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              Linear Models (continued) 

 

Model Selection 

Introduction 

Most of our previous discussion has focused on the case where we have a data 
set and only one fitted model.  Up until this point, we have discussed, for one model 
with a particular set of explanatory variables, what fitting procedure should be used 
(e.g., least squares, generalized least squares, robust estimation, resistant estimation), 
how the estimated model coefficients should be interpreted and tested for significance, 
how goodness of fit can be evaluated for the model, how to detect problems with the 
assumptions made when fitting the model, and how to detect outliers.   The main issue 
that remains to discuss is, if we have 2 or more models, how do we decide which one is 
the best for the data? 

 

Different potential models 
To begin our discussion of this topic, how might the models we are comparing 

differ?  Well, first, two linear models might differ because the response variable takes a 
different form in each: for instance, in our Fuel Consumption example, the response 
variable in model A might be the outcome variable in its original form (Fuel 
Consumption in City), whereas the response variable in model B might be a 
transformation of the original outcome variable (e.g., 1/(Fuel Consumption in City) 
might be a good response variable to use because Fuel Consumption can be thought as 
mileage/fuel or as fuel/mileage). Second, two linear models might differ because they 
include different explanatory variables from among the set of potential candidate 
variables.  Note that the set of potential candidate variables includes the available 
original candidate variables (the design and background variables in their original form) 
and, additionally, any derived candidate variables (any transformation of one or more of 
the original candidate variables, such as a log or power transformation of one original 
variable or a product of two or more original variables).   For instance, if, in our Fuel 
Consumption example, model A contains two explanatory variables, Engine Size and 
Weight, model B might differ because it also contains the explanatory variable Type (an 
additional original variable) or because it contains the derived variable (Weight of Car)2 
or (Engine Size)*(Weight) or both.    

 
As noted in our discussion of model checking, transforming the response 

variable for a particular linear model is one possible approach if problems of non-
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normality, heteroscedasticity, or non-linearity are detected for the model.  More 
specifically, one will often compare models with different transformations of the 
outcome variable (but the same explanatory variables) in order to find the best 
transformation (the transformation for which the assumptions of normality, constant 
variance, and linearity appear to be the most valid).  For instance, for a particular set of 
explanatory variables, one might use the Box-Cox procedure to choose the best (power) 
transformation of the outcome variable.   However, in the following discussion of 
model selection, we will ignore this first type of model difference and assume that all 
linear models being compared have the same response variable (i.e., the same form of 
the same outcome variable): we discuss only how to choose the best set of explanatory 
variables for that particular response variable. The model with the best set of 
explanatory variables (for the particular response form we’ve decided to use) will be 
termed the final model. It is important to be aware that, in some circumstances, we may 
end up with several final models rather than just one final model.   For instance, in 
some situations, the researcher might want to report both a simple model and a 
complex model.  In other instances, the researcher may report two models, each 
containing one member of a pair of highly correlated explanatory variables, because he 
is not certain which of these variables is affecting the response variable (and doesn’t 
want to include both because they’re highly correlated).  It is also important to be 
aware that, in actual data analysis, choosing a transformation for the response variable 
should perhaps occur in conjunction with choosing the explanatory variables and, thus, 
candidates for the final model may have different forms of the outcome variable in 
addition to different sets of explanatory variables.  

 
Before giving an overview of what it means for a particular set of explanatory 

variables to be the best, we should note that it is not only our view of which variables 
affect the response that is altered by the choice of explanatory variables in the final 
model.   Our view of how the explanatory variables affect the response is also altered 
by the choice of explanatory variables.  This is the case because the estimated value of a 
regression coefficient for a particular explanatory variable (which we typically use to 
make quantitative statements about how that variable affects the response) will 
typically differ depending on what other explanatory variables are in the model.  There 
are only two situations in which the estimated regression coefficient for an explanatory 
variable does not change when a new explanatory variable is added to the model: 
when the new explanatory variable has no effect on the response (then why add it?) 
and when the new explanatory variable is completely uncorrelated with those 
explanatory variables already in the model.   
 

Overview of  model (or explanatory variable) selection 
However, as we will see below, deciding which set of explanatory variables is 

the “best” is far from a simple task.  First of all, the definition of best will vary 
depending on the situation, especially on the analyst’s goals and reasons for fitting a 
linear model to the data (e.g., prediction vs. explanation).  Further, even in a particular 
situation, the definition of “best” may be far from clear.   What’s more, even once a 
definition of best is arrived at, it may be hard to decide upon a means of quantifying 
how well models adhere to this definition.   
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In general, though, we would want to select the set of explanatory variables for 

which the resulting model (a.) appears to satisfy the assumptions of linear modelling 
or, at least, is closest to satisfying them and (b.) fits the data well and is as simple as 
possible.    

 
Consideration (a.) is often ignored, as is the case when analysts pick models by 

merely comparing their respective values for a goodness of fit measure.  However, 
since the conclusions drawn from a particular model can be highly erroneous if the 
assumptions of linear modelling are not satisfied, it is important to keep this 
consideration in mind.  Thus, even though one model might fit the data better, we may 
prefer another, less well fitting model because it appears that the linear model 
assumptions are more valid for the second model, as indicated by various model 
checks.  When faced with a trade-off between a better fitting model and a model that 
better satisfies the assumptions, an analyst’s choice will depend on the particular goals 
and reasons why he is trying to model the data set.  For instance, in some 
circumstances, it may be essential that the linear model assumptions are satisfied, and, 
thus, the analyst would choose the best set of explanatory variables (or, identically, the 
best model) from among only those models that satisfy these assumptions.   In the 
following discussion of model selection, we will assume that we are considering only 
linear models that appear to satisfy the assumptions equally well (which we can 
ascertain by using the diagnostic techniques that were introduced in our previous 
discussion of Model Checking).   Thus, we will not worry about consideration (a.). 

 
Then, our discussion of model selection will focus on consideration (b.).  

