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(I.) Overview of Statistics 
Originally, the word “Statistics” referred to the political science concerned with the facts 
of a state or a community.  It was only at the end of the 19th century that the term acquired 
its present meaning and began to denote the science of collecting, organising, and 
interpreting data, usually with the goal of inferring certain properties of a population 
from the properties observed in a representative sample.  The information collected about 
the representative sample often takes the form of measurements of one or more 
“variables” for the “individuals” or “units” in the sample, where a “variable” is loosely 
defined as a characteristic whose values change across members of a population.  The 
resulting collection of measurements is termed the “data set” or the “data.”  In this case, a 
“data set” refers to the measurements of p (≥1) variables of interest for each of n (≥1) units. 
As an example, we might consider a data set consisting of the age, socio-economic 
background, educational level, years of experience, performance rating, and pay of 100 
individuals randomly selected from a certain division of a company.  This type of data, 
i.e., a collection of the values of certain variables for more than one unit, where each 
variable is measured at only one point in time, is referred to as “cross-sectional data.”  The 
two other types of data include “time series data,” which results from measuring a 
variable for one unit at several points in time, and “panel data” or “longitudinal data,” 
which is a cross between cross-sectional and times series data and consists of 
measurements of variables, possibly observed at more than one point in time, for n (≥1) 
units.  An example of time series data could be a data set containing the revenue of Coca-
Cola from 1982-1987, and an example of panel data might be a data set containing the 
blood pressure levels for 50 individuals given a placebo and 50 individuals taking blood 
pressure reducing medicine, measured at 6 month intervals over a five year period.  In 
this course, however, we will focus on cross-sectional data. 
 
Before turning to a discussion of the reasons for collecting and analysing cross-sectional 
data for a representative sample, we should note the important division between a 
“population” and a “sample.”  The term “population” means the entire collection of units 
or measurements of those units about whom or which information is available, or, in a 
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slightly more formal statement of the latter case, the set of values for one or more 
variables taken by all units.  The term “sample” denotes the subset of the population 
selected for study or the values of the variable(s) recorded for those selected units.   
Another essential dichotomy is that of “parameters,” which are numerical characteristics 
of a population, and “statistics,” which are numerical characteristics of a sample.  Further, 
an “estimator” is a statistic that is specifically designed to measure a particular parameter 
of a population. 

 
Usually, we are interested in learning about certain “attributes” or properties of a 
population, such as its parameters or, alternatively, its “structure” or “distribution.”  
However, in most cases, we cannot observe a population’s attributes because doing so 
would require analysing the whole population, which is generally not possible for a 
number of reasons (e.g., it may take a lot of time and money, it may cause the destruction 
of the population, etc.).   So, instead, we select a sample from the population, collect cross-
sectional data for it,1 and then, from the resulting data, calculate certain statistics and/or 
produce certain graphs that correspond to the population attributes of interest; hopefully, 
these statistics and graphs adequately resemble the population properties to which they 
correspond. As an example, if we were interested in knowing the mean height of a 
population of students, we could select a sample from that population and then obtain its 
sample mean; we would hope that the sample mean would provide a reasonable estimate 
(i.e., an approximation) of the (unknown) parameter value.  This science of deducing the 
properties of an underlying population from a data set is called “statistical inference.”  In 
this course, we will focus on using cross-sectional data sets to draw inference about their 
underlying population; the methods used to draw inference about the populations 
underlying times series and panel data sets, such as spectral analysis and mixed effects 
models, respectively, will not be addressed in this course, but represent important areas of 
statistics.  

 
Throughout this course and in the future, it will be important to bear in mind that, in most 
cases, the ultimate goal of data analysis is to draw inference about certain attributes of an 
underlying population using the information contained in the data sampled from that 
population. 
 
 

(II.) Sample Design, the Phases of Statistical Analysis, and the 
Structure of This Course 

Once a researcher has defined the population in which he/she is interested, a variety of 
methods for sampling from that population exist; these sampling methods and the 
resulting data set will be discussed in Sections IV and V below after a short digression on 
the role of computers in statistical analysis.  Once a sampling method has been decided 
upon and data collection, which will not be covered in this course, has been carried out, 

                                                 
1 Frequently, sample selection and data collection will be performed by someone other than the data analyst. 
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the statistical analysis of the resulting data set should proceed in four stages, as described 
by Cox and Snell (1981: 6).  Before presenting these four stages, we should note that two 
stages of analysis precede statistical inference.  In fact, it is almost uniformly 
recommended that, before embarking on any formal statistical analysis, one should 
calculate “descriptive statistics” for the data, which are numerical methods for organising 
and summarising data.   Only Phase 3 below corresponds directly to statistical inference, 
which entails calculating “inferential statistics,” i.e., methods that are used to generalise 
conclusions obtained from a sample to the population from which the sample was 
selected.  As a note, this descriptive vs. inferential division of statistics is often employed, 
but it is important to be aware that a given statistic can be used either to summarise the 
data or to draw inference about the underlying population (e.g., the sample mean).   
 
(1.) Initial data manipulation: This involves putting the data in the right format to carry 
out checks of data quality before any initial analysis of the data commences.  This step is 
an important one and should include: reviewing the method(s) of data collection in order 
to look for possible sources of bias that might invalidate conclusions drawn from the data, 
checking for discrepant observations (some of which might be the result of measurement 
or typing errors), and searching for missing observations. 
 
(2.) Preliminary analysis or “Exploratory Data Analysis” (EDA):  Once the relevant 
checks have been performed, simple analysis of the data should be done in order to clarify 
their general form, to again check for discrepant or “outlying” observations, to suggest 
possible directions for more complicated analysis, and to investigate assumptions 
required by the subsequent definitive analysis.  Usually, this step involves producing 
graphical, tabular, and numerical summaries of the data. 
 
(3.) Definitive analysis: This phase entails using formal and possibly also informal 
techniques of statistical inference in order to draw conclusions about certain attributes of 
interest for the underlying population. 
 
(4.) Presentation of conclusions: This step involves presenting the graphical and 
numerical results from 2) and 3) in an accurate, concise, and lucid form.  Usually, these 
results are then interpreted in light of the subject matter at hand. 
 
In this course, we will skip over Phase 1 and assume that the data are in satisfactory 
condition for the subsequent stages.  Phase 2 involves using a variety of descriptive 
statistics, tabular methods, and/or graphical methods, many of which will be presented 
momentarily in Section VI.  As for Phase 3, it entails using various techniques to draw 
inference about the population attributes of interest, as was stated above; these statistical 
inference methods will be presented in Lectures 3-8.  However, since these methods are 
derived using probability theory and rely on probabilistic assumptions, Lecture 2 will be 
devoted to a brief overview of probability that is necessary to fully comprehend the 
methods of statistical inference presented in Lectures 3-8.   Lastly, we turn to Phase 4, 
which will not be addressed in this course.  However, we will note here two points 
relating to this phase: first, a simple presentation of results is often best, and secondly, it is 
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important to remember that statistical significance does not necessarily imply scientific 
significance. 
 
 

(III.) The Role of Computers in Statistical Analysis 
Computers can be used in each of the four phases of statistical analysis enumerated above, 
as well as for data collection and entry.  More specifically, computers can be used to 
perform the following tasks: 

• Data collection: preferably done using pre-designed software that works for the 
data of interest.  

• Data entry: can be done using a spreadsheet or a statistical package.  

• Data checking (Phase 1): might include checking for double entries and logical 
errors.  

• Data screening (Phases 1 and 2): checking for outliers and missing values and 
getting a feel for the data.  

• Definitive analysis (Phase 3): the specific analyses used will depend on the design 
of the study, the type of data and variables collected, and the questions of 
interest. 

