

Table 2: Results (%) from 5-fold cross-validation of the melanoma example. The second row of binary
classification is using the estimated probabilities as targets for the patients with incomplete follow-up
to 2500 days; these patients are completely ignored in the first line.

failing to spot a death as twice that of incorrectly predicting death, a different pattern emerges shown
in table 3. (With this cost pattern we predict death if the probability of survival is less than 2/3.)

linear neural net
method specificity sensitivity loss specificity sensitivity loss
binary classification 25.1 56.6 160.5 39.6 74.7 118.1

full training set 75.5 46.5 98.0 73.5 55.3 90.8
4-class 74.3 50.5 95.0 76.2 46.6 96.8

proportional odds 74.8 46.6 98.8 76.2 51.8 90.8

proportional hazards 79.6 58.7 88.4 71.7 64.6 82.6
Weibull survival 73.5 53.5 92.8 72.4 64.6 81.6
log-logistic survival 72.1 53.5 94.8 69.0 66.4 84.5

Table 3: Results for the melanoma data with differential costs of errors. The sensitivities and specifici-
ties are percentages, whereas the losses are totals over 205 patients.

Under this cost pattern the methods from survival analysis do show a clear superiority, and within
that class the non-linear methods show a substantial advantage over the linear ones. However, as this
dataset is so small, only the larger differences (those between the first ‘binary classification’ line and
the rest ) are statistically significant when assessed by paired t-tests.

All the methods had been set up to predict probabilities of observed events, so it was easy to
recompute the results for a difference pattern of costs. There are technical arguments5 that suggest we
might have obtained (slightly) improved results by taking the cost pattern into account during training
by weighting examples in the training set.
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