Unfortunately, though, deciding which linear model fits the data best is far from 
straightforward.   First, as we have previously discussed, it is unclear how to measure, 
for a particular linear model, how well it summarises the relationship between Y and X.   
In addition, even if there were a single accepted way to measure this, it would still not 
be obvious that the model with the higher value for this measure should be selected 
because of the often competing goal of simplicity or parsimony.  Usually, we would 
prefer a simpler model (i.e., a model with fewer explanatory variables) to a more 
complicated one, particularly when explanation is the goal: this preference is backed by 
both philosophical reasons (e.g., simpler models are more elegant) and statistical 
reasons (complex models may be too specific to the data set that was used to fit them).  
However, in general, more complicated models tend to “fit the data” better as 
measured by typical goodness of fit criteria (e.g., R2).   Thus, we often face a trade-off 
between goodness-of-fit and simplicity when choosing between models.  Of course, 
what place along the goodness of fit vs. simplicity spectrum we are comfortable with 
will depend on the particular situation. 
 

Before addressing the issue of comparing how well models with different sets of 
explanatory variables meet consideration (b.), we will take a brief detour to discuss 
how to interpret the coefficients of derived explanatory variables.  
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Models with derived explanatory variables  

In general, we may want to measure the effect of a particular variable of interest 
on the response variable, which, as we have discussed previously, can be quantified 
using the regression coefficients.  However, when the variable of interest is included 
among the linear model’s explanatory variables not just as itself (as an original 
variable) but also as a derived variable, then the interpretation of its regression 
coefficients become somewhat more complicated.   

 
We have already discussed how to interpret the coefficient of a continuous 

explanatory variable or a categorical explanatory variable treated using the factor 
approach with a treatment parameterisation.  (We review these interpretations below).  
However, these coefficient interpretations are only valid when the corresponding 
explanatory variable appears in no other terms in the linear model.   In some instances, 
such as when power terms or product terms are included in hierarchical models, this 
will not be the case; thus, below, we discuss the interpretation of coefficients in these 
instances.   Further, our previous interpretation for a continuous explanatory variable 
coefficient was in terms of the effect of changes in that explanatory variable.   Often, 
however, that explanatory variable is derived from an original variable, and we might 
prefer the interpretation to be in terms of changes in the original variable.  Below, we 
discuss the appropriate interpretation for one instance of this phenomenon—when the 
explanatory variable corresponding to the coefficient in question is a logarithmic 
transformation of the original variable.   
 

Before proceeding to discuss interpretations of coefficients, let us note that we 
might want to include higher order powers of an explanatory variable because we 
suspect that some curvature (i.e., non-linearity) is present in the relationship between 
that explanatory variable and the response variable. Similarly, we might want to 
include a product or interaction term for two or more explanatory variables because we 
suspect that the way in which each explanatory variable affects the response variable 
depends on the value of the other explanatory variables.  In other words, choosing to 
include an interaction term for multiple explanatory variables is equivalent to stating 
that the collective effect of these explanatory variables on the response variable is more 
than the sum of their individual effects.  These suspicions that a higher order and/or 
product term should be included may come from theoretical knowledge of the 
phenomenon being modelled or, alternatively, from looking at various diagnostic plots. 

Finally, note that all of the following interpretations are “conditional on the 
other explanatory variables being the same” or “for units with approximately the same 
values of the other explanatory variables.” 

Continuous explanatory variable 
Appearing in only one term 

First, let us address the situation where the variable of interest is continuous and 
appears as the explanatory variable in one term in the linear model equation.  The 
coefficient for that term is interpreted as the additive amount by which the mean 
response increases or decreases when the explanatory variable increases by 1 unit.  
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Note that this increase (decrease) in mean response is the same no matter which level of 
the explanatory variable we start at.  For instance, in our Fuel Consumption example, 
the coefficient of Weight is the additive increase/decrease in mean Fuel Consumption 
that occurs when Weight increases by one pound, for cars of the same Engine volume, 
Cylinders, Type, and Drive Type.   

However, what if the explanatory variable is the logarithm of the original 
variable in which we are interested?   If that is the case and we want to interpret the 
coefficient in terms of changes in the original variable, then we would say that the 
explanatory variable’s coefficient multiplied by log(2) is the additive increase 
(decrease) in mean response that occurs when the original variable is doubled.  For 
instance, what if, in our Fuel Consumption example, our model includes log(Weight) 
instead of Weight as an explanatory variable.  Well, the way we interpret the coefficient 
of log(Weight) is the additive increase (decrease) in mean Fuel Consumption that 
occurs when log(Weight) increases by one log-pound, for cars with the same Engine, 
etc . . . .   However, if we wanted to interpret the coefficient in terms of changes in 
Weight rather than log(Weight), then we could say that the coefficient of log(Weight) 
times log(2) is the amount added to (subtracted from) mean Fuel Consumption when 
Weight doubles, for cars with the same Engine, etc . . . . 

 
Also appearing in a squared term 

Suppose that our continuous variable of interest, Xj, is included in the linear 
model as itself and as a squared term.  In this case, we would interpret together all the 
coefficients of terms that include Xj.  More specifically, suppose the model includes the 
terms L .  Then, the two coefficients pertaining to XL+++ 2

, jsqjjj XX ββ j would be 
interpreted in the following manner: when Xj starts at value xj and increases by 1 unit, 
the additive increase (decrease) in mean response is .   Note that, in 
this case, the effect that changes in X

]12[, ++ jsqjj xββ

j have on the mean response depends on what 
value Xj started at.   For instance, suppose our Fuel Consumption model includes the 
explanatory variables Weight and (Weight)2.  Well, we would interpret their 
coefficients, together, by saying: if Weight starts at 4000 pounds, then increasing 
Weight by 1 pound increases (decreases) mean Fuel Consumption by an amount equal 
to the coefficient of Weight plus 8001 times the coefficient of (Weight)2, for cars with the 
same Engine, etc . . . . 
 

 
Also appearing in a product term (with another continuous variable) 

Suppose that our continuous variable of interest, Xj, is included in the linear 
model as itself and in a product term with another continuous variable.  In this case, we 
would interpret together the two coefficients pertaining to Xj.  More specifically, 
suppose the model includes the terms L , where XL+++ sjsjjj XXX ,ββ

ssjj x,ββ +

s is another 
continuous variable.  Then, we interpret the coefficients pertaining to Xj in the 
following manner: when Xj increases by one unit and Xs is at value xs, the additive 
increase (decrease) in mean response is .   Note that, in this case, the effect 
that changes in Xj have on the mean response depends on what value Xs, the other 
continuous variable in the product term, starts at.   In fact, this is exactly what it means 
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when we say that there is an interaction between two variables in the way they affect a 
response variable: the way in which one variable affects the response variable depends 
on the value of the other variable.  As an example, suppose our Fuel Consumption 
model includes the explanatory variables Weight and Weight*Engine Size.  Well, we 
would interpret their coefficients, together, by saying: if Engine Size starts at 10 units of 
volume, then increasing Weight by 1 pound adds (subtracts) an amount equal to the 
coefficient of Weight plus 10 times the coefficient of Weight*Engine Size to mean Fuel 
Consumption, for cars with the same Engine, etc . . . . 