• Presentation of results (Phase 4): again, the analyst should remember that a simple 
presentation of results is often best and, thus, should resist the temptation to use 
too many colours or unnecessarily complex graphics.  

 
Using a computer to perform statistical analysis results in numerous advantages, 
including: increased accuracy, speed, and versatility; the ability to handle greater amounts 
of data with only marginally more computation time; the facility with which graphics can 
be produced; the ease with which slight modifications can be made to a given analysis; 
greater flexibility and the ability to create new variables; and the capacity to transfer data 
either electronically or on disc. 
 
There are, of course, also certain disadvantages, such as: there might be errors in the 
software used (sometimes even in the best written programmes); the versatility offered by 
the software makes it easy to use an inappropriate statistical procedure; similarly, 
statistical software often allows the researcher to perform complex analyses when he/she 
doesn’t understand them or when simple analyses would be sufficient and possibly more 
appropriate; and, lastly, because a computer allows many analyses to be made quickly 
and easily, it can facilitate “data dredging,” which refers to searching for significant 
relationships by performing a large number of analyses.   Here, it is worth quoting Cox 
and Snell (1981:24) at length on the problems that may ensue when a computer is used to 
perform statistical analysis: 
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In the central analysis, the wide availability of computer packages has made quite 
complicated methods of analysis painlessly available even to those with little 
statistical training, and the dangers of this have often been discussed.  There is 
another side, however; it is now also painless for the statistician to generate large 
numbers of plots of residuals, tests of normality, analyses on numerous scales, etc., 
and thus to get very large amounts of computer output even for very simple data.  
Without some ruthlessness in appreciating that the great majority of this must be 
discarded, the objectives of achieving and reporting simple conclusions are 
threatened. 

 
As a result, caution must be exercised when using computers to perform statistical 
analysis.  Before using a package, one should first understand what it is doing; the best 
package is that which one understands best.  In addition, it must be borne in mind that the 
computer has no magical powers; it merely follows orders, and it is only a tool to help the 
researcher perform the planned analyses.   Further, far from being a helpful tool, some 
software packages may prevent a researcher from drawing valid conclusions from his/her 
data because the package’s functions contain errors.  It should not necessarily be assumed 
that the results from a software package are valid, and results should be checked, at the 
very least for reasonability. Lastly, researchers should guard against the temptation to 
produce large amounts of computer output not required by the planned analysis. 
 
The above caveats aside, using a computer to perform statistical analysis is generally 
advisable. 
 

(IV.) Sample Selection 
As was stated above, in this course we will be focusing on data of the cross-sectional 
variety only, which consists of the values of p (≥1) variables of interest for each of n (≥1) 
units in a representative sample of the population of interest.  This type of data is 
especially common in applications such as demographics, medicine, psychology, 
sociology, and zoology, and it is relatively straightforward to draw inference about its 
underlying population compared to doing so for times series and panel data.   
 
For one such data set, the questions that the data analyst currently hopes to answer using 
it may not coincide with the initial objectives driving the data set’s collection.  This is 
possibly true because the goals of the data collector have changed or because the person 
who designed and implemented the method of data collection may not be the same as the 
data analyst.  This said, the data may have been collected with either of two types of goals 
in mind: 

• descriptive inference:  when the main objective is to describe, in some way, a 
large group, using information from a sample from that group. 

• analytical inference: when the main objective is to study the properties of and 
relationships between variables, using a small sample, in hopes that the results 
from that sample can be generalised to a larger population. 
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An example of the first type of goal might be a desire to determine the racial composition 
of a major American city, and an example of the latter goal might be a study of the effects 
of taking vitamins on longevity.   Additional examples of both types of goals in different 
application areas include: 
   
Science and Industry:  Clinical trials, experimental design, quality control 
Government:    Population and Economic trends, official statistics 
Market Research:  TV ratings, readership of newspapers, impact of advertisement 

campaigns, opinion polls 
 

In addition to stating the goals of data collection and the questions that he/she hopes the 
study will address, the data collector should also clearly enumerate the variables that will 
need to be measured in order to answer these questions and also clearly define the 
population of interest.   This population may be finite or infinite.  In the latter case, it is 
obvious that only a sample from the overall population can be studied.  However, in the 
former case, it might have been possible to measure the variables of interest for all units in 
the population, which would be termed a “census.”  However, following Cochran (1980), 
we can establish the following advantages of collecting data for only a sample from the 
population rather than conducting a census: 

• Reduced cost: Lower costs may result in instances where it is difficult to locate 
units or to measure the variables of interest. 

• Greater speed: The collection, screening, and analysis of the data are performed 
more quickly for a sample than for a census. 

• Greater depth: The gains in speed and cost that are achieved by sampling can be 
applied to increasing the breadth and depth of the study (i.e., a greater number 
of variables can be measured).  

• Greater accuracy: Sometimes obtaining truly accurate measurements requires 
highly trained personnel and/or specialised equipment, which, of course, 
makes it inadvisable to examine the whole population because doing so might 
result in less accurate measurements.  

• Limited destruction:  In some cases, a unit must be destroyed in order for the 
variables of interest for be measured, which obviously makes it undesirable to 
do so for the entire population 

 
In this course, we will address only data sets that represent samples from the population 
of interest rather than those which contain all units in a population.  In addition, for 
probabilistic reasons, we will assume throughout this course that the underlying 
population of interest is infinite, unless stated otherwise.   Here, we should note the 
distinction between the “target population,” which is the one about which we desire to 
draw inferences, and the “population to be sampled,” which consists of those units for 
whom it is possible to measure the relevant variables.   The population to be sampled is 
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often much more restricted than the target population, and the sample must, of course, be 
drawn from this more restricted population.   
 
Once the data collector has clearly defined the above populations, it is necessary to decide 
what method of sampling will be used to select a subset of the population to be sampled.   
Different methods of sampling include simple random sampling, stratified sampling, and 
cluster sampling, among others; in addition, sampling can occur in one or more phases.   
The theory behind and examples of these sampling schemes are provided in the classic 
texts of Cochran (1980) and Hansen et al. (1953).  

 
A “simple random sample” of size n is a subset containing n units from the population of 
interest.  These units are chosen in such a way that every possible subset of size n has the 
same probability of being selected as any other; in other words, every unit in the relevant 
population has the same probability of being selected for the sample.   

 
However, sometimes the population to be sampled is divided into non-overlapping 
subpopulations called strata, across which it is suspected that the answers to the questions 
of interest may differ.  Although we desire to sample from the entire population (i.e., the 
union of these strata), we might do so by collecting a “stratified” rather than a simple 
random sample because using the former may improve the precision of our estimate of 
the parameter of interest.  In this stratified sampling method, the total desired sample size 
is divided between the strata in a manner that reflects the properties of the variables of 
interest within each stratum and the costs of sampling within each stratum.  Once the 
number to be sampled from each stratum has been fixed, the appropriate number of units 
is selected, randomly, from each stratum.  An example of a stratified sample might occur 
if a researcher desired to estimate the average height in the U.S. adult population and, 
after deciding on a total sample size of 1000, randomly sampled 500 females and 500 
males from the U.S. population because he/she suspected that the mean height might 
differ drastically for these two groups.   

 
In cluster sampling, the population is again divided into non-overlapping groups or 
“clusters”; however, in this case, the groups are not assumed to differ systematically but, 
instead, each is assumed to be representative of the entire population.  If this case, a 
“cluster sample,” in which only several of these clusters are first selected and then units 
are randomly sampled within each cluster, might be collected because doing so could 
reduce the time, money, and effort required to collect data.   An example of cluster 
sampling might occur if a researcher hoped to estimate the mean parental income of 
Oxford students.  If he/she assumed that all colleges were more or less the same in this 
regard, he/she could randomly select several colleges and then measure parental income 
for randomly selected students within these colleges only.    