 

Categorical explanatory variable 
Appearing alone  

If our categorical variable of interest is treated using the factor approach with a 
treatment parameterisation, then the coefficient value for each (non-baseline) level of 
the categorical variable is the difference between the mean response at that level and 
the mean response at the baseline level.  

 
Also appearing in a product term 

Suppose that our categorical variable of interest, Xj, is included in the linear 
model as itself and in an interaction with a continuous variable.  In this case, assuming 
that the factor approach is used for the categorical variable, then the linear model 
would contain two terms (one regular term, one interaction term) for each non-baseline 
level of our categorical variable: for example, for level k of the categorical variable, the 
linear equation would include the terms L , where XL+++ skjskjkjkj XXX ,,,,, ββ

β

s is a 
continuous variable and, if a treatment parameterisation is used, Xj,k is an indicator 
variable for level k of variable j.  Then, the two coefficients for level k of the categorical 
variable are interpreted as follows: if variable Xs has the value xs, then   is 
the difference between the mean response at level k and the mean response at the 
baseline level.  Note that, again, the effect on the mean response of changing from the 
baseline level to level k of variable X

sskjkj x,,, β+

j depends on what value Xs, the other variable in 
the product term, is at.  As an example, suppose that our Fuel Consumption model 
contains both Type and an interaction between Type and Weight; further, suppose that 
Type is treated using the treatment version of the factor approach.   Then, assuming 
that “compact” is the baseline level in the treatment parameterisation, the coefficient of 
the sporty type indicator plus 4000 times the coefficient of the interaction between the 
sporty type indicator and Weight would be the difference in mean Fuel Consumption 
between sporty and compact cars for cars that weigh 4000 pounds and have the same 
engines, number of cylinders, etc. . . . 

 
Now, suppose that our categorical variable of interest, Xj, is included in the 

linear model both as itself and in an interaction with another categorical variable.  In 
this case, assuming that we used the treatment version of the factor approach for both 
categorical variables and that the variables have K and T levels, respectively, then our 
linear model would contain (K-1)(T – 1) interaction terms (one for every combination of 
non-baseline levels), (K-1) regular terms for the first variable, and (T-1) regular terms 
for the second variable.  The coefficient of the interaction term pertaining to level k of 
variable 1 and level t of variable 2 would then be interpreted as the extra additive 
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change in the mean response that occurs when levels k and t occur together (compared 
to adding the individual effect on the response of level k occurring to the individual 
effect of level t occurring).  Although this interpretation may currently be a bit unclear, 
it will hopefully become less opaque later when we discuss ANOVA.  As an example, 
suppose that our Fuel Consumption model contains Type and Cylinder as explanatory 
variables and also an interaction between the two.  Further, suppose that both Type 
and Cylinder are treated using the treatment version of the factor approach (with 
“compact” and “three cylinders” as the respective baseline levels).  Then, the coefficient 
for the interaction term between, say, sporty and four cylinders would be interpreted 
as the extra change in mean Fuel Consumption (relative to compact, three cylinder 
cars) that occurs for sporty and four cylinder cars compared to the change for sporty 
cars (relative to compact ones) plus the change for four cylinder cars (relative to three 
cylinder ones) , provided that the cars have the same Weight, Engine, etc. . . . 

 

Choosing between models (or between sets of explanatory variables) 

 As stated previously, we will assume that we are only seeking to compare 
models with the same response variables, which reduces the model selection issue to 
the task of choosing the best set of explanatory variables.  What’s more, we will assume 
that all models being considered appear to satisfy the linear model assumptions 
equally well, which means that we will choose a set of explanatory variables by 
comparing how well the resulting models “fit the data” and adhere to the principle of 
simplicity. 

We discussed above that it can be difficult to decide how to measure goodness 
of fit for linear models.  Further, we noted that even once we decide on a way to do so, 
it is unclear that we should just choose what is the best fitting model according to some 
strict measure of goodness of fit because of the competing goal of simplicity.  For 
instance, suppose we use R2 to assess goodness of fit for competing models.   Well, it is 
a mathematical fact that  R2 will increase (or at least stay the same) whenever we add 
another explanatory variable into the model (while keeping all already included 
explanatory variables in the model); thus, R2 favours more complex models (i.e., 
models with more explanatory variables).  If we also value simplicity in addition to 
goodness of fit, then we should not just select the model with the highest R2 value but 
should pick one that is reasonably simple but still has a high enough R2 value.   
Alternatively, we might select a model using adjusted-R2 because it takes model 
complexity into account: it is roughly equal to R2 minus a penalty for increasing 
complexity, so that adjusted-R2 doesn’t necessarily increase whenever we add an 
explanatory variable and thus favour the largest model.  This example suggests that, 
instead of basing our model selection on a strict goodness of fit criterion that only 
rewards goodness of fit, such as R2, we will prefer to use a complexity-adjusted goodness 
of fit criterion, such as the F-statistic, adjusted-R2, Cp, AIC, or BIC, all of which reward 
goodness of fit and penalise complexity (or, identically, reward simplicity).   

When we use one of these complexity-adjusted goodness of fit criteria to 
compare how well different models (with different explanatory variables) fit the data, 
taking simplicity into account, we do not necessarily use the criterion of choice on the 
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same data set that we used to fit our models (i.e., estimate their parameters).  If we 
attempt to measure complexity-adjusted goodness of fit on the data set we used to fit a 
particular model, we will probably end up with an overly optimistic picture of how 
well the model summarises the relationship between X and Y; because the model’s 
parameters were estimated using this data set, we should expect that it will be a pretty 
good fit to that data set and that it might not fit another data set equally well.  In fact, if 
we base our model selection on comparisons of a complexity-adjusted goodness of fit 
criterion for the data set used to fit the models, we will likely end up choosing a more 
complex model that is too specific to that particular data set.  (This phenomenon is 
referred to as overfitting.)  Ideally, then, we would want to compare the complexity-
adjusted goodness of fit of different models using an entirely new data set, saved for 
this purpose and referred to as a validation data set.   Unfortunately, though, such a 
data set is not often available to us.  For this reason, we may instead use a cross-
validation technique.  These techniques entail breaking the only data set we have into 
two parts, using one part to fit the different models’ parameters and the other part to 
measure the models’ complexity-adjusted goodness of fit; this is typically done 
repeatedly and a model is chosen based on the combined assessments of the model’s 
complexity-adjusted goodness of fit from all of the repetitions.    