 
To compare stratified sampling to cluster sampling, in order to employ the latter method, 
we should suspect that the answers to the questions of interest vary minimally across 
groups (clusters) and maximally within groups, whereas, for stratified sampling, we 
should suspect that the answers vary maximally across groups (strata) and minimally 
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within them.   Further, in stratified sampling, all the strata are sampled from, but in 
cluster sampling, not all the clusters are sampled from.   
 
Here, we should note that there may be several layers of clusters or strata; for instance, the 
population of interest could be divided into school districts, each of which could then be 
subdivided into its component schools.  If this were the case, then “multi-stage” sampling, 
in which groups, then subgroups, and then units within subgroups are selected, could be 
employed.   Obviously, this method can be generalised to include more than two levels of 
grouping. 
 
Lastly, sampling does not necessarily occur in only one phase.  As an example of “multi-
phase sampling,” an initial random sample from the overall population might be used to 
estimate certain properties of the variables of interest in each of the strata in that 
population.  Then, the resulting estimates could be employed in order to determine how 
the total number of units that will be sampled in the second phase should be divided 
amongst the strata for more in-depth sampling in that phase. 
 
Before proceeding, we should note that all of these sampling methods employ random 
selection in one way or another.   The importance of choosing units randomly is twofold: it 
helps to avoid biases, and it is an explicit assumption of many statistical methods.   In fact, 
many statistical methods that we will examine in this course assume that the data at hand 
comes from a simple random sample of the population. 
 

(V.)  The Resulting Data Set 

Types of Variables 
Once the goal of the study has been clearly established, the target population and 
population to be sampled have been identified, a sampling scheme has been settled upon 
and units selected in accordance with that scheme, and the variables of interest have been 
measured for those units, a data set will result. This data set contains measurements of p 
variables for n units.   Each of these p variables will belong to one of the following six 
variable types. A variable’s type is determined by the set of values that it can potentially 
take, and each of the possible types belongs to either the categorical variety or to the 
numerical variety.   

(a.) Types of Categorical Variables:  

(1.) Nominal: a variable that can take on only a finite set of values (i.e., the units fall into a 
finite set of “categories”), where these categories or “levels” have no intrinsic ordering 
(e.g., race). 
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(2.) Ordinal: a variable that can take on only a finite set of values, where the categories in 
this set do have an intrinsic ordering, but not on a well-defined scale (e.g., quality of 
service: poor, decent, good, excellent). 

 
(3.) Interval: a variable that can take on only a finite set of values, where the categories in 

this set not only have an intrinsic ordering, but also have numerical scores or labels 
attached  (e.g., quality of service: 1-5).  These labels are often treated as category 
averages, means, or medians, and the differences between them can be used as a 
measure of the separation between two categories.   This type of variable can result 
from coarsely observing a numerical variable, i.e., when the possible range of values 
for a numerical variable is divided into a number of bins and only the bin location is 
observed for each unit. 

 
Before enumerating the types of numerical variables, we should note that the categories of 
the three variable types above are, to some extent, arbitrary and do not have a strict 
numerical interpretation.  As another point, a categorical variable with only two categories 
can be referred to as “binary” or “dichotomous,” whereas a categorical variable with more 
than two levels can be referred to as “polytomous.”  However, a polytomous variable can 
always be reduced to a binary variable by merging categories. 

(b.) Types of Numerical Variables: 

(4.) Discrete: a variable that takes on integer or counting number values and is, in effect, 
counting the numbers of occurrences of some phenomenon (e.g., number of siblings, 
number of lectures attended in one term). 

 
(5.) Non-ratio continuous: a variable that takes on values along an effectively continuous, 

but relatively ill-defined, scale.  Often, for variables of this type, a value of 0 should 
not be considered as the lack of the characteristic, and the variable’s scale will not be 
linear.  For example, for this type of variable, the difference between, say, 5 and 10, 
may not the same as the difference between 80 and 85.  This would also mean that a 
value of, say, 40 would not correspond to twice the value of 20 or half the value of 80.  
For instance, consider the variable ‘temperature’: in this example, 0 C does not imply 
an absence of heat, and a day that is 40 C is not necessarily twice as hot as a day that is 
20 C. 

 
(6.) Ratio: a variable that takes on values along an effectively continuous and well-defined 

scale.  For variables of this type, a difference of one unit has the same interpretation at 
any part of the scale, and a value of 0 truly denotes the absence of the characteristic  
(e.g., height, weight). 

 
Here, we should note that types (5) and (6) are often referred to as “continuous” variables; 
often, no differentiation is made between these two types of variables.   Due to the 
limitations of measuring devices, variables of the continuous variety cannot actually take 
on any real-numbered value in practice, and they are thus only effectively continuous and 
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not continuous in a strict mathematical sense.  Lastly, we should point out that numerical 
variables can be reduced to interval categorical variables by coarsening their values (i.e., 
by grouping their values into bins). 

 
No matter which type of variable(s) we are considering, when we are interested in the 
properties of only one of the data set’s p variables, the resulting analysis is called 
“univariate”; alternatively, an analysis that investigates the relationship or association 
between two variables is termed “bivariate,” or, similarly, “multivariate” for two variables 
or more.   
 

Distributions 
For variables belonging to any of these six types, their measured values will always vary 
across members of a population or across members of a sample from that population.   For 
a given variable, some values will appear more often than others in the population and 
also probably in a randomly selected sample from this population.  The pattern of 
occurrence of the various values of a variable is called its “distribution.”  Primarily, a 
distribution describes the possible values that a variable can take and the relative 
frequency with which each of these different values occur; this description might occur in 
a variety of forms, such as a mathematical function, a table, or a graph.  The distribution of 
values for all units in the relevant population will be termed the “population 
distribution,” which will be discussed in Lecture 2; population distributions cannot 
usually be observed because the entire underlying population is not known or has not 
been observed or measured.  The distribution of values for the units in a sample selected 
from the relevant underlying population will be termed the “empirical distribution,” 
which can, of course, be observed.  In many cases, we will assume that the empirical 
distribution for a sample is a good representative of the underlying population 
distribution.  As an example of an empirical distribution for a categorical variable, 
consider the data obtained by R. Wolf, who, in 1882, tossed a die 20,000 times and 
recorded the number of times each of the six different faces showed.  The resulting 
empirical distribution was: 
 

Face 1 2 3 4 5 6 
Frequency 3,407 3,631 3,176 2,916 3,448 3,422 

 
[N.B. In this example, the variable of interest is a categorical variable of the nominal type.  
This is the case because the values simply denote which face fell, and the numbers 
attached to each face are arbitrary labels without an order structure rather than quantities 
(unless we were specifically interested in the number of points on the showing face rather 
than the showing face itself).]  As for an example of the empirical distribution of a 
continuous variable, it is not possible to present one in the tabular form used above 
without first placing the variable’s observed values into bins (i.e., intervals); this is the 
case because, for continuous variables, most numerical values are observed only once in 
the sample.  Once the continuous variable’s possible values are divided into bins, the 
number of observations in each bin can be counted, and a frequency table similar to the 
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one above can be constructed.  However, although the empirical distribution of a given 
continuous variable can be presented in tabular form, a graphical portrayal will often be 
more easily interpretable. 
  
The above discussion refers to “univariate” distributions since only one variable at a time 
is considered.  However, if we consider more than one variable at a time, we can talk 
about “multivariate distributions” or the “joint distribution” of the variables.   A joint 
distribution for q variables describes all possible q-tuplets of values taken by the variables 
(e.g., for q=3, [length, width, height]) and the relative frequency with which each of these 
possible q-tuplets occurs.  Again, the distribution might be summarised in functional, 
tabular, or, for q=2, graphical form.  The “population joint distribution” (Lecture 2), which 
usually cannot be observed, refers to the distribution of the values of the q variables for all 
units in the underlying population, and the “empirical joint distribution,” which can be 
observed, refers to the distribution of the values of the q variables for the sample units.   
As an example of an empirical joint distribution for two categorical variables (i.e., an 
empirical bivariate distribution), suppose that R. Wolf had rolled a red die and a green die 
(at the same time) 20,000 times and recorded the resulting pair of faces for each roll.   
Then, the empirical distribution could be summarised by the following “two-way table,” 
which crosses the possible categories for the two categorical variables and then records the 
number of observations that fall into each of the 36 classes that result from these crossings.  
The numbers of observations in these classes will be termed the (absolute) “joint 
frequencies.” 

 
Joint Freq. Green Face 

 
Red Face 1 2 3 4 5 6 

1 632 531 499 543 623 573 
2 498 598 501 610 576 654 
3 664 629 612 432 527 453 
4 582 743 653 476 694 467 
5 489 624 537 492 476 515 
6 535 467 598 578 435 484 

 
As was true for the empirical distribution of one continuous variable, the empirical 
bivariate distribution for two continuous variables can be presented in the above tabular 
form if the possible continuum for each of the variables is divided into intervals or 
categories, these categories are crossed to produce classes, and then the number of 
observations falling into each class is counted.    
 

(VI.) Exploratory Data Analysis 
We have now discussed possible reasons for collecting data, the population from which 
the data is collected, the possible schemes for sampling from that population, and various 
characteristics of the resulting data set.  Next, since we will assume that glaring mistakes 
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in the data set have been investigated and corrected and that missing values have been 
noted2, we can skip over Phase 1 of data analysis and proceed to Phase 2, which is often 
called Exploratory Data Analysis or EDA.   

 
There is a myriad of reasons for performing EDA before addressing the ultimate questions 
of interest using methods of statistical inference.  To begin, EDA techniques can reduce 
the information contained in a data set to a few indicators that describe or summarise its 
main characteristics and therefore give the analyst and his audience a better overall 
picture of the data.   Although some particular features of the data may be lost by 
summarising the data, doing so could reveal certain trends or patterns in the data, which 
might be relevant to the questions of interest.   Second, certain EDA techniques will 
highlight departures from these trends/patterns in the data set; these departures are 
known as “outliers” and can be thought of as values that cause surprise in relation to the 
majority of the sample.  Although outliers often result from measurement or recording 
errors, they can also simply correspond to anomalous units.   Lastly, EDA can provide the 
opportunity to informally investigate the assumptions that will be required for the 
statistical inference phase (Phase 3) of data analysis.  For example, some methods of 
statistical inference require the assumption that the population underlying the data for 
one variable has a normal distribution; by making a histogram of the observations for that 
variable, the analyst can get an idea of whether or not this assumption seems reasonable. 

 
EDA methods can be numerical (i.e., descriptive statistics), graphical, or tabular.  The 
specific method of EDA that is appropriate depends on whether the properties of only one 
variable (univariate analysis) or the relationships between multiple variables (multivariate 
analysis) are being investigated.  The specific EDA method that is appropriate also 
depends on the type of variable(s) being considered.  In general, there are more 
possibilities for describing numerical variables because we can perform arithmetical 
operations on their values and also because we can appropriate methods designed for 
categorical variable if we divide the continuous variables’ possible ranges of values into 
interval classes. 
   

(VI.a.)  Tabular EDA Methods 
For a nominal or ordinal categorical variable, a frequency table or “one-way table,” such 
as the one given for the 20,000 die rolls, is more or less the only possible way of describing 
the data.    For each category, this table can show either its “absolute frequency” (the 
number of occurrences of the category) or its “relative frequency” (the number of 
occurrences of the category divided by the total number of occurrences of all categories).  
If we are interested in the relationship or association between two or more ordinal and/or 
nominal variables, two-way and multi-way frequency tables, respectively, (often referred 
to as “contingency tables”) should suffice to informally show trends in the data and are 
again essentially the only way of describing the data.  As was the case for one-way tables, 
these tables can contain either absolute or relative frequencies.  As an example of how a 
                                                 
2 However, in the remainder of this course, we will assume that the data set does not contain any missing values. 
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two-way table can reveal the association between two variables, consider the following 
absolute frequency table relating number of marriages and education for a sample of 1,436 
married women listed in Who’s Who in 1949. 
 

Education Married Once Married more than once Total 
College 550 61 611 
No College 681 144 825 
Total 1,231 205 1,436 

 
First, note that, of the women who went to college, 10% had been married more than once; 
for those without college education, this figure is 17%.  Also, for women married more 
than once, 30% had a college education; for women married only once, that figure is 45%.  
The tables shows an association between the two categorical variables in this data set; 
specifically it shows that, for these data, having a college education increases the chances 
of being married only once.   
  
As was discussed in Section V above, one-way and multi-way frequency tables can also be 
used to describe continuous variables if the possible values of these variables are divided 
into interval classes or bins and the number (or frequency) of observations in each class is 
then counted. 
 

(VI.b.)  Numerical EDA Methods 

(VI.b.i.)  Univariate Methods 

Sample Quantiles and Deciles  
“Sample quantiles”3 can be used to describe a variable of either the categorical or the 
continuous variety.  The “α-th sample quantile,” denoted η(α), is the smallest value such 
that  of the observations of that variable take values which are less or equal 
than η(α).   For instance, five percent of the observed values for a given variable are 
smaller than its 5

(100 × α)%

3

                                                

th sample quantile.    
 
One particular set of sample quantiles that is used frequently is the “sample deciles,” 
which are the 9 values that divide the variable’s observed range into 10 intervals, each of 
which has the same number of observations (i.e., 10% of the total number).  As an 
example, sample deciles are often used to compare two different income distributions.  
Another important set of quantiles is the “sample quartiles,” a set of values that divides 
the observed range of a variable into four intervals, each containing 25% of the 
observations.  The sample quartiles are denoted by  and are referred to as the 
“lower quartile,” “the sample median,” and the “upper quartile,” respectively.  
Frequently, the sample quartiles are combined with the sample minimum and the sample 

Q Q Q1 2,  and 

 
3 Although in this course we will use the terms “sample quantiles,” “sample mean,” etc., in order to distinguish them 
from their population counterparts, in many cases, the adjective “sample” is omitted when referring to these quantities.   
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maximum (i.e., respectively, the smallest and largest of the n observed values in the data 
set for the variable) in order to produce a “five number summary.”  In addition, the 
quantiles are often used to calculate a variable’s “sample inter-quartile range (IQR),” 
which is defined as the quantity Q3-Q1.   As an example, consider the following data, 
which refer to the time intervals between successive coal mine disasters (i.e. accidents 
involving ten or more men killed) in Britain between 1851 and 1962.  The time interval 
covers 40,550 days, during which period there were 190 disasters.  The five number 
summary for this ‘inter-disaster interval’ variable is: 
 

Min Q1 Median Q3 Max 
0 37.75 113.5 270 2,366 

 
Looking at this five number summary, we might have some suspicions about the 
minimum (0); however, it happens that there were two accidents in the same day once. 
Note that even though the data are recorded integers, the first two quartiles are non-
integer values.  This is because most statistical software packages use a convention of 
interpolating between observed values if the quartile does not correspond exactly to an 
observed value (e.g., the sample median is the average of the two middle values when n is 
even).  For instance, if we have the data {1, 5, 8, 15}, the quartiles would be (4, 6.5 and 
9.75).  Lastly, we can calculate the IQR for this variable, which has a value of 232.25 = 270-
37.75. 
 