 Before proceeding to discuss various complexity-adjusted goodness of fit 
criteria, we should delineate the difference between nested models and non-nested 
models because some frequently used model comparison techniques are only 
appropriate for comparing nested models.  Nested models are models that are the same 
with the only difference being that certain parameters in the outer model are set to zero 
in the inner model.   What does this definition mean with regards to different linear 
models (i.e., models with different explanatory variables) for the same response 
variable?  Well, as a more concrete definition, model A is nested within model B if 
model A contains a subset of the explanatory variables in model B; we will refer to 
model A as the inner model and model B as the outer model.  In our Fuel Consumption 
example, a model with explanatory variables Weight and Cylinders is not nested 
within a model with explanatory variables Weight, Engine Size, and Type because 
{Weight, Cylinders} is not a subset of {Weight, Engine Size, Type}.  However, a model 
with explanatory variables Weight and Cylinders is nested within a model with 
explanatory variables Weight, Cylinders, Engine Size, and Type because {Weight, 
Cylinders} is a subset of {Weight, Cylinders, Engine Size, Type}.  To see how our 
second, more concrete, definition accords with our first definition of nesting, note that 
we can view the inner model as the same as the outer model except for the fact that the 
regression coefficients for any explanatory variables in the outer model but not in the 
inner model are set to zero.  For instance, in our preceding example of nested models, 
the first (inner) model is the same as the second (outer) model except for the fact that 
the regression coefficients of Engine Size and Type are set to zero in the inner model.  

Nested model comparison    
 Deciding between two nested models amounts to deciding whether those 

explanatory variables in the outer model but not in the inner model (for convenience, 
we will refer to these as the differing explanatory variables) should be included; should 
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they be added to the inner model or should they be deleted from the outer model?  In 
other words, do the differing explanatory variables significantly improve our 
explanation/prediction of Y over using just the explanatory variables in the inner 
model?  For instance, in our previous example, comparing the inner and outer models 
is asking whether Engine Size and Type add any value over Weight and Cylinders in 
terms of explaining/predicting Fuel Consumption.    

 We might want to put the preceding question into quantitative terms in order to 
make it possible for us to mathematically/statistically answer it.  As can be easily seen, 
not having the differing explanatory variables in the model is the same as having the 
coefficients of all differing explanatory variables be zero in the outer model.   Thus, we 
can decide whether the differing explanatory variables should be in the model—
whether they add any value over the explanatory variables already in the inner 
model—by testing the hypothesis that the coefficients of all differing explanatory 
variables are zero (in the outer model).   

Nested models differing by one variable 
In some model comparisons, there may be only one differing explanatory 

variable between two nested models, so that comparing them amounts to testing 
whether this one variable should be in the model or, identically, whether its coefficient 
in the outer model is zero.   As we have discussed previously, we can test the 
hypothesis that the regression coefficient for a particular explanatory variable is zero 
by looking at the t-value and p-value that accompany that coefficient in the typical 
regression output.   Thus, we may decide that the differing explanatory variable should 
not be in the model if, when we look at the regression output for the outer model 
(which includes the variable), that variable is not significant at some particular level 
(i.e., its p-value is larger than some cutoff, such as 0.05, or, identically, its t-value is 
between ±2).   Interestingly, using this approach with a t-value cut-off of ±1 is the same 
as choosing between the inner and outer model by picking the one with the higher 
adjusted-R2 value: this is the case because adjusted-R2 only increases when an 
explanatory variable is added to the model if the t-value of that entering explanatory 
variable is greater than 1 or smaller than -1.   (Contrast this to R2, which increases (or at 
least stays the same) whenever an explanatory variable is added to the model, 
regardless of the t-value of that entering explanatory variable.)  

A brief  digression on partial regression plots 
In the above, we are deciding whether one particular differing explanatory 

variable should be left out of the model or, identically, deciding whether it should be 
included in the model.   However, to arrive at this stage, we need to have an idea that 
this particular variable might add some value to our linear model.   But how do we get 
an idea of which potential candidate variables should perhaps be added to the existing 
model?  Well, a particularly convenient and informative way of doing so is to look at a 
partial regression plot for every potential candidate variable not already in the model; 
if there is a trend, as opposed to just a random scatter of points, in the plot for a 
particular candidate variable, then we might suspect that the variable does have an 
influence on Y (even alongside those explanatory variables that are already in the 
model) and that the variable should be added to the model.  This plot essentially shows 
us what least squares fitting for our multiple regression model is seeing when it adds 
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the particular candidate variable as an explanatory variable: the slope of the least 
squares line through the scatter of points in the partial regression plot is exactly the 
same as the least squares estimate of the regression coefficient for the candidate 
variable when it is added to the already existing model, and this estimated coefficient 
will be more significant the more closely the points adhere to the line in the plot.  
However, the partial regression plot contains more information than we would get by 
merely adding the candidate variable into the model, fitting the model to the data, and 
then examining its estimated coefficient and t-value/p-value.  This is the case because 
the shape of trend we observe in the partial regression plot can give us an idea of what 
form of the candidate variable should be added to the model: a linear trend in the 
points might indicate that just the variable itself should be added to the model, 
whereas a curved trend in the points might indicate that we should also consider 
including higher power transformations of that variable in the model.  

     Technically speaking, the partial regression plot for a particular candidate 
explanatory variable is formed by (a.) finding the raw residuals for the existing linear 
model where the response variable, Y, is regressed on the set of already included 
explanatory variables, (b.) finding the raw residuals for another linear model in which 
the candidate explanatory variable is regressed on the already included explanatory 
variables (here, the candidate explanatory variable is treated as the response variable), 
and (c.) plotting the first set of residuals against the second set.   However, the details 
of making a partial residual plot are unimportant: all you have to remember is that the 
presence of a trend in the points in this plot indicates that you might consider including 
the particular candidate variable in the model as an explanatory variable, and that the 
shape of the trend can tell you what forms of the variable you might include.     

 Partial regression plots are useful for investigating if we should perhaps include 
a specific potential candidate variable in our existing model, whether this specific 
variable is a new variable entirely unrelated to those explanatory variables already in 
the model or, instead, a variable derived from one of the variables already in the 
model.  In this second case, we must know specifically what form (i.e., squared, logged) 
of the already included variable we might want to add in order to be able to use a 
partial regression plot.   However, in some instances, we may just want to get an idea 
of whether we should add additional transformed versions of an already included 
variable and may not have any idea of what specific transformation should be used.  
Well, for this purpose, it can be very useful to plot the residuals from the existing 
model (where Y is regressed on the already included explanatory variables) against 
each of the already included explanatory variables (for explanatory variable j, we will 
call this a plot of ei vs. Xj,i).  If we see a trend in the residuals in the plot for (already 
included) explanatory variable j, then we might want to consider including various 
transformations of Xj in our model.  Essentially, a trend is telling us that the 
unexplained part of Y, as measured by the residuals, still depends on Xj; in other 
words, Xj (or some form of it) still has some explanation power for Y left.  (Note that a 
trend in the magnitude, or absolute value, of the residuals can be a sign of 
heteroscedasticity, indicating that the variance of the errors may not stay constant as Xj 
changes.) 
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Example #1 (continued) 
As an example, consider again our Fuel Consumption study.  Suppose that we 
already have a model in which Fuel Consumption is explained by Weight.  
Further, suppose we’re trying to see whether we might want to add Engine Size 
as an explanatory variable and, also, whether we should include just Engine Size 
itself or possibly some transformations of it.   Well, these questions can be 
answered by looking at the following partial regression plot for Engine Size 
given a model that already includes Weight: 

Partial Regression Plot for Engine

Residuals from Engine regressed on Weight
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Figure 1: Should Engine Size be added as an explanatory variable to a model where 
Weight explains Fuel Consumption? 

 In the above partial regression plot, the scatter of points appears fairly 
random; there does not seem to be a trend.  Thus, we suspect that Engine Size 
does not significantly improve our explanation of Fuel Consumption once 
Weight is already in the model.    

However, what if we disregard this evidence and decide to try adding 
Engine Size into the model anyway?  Well, to see whether Engine Size should be 
kept in the model, we can examine its t-value/p-value in the computer output 
for the new model:   

Coefficients: 
             Value      Std. Error  t-value    p-value  
(Intercept)  47.1388    2.0106      23.4453    0.0000 
     Weight  -0.0081    0.0010      -8.0237    0.0000 

         Engine Size   0.0476    0.5743       0.0829    0.9341 
 

As we can see from the last row in the above table, the suspicions raised by the 
partial regression plot are confirmed.  The estimated coefficient for Engine Size 
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(0.04) is very close to zero (relative to its error), which accords with the fact that 
the least squares line through the scatter of points above would be basically 
horizontal, having zero slope.  Further, the coefficient of Engine Size is highly 
insignificant (t-value far below 2 or even 1, and p-value about 0.90), leading us 
to conclude that Engine Size doesn’t add much value once Weight is already in 
the model ■ 

 

Nested models differing by more than one variable 
       In other comparisons of two nested models, there may be more than one 
differing explanatory variable.   In these cases, we look at whether this whole set of 
explanatory variables should be added to the inner model (or deleted from the outer 
model), whether, taken together, they add value to our explanation/prediction of Y 
alongside those explanatory variables that are already included in the inner model.   In 
statistical terms, we test the hypothesis that the regression coefficients for all of these 
differing variables should be zero in the outer model.   For instance, in our Fuel 
Consumption example, we might want to test whether the coefficients of Type and 
Engine Size are both zero if Cylinders and Weight are already included in the model.  
Another frequent instance of testing whether a group of explanatory variables should 
be in the model occurs when we want to test whether a categorical variable, treated 
using a factor approach, should be included in the model.   Remembering back, we 
recall that treating a categorical variable using the factor approach results in the 
inclusion of k – 1 explanatory variables (of the indicator variety, if a treatment 
parameterisation is used) in the model.  Thus, assessing whether the categorical 
variable is a significant predictor of Y amounts to assessing whether these k – 1 
indicator variables should be included in the model, or, to testing whether their 
coefficients are all zero in the outer model that includes them.   (Here, note that the t-
value/p-value of an individual indicator for one level of the categorical variable can be 
used to test whether that particular indicator should be in the model; if we don’t reject 
the null hypothesis that the indicator’s coefficient is zero, then we might consider 
dropping that level indicator variable from our model, which can be thought of as 
combining that level with the baseline level.  However, finding a large p-value for one 
indicator variable should not lead us to remove the entire categorical variable from the 
model; we should only do so if we find large p-values for all of the variable’s k – 1 level 
indicators.)   
 
 Whether a set of explanatory variables should be included in the model can be 
tested using the F-test for the joint significance of several terms.   Essentially, this test 
compares the Explained Sum of Square (ESS) of the outer model to the ESS of the inner 
model (with a standardisation factor that makes the comparison unit-free since the size 
of ESS will depend on the units in which Y was measured).  Essentially, the more value 
that is added by the differing explanatory variables, the larger the outer model’s ESS 
will be relative to the inner model’s and, thus, the greater the difference in their two 
ESSs.   However, because we know that R2 always increases whenever an explanatory 
variable is added, it is easy to see that ESS must increase too since it is just the 
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numerator of R2 (and the denominator stays the same).   Thus, the ESS for the outer 
model will always be greater than the ESS for the inner model.  To correct for the fact 
that ESS favours complexity, the F-test incorporates a penalty for complexity: 
specifically, the difference in ESS is divided by the number of differing explanatory 
variables.  As a result, the same size increase in ESS is seen as less evidence in favour of 
the outer model when it occurs as a result of adding a larger number of explanatory 
variables.   Generally speaking, if the complexity-adjusted (and standardised) 
difference in ESSs for the outer and inner models is large, then the p-value for the F-test 
will be small, leading one to reject the null hypothesis that the coefficients of the 
differing explanatory variables are all zero and that they should be left out of the 
model.  Note that, in the above F-test, the null hypothesis is that all differing 
explanatory variables have zero coefficients; the alternative hypothesis is that at least 
one differing explanatory variable has a non-zero coefficient.   
 