Location  
This property is concerned with finding, for a given variable, the position of the value in 
the data set that best characterises it.  The sample “median,” “mean,” and “mode” can all 
be used to describe this position.   Here, we should note that although the mode has 
meaning for all six types of variables, calculation of the median only makes sense for 
variable types other than nominal, and calculation of the mean is only possible for 
variable types other than nominal and ordinal.  In addition, we should point out that these 
measures of location are not particularly informative when the empirical distribution for a 
given variable isn’t unimodal (i.e., when it has more than one ‘hump’). 

 
The sample median can be calculated by ranking the n observed values of the variable of 
interest from smallest to largest; then, the median is the middle value in this ordered list if 
n is odd or the average of the two middle values in this list if n is even.  The sample 
median indicates the ‘centre’ of the empirical distribution of a given variable in the sense 
that half of the values are smaller than or equal to the sample median and half of them are 
larger than or equal to it.  Another measure of location is the sample mode, which is 
simply the value of the variable that appears with the highest frequency in the data set.  
The sample mode is not necessarily unique because two different values may occur with 
the same highest frequency; for this reason and others, the sample mode is not always a 
good indication of location.  Lastly, the sample mean is probably the most widely used 
location measure.  If we are interested in a variable called X, then the sample mean is 
denoted X .  X  is calculated by summing the n observed values of X and then dividing 
that sum by n.  Like the sample median, the sample mean also indicates the centre of the 
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distribution, but here in the sense of a centre of gravity: if the observations for a variable 
were put in numerical order along a bar that was then placed on a pivot, the sample mean 
would be the point along the bar where placement of the pivot allowed the bar to balance 
perfectly horizontally.  Alternatively, the sample mean can be thought of as the average of 
the observed values of the given variable.   
 
As for a comparison of the sample median and the sample mean, if the empirical 
distribution of the variable is symmetric with respect to the mean, then the median and 
the mean have the same value.  For instance, let us consider a data set containing 
measurements of length of the forearm (in inches) for 140 adult males.  For this data, the 
median and the mean are 18.8 and 18.802, reflecting the symmetric nature of the 
distribution.  However, the sample mean and median are not coincident when the 
empirical distribution of the variable is asymmetrical.  This is especially true when 
outliers are present for a variable, since the sample mean is greatly affected by outliers 
whereas the sample median is not.  As an example of this, consider the coal mine data 
introduced above.  For the ‘inter-disaster interval’ variable, the sample median and the 
mean are 113.5 and 213.4, respectively.  This discrepancy occurs because the maximum 
value of 2,366 is an outlier in comparison to the rest of the coal mine data and therefore 
pulls the sample mean away from the sample median.  This value does not affect the 
sample median because the median merely selects the middle observed value and thus 
extra-small and extra-large values to do enter into its calculation.   For this reason, we 
would say that the median exhibits “robustness against outliers,” which is often a 
desirable statistical property, especially in the case where outliers represent measurement 
or recording errors. 
 
Spread (or dispersion) 
The “spread” or “dispersion” of a variable measures the degree to which the observed 
values for that variable are concentrated around a location measure; a ‘smaller’ spread 
indicates that the observed values are more tightly clustered around the ‘centre’ of the 
variable’s empirical distribution.  Measures of spread include the “sample range,” the 
IQR, the “sample variance,” the “sample standard deviation,” and the “sample coefficient 
of variation.”  As was true for the sample mean, it is not possible to calculate these 
quantities for nominal or ordinal variables.  In addition, the sample coefficient of variation 
is valid only for the discrete and ratio types of variables. 

 
The simplest measure of spread is the sample range, which is defined as the difference 
between the sample maximum and the sample minimum for a variable.  However, since 
the sample range depends on only two observations, it is highly sensitive to outliers and, 
as a result, may not be a reliable indicator of spread.  Another measure of spread is the 
previously defined IQR.  Yet another measure of spread is the sample variance, which is 
often denoted by  or by σ .  The sample variance is loosely defined as the average of 2s 2ˆ
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the squared differences between the observations and the sample mean (i.e., the average 
of the squared deviations of the observations from the sample mean).   Specifically, 4  

∑
=

−
−

=
n

i
i XX

n
s

1

22 )(
1

1 . 

[Before proceeding, we should point out that the sample variance is not always calculated 
by taking the traditional average of the squared deviations of the observed values from 
the mean: frequently, in practice, the sum of these deviations is divided by n-1 rather than 
by n as would be done for a traditional average.  Theoretical reasons for doing so exist, 
and they will be explained in Lecture 4.]  As a result of the way in which the sample 
variance is defined, it is always non-negative and will be 0 only if all of the observed 
values for a variable are identical (i.e., there is no variation).   The sample variance is 
expressed in squared units, which can make it a difficult quantity to intuitively interpret.  
For this reason, it is common to use the (positive) square root of the sample variance as a 
measure of the variable’s spread; this value is called the sample standard deviation and is 
frequently denoted by .   Here, we should note that the sample standard deviation is s not 
the average of the differences between each observation and the mean.  Obviously, the 
sample range, variance, and standard deviation depend on the units in which a variable is 
measured.  As a result, a variable that takes on values in the 1,000s and whose observed 
values are tightly clustered about its mean could have a larger sample standard deviation 
than a variable that takes on only positive values less than 50 and whose values are very 
spread out relative to the mean, even though one might want to say that the latter variable 
has greater spread than the former.   However, if we desire to compare two or more 
dispersions, we can circumvent this difficulty by employing the sample coefficient of 
variation (CV), which uses the absolute sizes of the means to adjust for the above 
phenomenon.  The sample coefficient of variation is calculated using the formula 

XsCV = . 
This coefficient has no units, which allows us to use it for comparing dispersions of 
variables measured in different units.  As was stated above, note that the sample 
coefficient of variation is only valid for discrete and ratio variables; obviously, it is not 
possible to calculate this quantity for ordinal and nominal variables, and, for non-ratio 
continuous variables, using the mean as an adjustment factor has little validity because of 
the arbitrary position of zero on the variable’s scale.  Also, we should note that if the 
sample mean for a variable happens to be very near 0, then the value of the coefficient of 
variation might be artificially inflated and therefore suggest a greater degree of dispersion 
that is actually present.   

 
As an example of a comparison between the sample standard deviation and coefficient of 
variation, suppose that we would like to compare the variability of house prices with the 
variability of car prices and that we have the following values: 
                                                 
4 For those unfamiliar with sigma (Σ) notation (also known as summation notation), consider the following basic 
example:  means “sum all the Xis (the quantity to the right of the summation sign) from i=1 (1 is the lower index 

of the sign) to i=n (n is the upper index of the sign).”  In other words, ∑ .  Similarly, 
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 Houses Cars 

mean £120,000 £12,000 
standard deviation £2,000 £2,000 

 
Although the standard deviation is £2,000 for both houses and cars, the dispersion of 
prices around the mean is clearly more spread out for cars than for houses.  This fact is 
revealed by the sample coefficients of variations, which are 1

60  and 1
6  for houses and cars, 

respectively, reflecting a greater variability for the latter.  This would not be apparent if 
we had compared the standard deviations only.   
 
Of the measures of dispersion that we have reviewed, only the IQR is relatively robust to 
outliers.   Because they involve squaring the deviations of observations from the sample 
mean, the sample variance, standard deviation, and coefficient of variation are all 
extremely sensitive to outliers.   
 
Skewness 
“Skewness” refers to deviations from symmetry with respect to a location measure.  The 
quantity, often referred to as b1, that is commonly used as a measure of asymmetry is 
calculated by dividing the average of the cubes of the differences between the 
observations and their sample mean by the cube of the sample standard deviation.   
Specifically,  
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The resulting quantity, b1, is unit-free.   If the variable’s empirical distribution is 
symmetric around its sample mean, then b1 has a value of 0.  Positive values of b  indicate 
that the variable is “right-skewed” (i.e., there is a longer or fatter tail for values larger than 
the mean); a negative value of  provides evidence of a longer or fatter tail for values 
smaller than the mean (i.e., the variable is “left-skewed”).   

1

b1

 
Kurtosis 
“Kurtosis” denotes the degree of ‘peakedness’ of the distribution, often as compared to a 
Normal (Gaussian) distribution.  The “coefficient of kurtosis,” usually referred as , is 
calculated by dividing the average of the fourth power of the differences between the 
observations and their sample mean by the fourth power of the sample standard 
deviation.  Specifically,  
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As a result of this definition, b  is always non-negative and is unit-free.  This coefficient 
takes the value of 3 for the normal distribution, which is described as “mesokurtic.”  A 
value of this coefficient that is smaller than 3 indicates a distribution that is “platykurtic”, 
i.e., a distribution that is fatter- and/or shorter-tailed than the normal distribution or, 

2
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identically, less peaked than the normal distribution.  For the flattest (least-peaked) of all 
distributions, the uniform distribution (i.e., a distribution in which all possible values 
occur with the same frequency), b takes a value of 1.8.  On the other hand, if  has a 
value larger then three, then this indicates a distribution that is “leptokurtic” (i.e., a 
distribution that has longer and/or slimmer tails than the normal distribution and is thus 
more peaked).   Before proceeding, we should point out that some packages standardise 
the coefficient of kurtosis by subtracting it from 3, so that it takes positive values for flatter 
(platykurtic) distributions, 0 for the normal (mesokurtic), and negative values for peaked 
(leptokurtic) distributions. 

2 b2

Y )

 
As an example of  and b , we turn to the forearm lengths data, for which the values of 

 and  are (-0.108, 2.53); these values are quite near 0 and 3, indicating a symmetric, 
mesokurtic distribution.  In contrast, the coal data yield values of (3.539, 18.99), which 
correspond to a positive-skewed, leptokurtic distribution.    

b1 2

b1 b2

 
As a last point of interest, we should note that both b1 and b2 are highly sensitive to 
outliers.   

 
 

(VI.b.ii.)   Multivariate Methods 

Measures of Association Between Two Variables 
If we are interested in assessing the degree of association between two numerical 
variables, “Pearson’s correlation coefficient,” “Spearman’s rank correlation coefficient,” 
and/or “Kendall’s rank correlation coefficient” can give us a good idea of the strength of 
the relationship between two such variables.  However, these measures of association are 
not appropriate for categorical variables; if we desire to investigate the relationship 
between two or more categorical variables, a multi-way frequency table can be very 
revealing, as was discussed in Section VI.b above.   
 
For numerical variables X and Y, Pearson’s correlation coefficient provides a measure of 
linear association.  To calculate this coefficient, one must first calculate the “sample 
covariance” for these two variables, which is defined as 

( )( )∑ =
−−

−
=

n
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n

X
1

 
1
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where  and Y  are the observations of variables  X and Y for unit i, and iX i X  and Y are 
the sample means for those variables.  If most of the X observations that are above the 
mean for X are paired with Y observations that are above (below) the mean for Y, and if 
the observations below the mean for X correspond to observations below (above) the 
mean for Y, then most of the terms in the sum defining the covariance will be positive 

                                                 
5 For those unfamiliar with sigma (summation) notation, 
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(negative), resulting in a positive (negative) covariance.  Obviously, just as the sample 
variance and standard deviation are affected by the units in which a variable is measured, 
the sample covariance will also reflect the absolute size of the units used to measure the 
two variables of interest.  However, Pearson’s correlation coefficient, r, removes this 
dependence on the unit of measurement; it does so because the correlation coefficient is 
calculated by dividing the sample covariance by the product of the sample standard 
deviations of X and Y.  The sample correlation coefficient is thus unit-free and takes on 
only values between -1 and 1.  If r is approximately 0, then there is no evidence of linear 
correlation.  On the other hand, a value of 1 indicates a perfect positive linear association, 
and a value of –1 indicates a perfect negative linear association.  It is essential to remember 
that Pearson’s correlation coefficient assesses only the linear association of two variables 
and is not a measure of non-linear relationships.  For instance, two variables that clearly 
have a very strong curved relationship, as seen in a scatterplot, might have a sample 
correlation of 0.  Thus, the sample correlation of two variables should be viewed with 
caution.  As an example of why, R.A. Fisher presented 4 very different looking scatterplots 
for two variables, all of which had the same sample correlation; obviously, for these cases, 
the sample correlation does not reflect the different relationships between variables. 
 
Pearson’s correlation is not at all robust to outliers, which is not surprising given that it 
incorporates sample standard deviations, which are not robust either.  In order to find a 
more robust measure of association, one could order the values of each variable from 
smallest to largest and then rank them from 1 (smallest) to n (largest). (If a variable has 
two identical values, the usual procedure for assigning ranks is to assign to both values 
the average of the two ranks that should be assigned to those values.)  After ranking the 
values for both variables, one could calculate Pearson’s r using the two variables’ ranks 
rather than their original observed values. The resulting correlation coefficient is known as 
Spearman’s rank correlation coefficient and is robust to outliers.  Another robust 
correlation coefficient is Kendall’s, which simplifies the information contained in the two 
variables even more than Spearman’s does.  Kendall’s coefficient involves examining all 
possible pairs of observations, where an observation is defined as both the X-value and 
the Y-value for a given unit.  A pair of observations, such as (Xi, Yi) and (Xj, Yj), is termed 
‘concordant’ if and only if (1)  or if (2) ; otherwise, the 
pair is ‘discordant.’  Each possible pair of observations is assigned a score of 1 if case (1) 
holds, a score of -1 if case (2) holds, and a score of 0 if it is discordant.   Kendall’s rank 
correlation coefficient is then the sum of these scores, standardised so that it falls within -1 
and 1. 

X Y X Yi i j>   & j> j<X Y X Yi i j<   &

 
If we denote any of these three correlation coefficients by c, then we have the following 
properties: 

 
a) c does not depend on the units of measurement of X and Y. 
b) c(X,Y) = c(Y,X) (this property is known as “symmetry in the arguments”). 
c)  − ≤ ≤1 1c X Y( , )
d) If c(X,Y) = 1, then the data lie exactly on a straight line. ±
e) c(X,Y) is an adequate measure of association only for linear relationships. 
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(VI.c.)  Graphical EDA methods 
Graphical methods make it very easy to discover trends and patterns in a data set; in 
addition, some of these methods are particularly good at revealing outliers, or departures 
from these trends.    

(VI.c.i.)  Univariate Methods 

Frequency Plots and True Histograms 
In Section VI.b, we noted that it is possible to calculate absolute and/or relative category 
frequencies for a variable of the categorical variety and, if the possible continuum of 
values for the variable is divided into intervals, for a variable of the numerical variety.   
Instead of presenting these frequencies in tabular form, we could use them to plot a 
frequency chart for the data.  In the following graph, we plot this type of chart for the die 
roll data using the relative frequencies of the faces. 
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Figure 1: Frequencies of 20,000 die throws 

 
In order to see an example of a frequency plot using absolute, rather than relative 
frequencies, consider the following table containing data from 144 horse races on a 
circular track.  More specifically, this table contains the number of wins for each starting 
position, where Position 1 is closest to the rail on the inside of track. 
 