Example #1 (continued) 
Suppose that, in our Fuel Consumption example, we want to see whether the 
categorical variable Type, treated using the factor approach, should be included 
in the existing model with Weight.  Well, including Type in the model using a 
factor approach with the treatment parameterisation means that five indicator 
explanatory variables are included in the model, and, thus, we need to test 
whether all five of their coefficients are zero.   The output for this new model is: 
 
Coefficients: 
               Value Std. Error  t value   p-value 
(Intercept)  44.2453   3.1911    13.8652   0.0000 
     Weight  -0.0074   0.0011    -6.9341   0.0000 
  TypeLarge   1.4187   1.3987     1.0143   0.3133 
TypeMidsize   0.4178   1.0759     0.3884   0.6987 
  TypeSmall   2.6982   1.1523     2.3416   0.0215 
 TypeSporty  -1.0383   1.0533    -0.9858   0.3270 
    TypeVan   1.0531   1.5436     0.6823   0.4969 

 
Note that “compact” is the baseline level in the above.   Trying to decide 
whether to include Type based on the p-values for the coefficients of the five 
individual level indicators is a bit confusing since one is significant (e.g., Small), 
indicating that we may want to include Type, whereas the rest are fairly large, 
indicating that we may not want to include Type.  Thus, we look at the results of 
the F-test for the joint significance of these five terms: the p-value for the F-
statistic is 0.013, suggesting that we should reject the null hypothesis that all five 
coefficients are zero and suggesting that Type does indeed add some value to 
our model, even with Weight already in the model.   Looking at the output 
above, we suspect that most of this value is coming from the differing Fuel 
Consumption performance of Small cars ■ 
 

 
 Before proceeding, we should note two special cases of the preceding F-test.  The 
first special case occurs when the differing explanatory variables include all of the 
explanatory variables in the outer model, which means that the inner model just has an 
intercept term and no explanatory variables.  In this case, the F-test discussed above is 
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the same as the previously discussed overall F-test.   The other special case occurs when 
there is only one differing explanatory variable; in this case, performing the above F-
test is the same as looking at the t-value/p-value of that one explanatory variable in the 
outer model.  
 

General model comparison using various criteria 
In general, regardless of whether the models we are considering are nested or 

not, we might choose between them based on their values for one or more complexity-
adjusted goodness of fit criteria.  These criteria, several of which are discussed below, 
reward goodness of fit, measured in some particular manner, and penalise complexity 
(or reward simplicity).   For any of the following statistics, its value is calculated for 
each linear model being considered, and then these values are compared; if a model 
has a particularly good value of this statistic relative to the other models, then this 
might encourage the analyst to lean towards that model.  

Adjusted-R2 

 We have already mentioned adjusted-R2 several times above: in fact, we 
previously stated that its formula is  

2

2
2 ˆ
1

s
Radjusted σ

−=−  

and that, the closer it is to 1, the better (in some sense) we consider the model to be.  
Note that adjusted-R2 can have a negative value, unlike R2, which is always between 0 
and 1.  

We also mentioned that adjusted-R2 is roughly equal to R2, which is always 
larger for more complex models, minus a penalty for more complex models (where 
complexity is measured by the number of explanatory variables in the model).   This 
fact can be seen by examining an alternative formula for adjusted-R2:  

{ })1()1(1 22 −−−
−

=− pRn
pn

Radjusted , 

where p is the number of explanatory variables in the model.  As can be seen in this 
formula, for two models with the same R2 value, the less complex model (with fewer 
explanatory variables) will have the larger adjusted-R2 value.   For two models with the 
same level of complexity (the same number of explanatory variables), the model with 
the higher R2 value will have the larger adjusted-R2 value.   The adjusted-R2  statistic 
tries to achieve a balance between goodness of fit (as measured by high R2) and model 
simplicity (as measured by small p).   

 

Cp 
  Sometimes referred to as Mallows’ Cp, the Cp statistic is yet another statistic that 
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tries to achieve a balance between the often competing goals of goodness of fit and 
model simplicity.  Mallows’ Cp does so by looking at another famous trade-off in 
statistics: the trade-off between bias and variance/error (for estimators).   Essentially, 
the estimators in more complex linear models are often less biased (which is good), but 
have more error (which is not good) than the estimators in less complex models.   Thus, 
Mallows’ Cp rewards low bias and also small errors, which is akin to rewarding 
goodness of fit and simplicity, respectively.   In the case of Mallows’ Cp, a smaller value 
indicates that a model is better (at least in some sense).   Typically, a model is looked 
upon favourably if its Cp value is close to or below its number of explanatory variables.  

 
AIC and BIC 

When least squares fitting is used for a linear model, it is common to use R2 to 
assess goodness of fit.  However, sometimes, maximum likelihood fitting is used for a 
linear model instead of least squares fitting; note that these two types of fitting produce 
the same results under the assumption that the errors are normally distributed.   With 
maximum likelihood fitting, goodness of fit is often measured using the maximised 
value of the log-likelihood (known as the log-likelihood statistic), for which bigger is 
better, or the negative of this maximised value (the negative log-likelihood statistic), 
for which smaller is better, instead of R2.   However, as is the case with R2, the log-
likelihood statistic always increases (and the negative log-likelihood statistic always 
decreases) when explanatory variables are added into the model, provided the already 
included variables do not change; this means that the log-likelihood statistic favours 
more complex models.  For this reason, various complexity-adjusted versions of the 
log-likelihood statistics have been proposed; these versions differ depending on the 
specific penalty given to complexity. Two of the most popular complexity-adjusted 
(negative) log-likelihood statistics are Akaike’s Information Criterion (AIC), 1 which 
adds the amount 2p to the negative log-likelihood as a penalty for model complexity, 
and Schwarz’s Bayes Information Criterion (BIC), which adds the amount p log(n) to 
the negative log-likelihood as a penalty; for both of these statistics, a smaller value 
indicates a better model (in some sense).   Note that the complexity penalty in BIC is 
larger for bigger data sets, which is not the case for AIC, where the penalty does not 
change with data set size.  The reason that BIC has the penalty increase with sample 
size is that large data sets are particular culprits in terms of leading one to believe 
(spuriously) that many explanatory variables affect the response (i.e., are significant) 
and should be included in the model.    Thus, BIC tries to avoid the inclusion of 
explanatory variables that do not affect the response variable, making it a good 
criterion to use when a parsimonious model is desired, such as when explanation is the 
goal.  On the other hand, AIC tries to include all variables that do have an effect on the 
response (possibly including some others that don’t in the process), making it a good 
criterion to use when a well fitting model is desired for prediction. 

 
  

                                                 
1 Note that Mallows’ Cp is approximately equal to AIC, giving very similar results, and can be viewed as a  sort of 
complexity-adjusted log-likelihood statistic. 
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How to use the above model comparison criteria 
 For every linear model being considered, one could use a computer to calculate 
the value of each of the above criteria.   One could then present this information in a 
table, where rows correspond to linear models and columns correspond to the various 
criteria.   Then, one could scan each column, looking to see which model had the best 
value for that particular criterion.  Hopefully, one model would be rated the best by all 
criteria, but, if this were not the case, then some decisions would have to be made.    

 

Example #1 (continued) 
Returning to our Fuel Consumption example, suppose that we are interested in 
selecting one of four different models (with four different sets of explanatory 
variables).  Note that all categorical variables in these models are treated using 
the factor approach.   For these models, we could make the table suggested 
above: 

 

Model  (Explanatory Variables) Adjusted-
R2 

Cp AIC BIC 

Weight 0.708 1.25 474.6 482.2 

Weight, Type 0.738 3.20 469.2 489.5 

Weight, Cylinders 0.783 0.543 451.5 471.8 

Weight, Horsepower, Drive Type 0.704 3.56 478.7 493.9 

 

In the above table, the best value in each criterion column is bolded and 
italicised.   The linear model with Weight and Cylinders as explanatory variables 
for Fuel Consumption is City is the best according to the four criteria, which 
might lead us to select this model, as long as it also appears that the linear model 
assumptions are satisfied for this model ■ 

 
Alternatively, if the analyst wants to use the Cp criterion to pick a model from a 

sequence of nested models (each one adding one explanatory variable to the previous 
model), the information is often presented in a graphical form in a Cp plot.   Essentially, 
the Cp values for the models are plotted against their number of explanatory variables, 
and the line at Cp=p is often drawn in.   Then, the model with the smallest Cp value, 
hopefully lying below the line, is selected.   (See Ramsey and Schafer (2001), The 
Statistical Sleuth, p. 357, for an example of a Cp plot.) 
 

Arriving at a model (or at a set of explanatory variables) 

In the previous section, we discussed strategies that can be used to choose 
between a reasonable number of models.   These models have been selected by the 
analyst as potential candidates for the final model presumably because they appear to 
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satisfy the linear model assumptions and also to fit the data well while being 
reasonably simple.    One might select from among these models using any of the 
various comparison statistics discussed above: one might compare them using 
adjusted-R2, Cp, BIC, or AIC or, if they form a sequence of nested models, F-tests.  

 However, if there is a large number of potential candidate variables, then the 
number of models that the analyst must sort through to arrive at a small number of 
candidate models is enormous.   In this situation, the analyst may want to employ an 
automated search procedure with one of the aforementioned comparison statistics to 
find his final model.    Essentially, these procedures use the selected comparison 
statistic to pick one of the models that falls between a minimum model (typically the 
model with just an intercept and no explanatory variables) and a maximum model 
(typically the model that includes all potential candidate explanatory variables).     

 There are several different automated search procedures.   Forward selection 
begins from the minimum model and adds variables one at a time; at each step, the 
procedure adds the variable for which the selected comparison statistic (F, AIC, BIC, 
Cp) is best, and the procedure stops adding variables once doing so does not 
significantly improve the statistic.  The model at which the procedure stops is the final 
model. Not surprisingly, backward selection uses a similar approach, starting with the 
maximum model and removing variables until it arrives at a final model, and stepwise 
selection starts with some model (typically somewhere between the minimum and 
maximum models) and alternates between adding and removing variables until a final 
model is reached.   However, the best subsets procedure does not move iteratively 
through a sequence of models, looking only at some of the models between the 
minimum and maximum model, as do the previous three procedures.  Instead, the best 
subsets procedure looks at all of the models between the minimum and maximum 
model (typically ignoring any models that aren’t hierarchical) and calculates the 
selected comparison statistic (e.g., adjusted-R2, Cp, AIC, BIC) for each one; the final 
model is the one with the best value of that statistic. 

 Be warned that it is best to avoid using these automated procedures for a variety 
of reasons, one being that they are sort of a glorified form of data dredging.   However, 
if you are going to use one, do not use forward selection! Instead, stepwise selection 
with the AIC statistic or best subsets selection with the Cp statistic are reasonable 
procedures. 

A Final Note on Model Selection 

 Just as the first thing we should look at when checking our model is whether the 
estimated values of the coefficients are reasonable, we should always make certain that 
our final model is sensible given existing theory and our previous experience: does it 
make sense that the explanatory variables included in our final model would actually 
affect the response variable? 
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Review of the Linear Modelling Process  

Let us now try to tie together some of the ideas that we have met so far in order 
to form a sort of strategy for performing linear regression analysis on a particular data 
set.   When doing so, we must remember that the goal of statistical modelling is 
typically to produce a simple, interpretable model that seems plausible both in light of 
the data and previous knowledge.  The following points outline a possible linear 
regression analysis strategy: 
 
1. Once we have our data set in a statistical software package, it is a good idea to 

produce a scatter plot of the response variable versus each potential candidate 
explanatory variable.  This enables us to get some sort of feel for what is happening 
in the data, albeit only one explanatory variable at a time.   

2. We now start fitting models.  It is often best to start with a simple model that may 
include just one or two explanatory variables. 

3. Assess the quality of this simple model: test the regression coefficients to see if they 
are different from 0; check to see whether the assumptions are satisfied; check the 
model’s goodness of fit; and check for outliers. 

4. If you don’t have a good model (e.g., the assumptions are not satisfied, the model 
does not fit well, there are worrying outliers), start to look for more complicated 
models.  Fit models that includes new explanatory variables and/or variables 
derived from those already in the model. Again, check the quality of each model by 
performing the checks listed in (3.).   

5. Hopefully, you have found some models for which you are satisfied with the results 
of the quality checks.  If this is the case, use the model selection techniques 
described in the “Model Selection” section to pick a final model.       