Position 1 2 3 4 5 6 7 8 
Num. of wins 29 19 18 25 17 10 15 11 
 
The following graph shows the absolute frequencies for each starting lane.   
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Figure 2: Histogram of starting positions of winners in horse racing 
 
 
These absolute and relative frequency plots are often referred to as “histograms.”  
According to this definition, a histogram is a bar graph in which each bar corresponds to a 
category created by grouping the variable’s values into intervals, classes, or “bins” 
(unless, of course, the variable is already categorical), and where each bar’s height (along 
the Y-axis) is proportional to the (absolute or relative) frequency of its corresponding 
class.   Here, it is important to distinguish between a histogram or frequency plot and a 
“true histogram.”  The latter is similar to a frequency plot, except that in a true histogram, 
the area of a bar, rather than the height of a bar, is proportional to the frequency of the 
interval class to which it corresponds.  More specifically, in a true histogram, the area of 
each bar is equal to the relative frequency of the interval class to which it corresponds. As 
a result of the way in which a true histogram is defined, the total area of all its bars is 1; 
this property makes a true histogram a candidate for an estimate of the true population 
density (i.e., distribution) of a variable, as we will see in Lecture 2.  In a strict sense, a 
frequency plot is identical to a true histogram only when relative frequencies and bins of 
equal length are used for the frequency plot.  However, since the use of absolute vs. 
relative frequencies affects only the Y-axis scale and not the appearance of the plot, for our 
purposes, the distinction between frequency plots (histograms) and true histograms will 
only matter in cases where the interval classes are not all of equal length.   

 
For both frequency plots and true histograms, having a greater number of bins  
corresponds to having a smaller interval length (assuming that all intervals have the same 
length).  The number of bins used can greatly affect the appearance of both types of plots.  
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As an example of this phenomenon, consider the following four absolute frequency plots 
(each with a different number of bins) for the forearm length data: 

 

16 17 18 19 20 21 22

0
5

10
20

11 classes

forearm length (inches)

16 17 18 19 20 21 22

0
20

40
60

80

3 classes

forearm length (inches)

16 17 18 19 20 21 22

0
10

20
30

40
50

6 classes

forearm length (inches)

16 17 18 19 20 21 22

0
2

4
6

8
12

17 classes

forearm length (inches)
 

Figure 3: Histograms for forearm lengths 
 
Looking at the above plots, we should note that, as a result of using different numbers of 
bins, the absolute frequencies marked on the Y-axis change from plot to plot.  More 
importantly, we notice that the more classes we use, the more details of the data we can 
perceive, but the more empty classes there are.    If the number of bins is too small, or, 
correspondingly, the length of the categories is too great, observations that perhaps 
should be distinguished as members of different classes may be clumped together and, 
thus, particular features of the data may be lost.  On the other hand, using too many 
intervals, or, correspondingly, using category widths that are too narrow, may allow 
distracting details to be represented and therefore obscure the overall picture.  Thus, in 
choosing the number of bins or, identically, the width of the bins, we face a trade-off, and, 
as a result, we should try to find a good balance between these two extremes.  
Unfortunately, there is no universally accepted rule for choosing the number of bars in a 
histogram.  For example, S-Plus chooses the ‘optimal’ number of bins to be proportional to 
the logarithm (in base 2) of the number of observations.  However, other statistical 
packages may employ different rules, and the data analyst should make sure that he/she 
is familiar with the rule employed in his/her package of choice.   
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In addition to being affected by the number of bins (of equal width) that are used, the 
appearance of frequency plots and true histograms can also be influenced by where the 
breakpoints between interval classes are located and by whether a value that occurs at a 
category breakpoint is considered to belong to the right-hand bin or to the left-hand bin.   
Also, since it is not required that all intervals classes be of equal length, using varying 
interval class lengths can affect the appearance of frequency plots and true histograms.   
For some data sets, the use of different lengths for different interval classes can give a 
better overall picture of the data.  To illustrate this last fact, we first present an absolute 
frequency plot with interval classes of equal length for the coal mine data. 
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Figure 4: Histogram for coal mine disasters data 

 
Because most of the observations occur between 0 and 500, with the exception of a few 
values that are very far outside this range, using equal interval class lengths results in a 
loss of some important detail for values in the high frequency (low value) area as well as a 
waste of space in representing the high value classes with low frequencies.  In this case, it 
would certainly be convenient to have interval classes of different lengths, as is shown in 
the following two plots. 
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Figure 5: Histogram and True histogram for coal mine disasters data  

 
The plot on the left-hand side of Figure 5 is an absolute frequency plot with interval 
classes of variable length.  Note that this representation is distorted because the longer 
class intervals that are used for large day values have greater heights even though they 
have smaller frequencies per day.  This distortion is compensated for in the true histogram 
that appears on the right-hand side.  This compensation occurs because in a true 
histogram, the areas, and not the heights, are equal to the class frequencies, which means 
that for two interval classes with the same number of events, the longer class interval has 
a lower height.  In other words, in the true histogram, a fair comparison amongst interval 
classes is allowed because the Y-axis in this graph represents the number of disasters per 
day in each class. 
 
Before proceeding, we should note that frequency plots and histograms are particularly 
useful for getting an idea of the distribution of a variable, and, in particular, where its 
centre is located, how spread out it is, whether it is symmetric, right-, or left-skewed, and 
how fat and long its tails are. 
 
Boxplots 
Another useful graphical device for describing interval and numerical variables (but not 
ordinal or nominal variables) is the “boxplot,” which is sometimes known as a “box-and-
whiskers plot.”  This plot is based on the five number summary and is particularly useful 
for identifying outliers and extreme outliers and for comparing the distributions of 
variables within two or more classes.   The ends of the box (the ‘hinges’) are the lower and 
upper sample quartiles, and thus, the length of the box is the variable’s IQR; further, the 
sample median for the variable is marked by a line inside the box.  The lines extending 
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from the box (the ‘whiskers’) extend up to the smallest and largest observation within the 
interval .  Points that fall within the interval 

 are designated as “negative outliers,” and points that fall in the 
interval  are designated as “positive outliers.”  Those points 
located outside the interval (  are considered to be “extreme 
outliers.” 

(Q Q1 315− +.  IQR,  1.5 IQR
( )IQR 1.5 1 −Q

( IQR 3 IQR, 5.1 33 ++ QQ
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As an illustration, consider the boxplot for the forearms data: 
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Figure 6: Boxplot for forearm lengths data 

 
There are no outliers in this data set.  In addition, we can tell that the forearms length 
variable is roughly symmetric since the sample median line is more or less at the middle 
of the box and since the two whiskers are equivalent in length.  However, it is not possible 
to tell whether the distribution of the forearms variable is platy-, meso-, or leptokurtic 
from a boxplot. 
 
As another example, the boxplot for the coal mine disasters data appears in the following 
graph.  The outliers appear as circles, and extreme outliers are marked as asterisks.  The 
number next to each of these symbols indicates the observation number (within the data 
set) to which the point corresponds. 
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Figure 7: Boxplot for coal mine disasters data 

 
Looking at the above plot, we see immediately that the coal mine data set has a large 
number of positive outliers (i.e., values that are much larger than the majority of points in 
the data set).  This plot demonstrates how easy a boxplot makes it to identify outliers.  As 
was stated before, outliers may represent measurement or recording errors, in which case, 
the data analyst should seriously consider either removing these observation from the 
data set or, if possible, correcting them.  Alternatively, outliers may merely be anomalous 
members of the population.  In this case, the outliers may be of particular interest for the 
study; for instance, in the above example, the analyst may want to investigate the 
circumstances surrounding the 2,366 day period with no mining disasters. 
 

(VI.c.ii.)  Multivariate Methods 

Boxplots 
The boxplot, as defined above, can be used for bivariate analysis in the specific case where 
one desires to investigate the association between a categorical variable and a non-ordinal 
and non-nominal variable (i.e., an interval or numerical variable).  In this specific case, 
boxplots make it very easy to compare the distributions of the second variable within each 
of two or more classes (levels) of the first variable.  As an example, the following graph 
shows the boxplots for the calcium concentration in the drinking water supply for large 
English and Welsh towns that are north of Derby and for towns that are south of Derby.  
Here, ‘calcium concentration’ is a ratio continuous variable and ‘location relative to Derby’ 
is a nominal categorical variable with two levels (binary).  In the data set, which contains 
61 towns in total, calcium is measured in parts per million, and the higher the calcium 
concentration, the harder the water.   The measurement for each town corresponds to its 
average calcium concentration over the years 1958-1964.  Looking at these plots, we 
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instantly perceive a substantial difference in the positions of the two medians.  In addition, 
the distribution of the calcium concentration averages for towns north of Derby is 
considerably more asymmetrical than the distribution for the towns south of Derby.  This 
can be seen by the median not being in the centre of the box, as well as the whiskers not 
having the same length, for the Northern towns, but not for the Southern towns.  Lastly, 
there seems to be only one outlier in the data. 
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Figure 8: Boxplots for concentration of calcium in large towns data  

 
Alternatively, it is possible to generalise the univariate boxplot defined in the previous 
section in order to use it for the bivariate analysis of two numerical variables.   These 
generalised boxplots are useful tools for examining the bivariate distribution of two such 
variables.  The following graph shows an example of a generalised two-variable boxplot 
for a data set that comprises the body and brain weights of 28 animals, some of them 
extinct.  For reasons to be discussed later, both variables are represented on a logarithmic 
scale.  In the plot below, the inner ellipse corresponds to the box in a univariate boxplot, 
with the median centre (a bivariate analogue of the median that is the pair of medians for 
the two variables) of the data being marked by a cross.  The outer ellipse below 
corresponds to the whiskers in a univariate boxplot.  The graph shows that there are four 
outliers (the three extinct species and the human), which would not be apparent from a 
scatterplot of the two variables. 
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Figure 9: Bivariate boxplot for body and brain data 

 
Two-variable Histograms 
If one is interested in examining the association between two variables of any type, the 
variables’ (absolute or relative) joint frequencies, which correspond to the classes that 
result from crossing the natural or constructed categories of the two variables (Section 
VI.b), can be used to produce a two-variable histogram.   In this type of histogram, the 
magnitude of the absolute or relative frequencies can be indicated either by using colour 
gradations in a 2-D plot or by using bar height in a 3-plot.   
 
As an example, consider the observations made at the Old Faithful geyser in Yellowstone 
National Park, Wyoming, U.S.A.  The variables of interest are, for each of 272 eruptions, 
the duration of the eruption and the time elapsed since the previous eruption, both of 
which are ratio variables.  The sample range for each variable is divided into 9 bins of 
equal length, and the resulting two-variable histogram appears in Figure 9.  In this plot, 
the darkness of each crossed class is proportional to the frequency for that class, and the 
white points are the actual data points that were used to create the histogram.   
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Figure 10: Two-dimensional histogram of Old Faithful geyser data 

 
Scatterplots 
If the data analyst wants to explore the relationship between two variables that are both of 
the numerical variety, then a scatterplot can be used.  Further, if a data analyst wants to 
explore the relationship between two numerical variables and one categorical variable, 
he/she could employ a scatterplot in which different symbols indicate the various levels 
of the categorical variable.   For either of these varieties of scatterplots, the analyst should 
take care to label the axes clearly, and, if necessary, to provide a legend that states the 
categorical variable level to which each symbol corresponds. 
 
As an example of this latter variety of scatter plot, let us return to the calcium 
concentration data set, which already contained one nominal and one ratio variable, and 
introduce another ratio variable: the average male mortality rate for the same towns, 
where the mortality rate average for a town corresponds to the same years as the calcium 
concentration average.  In this case, a scatterplot provides interesting insight into the 
relationship between mortality, water hardness, and geographical location: 
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Figure 11: Scatterplot of mortality and water hardness  
 
From this graph, we see that there seems to be a geographical factor in the relationship 
between mortality and concentration of calcium, with Southern towns having generally 
lower mortality as well as harder water.   Note, however, that an association between two 
variables, such as mortality and water hardness, does not necessarily imply causality.  For 
example, here, we cannot say at this stage that lower mortality is caused by higher levels 
of calcium in drinking water; in fact, such a proposition seems somewhat silly.  So far, the 
graph simply states that there is an association between these two variables that is worth 
studying with more care.  This issue of causality will be discussed in greater detail in 
Lecture 8. 
 

(VII.) Transformations of Variables 
As a final note before proceeding to a discussion of probability, we will address the issue 
of “transforming” continuous variables.  “Transforming” a variable refers to applying the 
same mathematical function, such as ln(x), exp(x), or x2, to all the observed values of a 
variable.  Clearly, since the levels of categorical variables do not have a strict numerical 
interpretation, it is not possible or appropriate to apply mathematical transformations to 
these variables.  For continuous variables, ln(x) is a particularly common transformation 
that is often applied to variables that only can or do take on positive values, such as height 
or earnings.   

 
There are a number of reasons why one might want to transform a continuous variable.  In 
some cases, there is theoretical motivation for such a transformation; as an example, if we 
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are examining the number of pounds in a continuously compounded savings account over 
time, we might want to take the natural logarithm of the pound amounts since we know 
that continuous compounding of a sum of money results in exponential growth.   
Alternatively, even if there is no theoretical motivation for transforming a variable, there 
may be practical reasons for doing so.  For an example of a practical reason for 
transformation that occurs in EDA, we return to the animal body and brain weight data, 
which demonstrates that performing a transformation of the data can sometimes make it 
easier to explore the relationship between two variables.  Two scatterplots for the brain 
weight and body weight variables are presented below: in the first plot, both variables are 
on their original scale of grams and kilograms, respectively, and in the second plot, both 
variables have been transformed to the (base 10) logarithmic scale (i.e., log(g) and log(kg)).  
Although there is a definite pattern of association between the two variables, as well as 
some deviations from this pattern (i.e., outliers), it is virtually impossible to detect either 
the pattern or the outliers if the data are plotted on their original scale.  Using logarithmic 
transformations pulls in both axes so that we observe a clear linear relationship between 
the two variables, as well as three obvious outliers (the three extinct species). 
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Figure 12: Use of logarithmic scales in scatterplots 
 

 
A final reason for transforming a continuous variable might be that doing so renders the 
assumptions required by statistical inference methods (used in the phase of statistical 
analysis following EDA) more reasonable.   For instance, many methods of statistical 
inference assume that the variable of interest has an underlying (population) distribution 
that is normal.    A normal variable can theoretically take on any value in the interval 

, which is obviously not the case for variables, such as income, that can only take 
on positive values.   Thus, in this case, using a logarithmic transformation, which takes a 
( ,−∞ ∞)
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number in the interval  to a different number in the interval , may result in a 
transformed variable for which the assumption of normality is more reasonable. 

(0, )∞ ( ,−∞ ∞)
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