6. If you are not happy with the results of the quality checks for any of the models 
examined, you might want to consider, for the most reasonable of the models 
examined, using an alternative fitting procedure (e.g., Generalized Least Squares, 
robust estimation, resistant estimation) or transforming the response variable.  
Alternatively, if the situation looks particularly dire, you might wander to abandon 
the use of linear models altogether and use another sort of model.  

7. If you have arrived at a final linear model, see if the results are consistent with your 
previous knowledge of the phenomenon being modelled: does the model you have 
fitted make sense, are the regression coefficients the right sign, does it agree with 
what has already been published in the literature?  

 
 

 
IAUL & DEPARTMENT OF STATISTICS                                                                     PAGE 
18 

 



INTRODUCTION TO STATISTICAL MODELLING   TRINITY 2002 
 

A final example: diamond ring pricing 

This example concerns the relationship between the price and various aspects of 
diamond quality for ladies' diamond rings.2   Our aim is to discover a plausible 
relationship that can be used to price the diamond rings.  Here, we will consider only 
20 carat gold (20K) rings.  Thus, the price of the rings will not depend on the gold 
quality and will only be affected by the stone’s four Cs: the carats, cut, colour and 
clarity of the diamond stone.  However, in this example, we will use only Diamond 
Carats to predict Price: we will consider only Diamond Carat, and various derivatives 
of it, as explanatory variables. There are 48 20K rings in our data set: the weights of 
their diamonds range between 0.12 and 0.35 carats (1 carat = 0.2g), and their prices 
range between $223 and $1086.   
 
 Let us consider fitting a linear model to Price and Diamond Carats.  As per point 
(1.) in our suggested strategy, let us first look at a scatterplot of the two variables in this 
data set: 
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Figure 2: Price versus Diamond Carats for forty-eight 20K rings 

 
It would appear that there is a nice linear relationship between the carat of a diamond 
ring and its price; therefore, it is reasonable to consider fitting a linear model relating 
the two.  Doing so gives the following results: 
 
Coefficients: 
                 Value Std. Error    t value   p-value 

                                                 
2 The data comes from a full-page advertisement placed in the Straits Times newspaper on Feb 29, 1992, by a 
Singapore-based retailer of diamond jewellery. This analysis follows that of Singfat Chu of National University of 
Singapore as published in Journal of Statistics Education v.4, n.3 (1996). 

 
IAUL & DEPARTMENT OF STATISTICS                                                                     PAGE 
19 

 



INTRODUCTION TO STATISTICAL MODELLING   TRINITY 2002 
 

(Intercept)  -259.6259    17.3189   -14.9909     0.0000 
 Diamond Carat  3721.0249    81.7859    45.4972     0.0000 
 
The p-value for Diamond Carat is very small, suggesting that its coefficient is 
significantly different from 0.   
 
 Next, we consider the usual diagnostic plots: 
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Figure 3: Diagnostic plots for the linear regression of Price on Diamond Carat 

 
These four plots do not appear to have anything in particular wrong with them: in the 
upper two plots, there are no apparent patterns in the residuals, the normal 
distribution appears to be a reasonable assumption based on the lower left plot, and the 
Cook's distances in the last plot are very small and do not indicate any problems with 
outliers and influential points. 
 

Our final quality check involves looking at the R2 statistic, which, for this model 
is 0.978: 98% of the variation in Price has been explained by Diamond Carat.  (Since we 
have a very simple linear model, we won’t worry about using a complexity-adjusted 
measure of goodness of fit.) 
 

Are we satisfied with the model that we have just fitted?  Based on the quality 
checks just performed, we should be.  However, as per point (7.) in our strategy list, we 
should only accept a model as final if it makes sense based on our previous knowledge.  
Does this model make sense?  No!  Looking at the estimated linear model equation,  
 

Price = -259.63 + 3721.02 x Carat, 
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we see that the estimated β0 (intercept) parameter has a value of -259.63.  This is not 
sensible because it suggests that a zero-carat diamond ring has negative economic 
value, which cannot be true in general and is particularly untrue because of the way in 
which the previous model prices the rings.  Because of the way in which we are 
considering pricing these rings, the intercept represents the value of the gold ring 
(without the stone), which consists of the value of the gold content plus a 
craftsmanship fee. Thus, it should be non-negative. We can now take one of two 
approaches: 
 
1. Do nothing on the grounds that we have not observed any Prices close to 0 and, 

thus, should not try to predict what would happen around 0  since it is therefore 
extrapolation. 

2. Attempt to transform Price and/or Diamond Carat.  One possibility is to use the log 
transformation of the response, which would guarantee a non-negative predicted 
Price for a Diamond Carat value of zero. 

 
We consider fitting the same model as before but using log(Price) rather than 

Price as the response variable. Doing so gives us the following output and diagnostic 
plots: 
 
Coefficients: 
              Value Std. Error t value p-value  
(Intercept)  4.7489  0.0477    99.4640  0.0000  
Diamond Carat  6.7872  0.2255    30.1027  0.0000  
 
R-Squared: 0.9517 
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Figure 4: Diagnostic plots from the regression of Log(Price) on Diamond Carat 

 
Although the model is a good one in terms of the reasonability of its coefficients 
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and their high degree of significance, there is a problem with the diagnostic plots.  In 
the upper left plot, the residuals are scattered around a straight line but with a pattern: 
the residuals follow an upside-down U-shaped pattern as Diamond Carat increases.  
This suggests that our most recent model might be missing some degree of curvature 
with respect to carat and that we should consider a model that incorporates the 
curvature. The obvious choice is a model that includes a (Diamond Carat)2 term as well 
as (Diamond Carat).  If we finally fit this model to the data we obtain: 
 
Coefficients: 
               Value Std. Error  t value p-value  
(Intercept)   3.8872   0.1605    24.2250   0.0000 
 Diamond Carat  14.8597   1.4726    10.0909   0.0000 
(Diamond Carat)2 -17.5370   3.1762    -5.5214   0.0000 
 
R-Squared: 0.9712 
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Figure 5: Diagnostic plots from the regression of Log(Price) on Diamond Carat and (Diamond 

Carat)2 

 
This model appears to fit very well, as indicated by its high R2 value of 0.97, and to 
satisfy the assumptions, as indicated by the diagnostic plots.  Further, its estimated 
coefficients are sensible.  The estimated equation for the final linear model is: 
 

Log(price) = 3.89 + 14.86 x Carat - 17.54 x Carat2. 
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