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Introduction

These complements are made available on-line to supplement the book making
use of extensions t8-PLUS in user-contributed library sections.

The general convention is that material here should be thought of as following
the material in the chapter in the book, so that new sections are numbered following
the last section of the chapter, and figures and equations here are numbered
following on from those in the book.

All the libraries mentioned are available fonix and forwindows. Compiled
versions forWindows (for S-PLUS 3.2, 3.3, 4.0, 4.5 and 2000) are available
from either of the URLsS

http://www.stats.ox.ac.uk/pub/SWin/
http://1ib.stat.cmu.edu/D0S/S/SWin/

Compiled versions of most f@-PLUS 6.0 for Windows are available via
http://www.stats.ox.ac.uk/pub/MASS3/Winlibs
Most of theUnix sources are available at
http://lib.stat.cmu.edu/S/

and more specific information is given for the exceptions where these are intro-
duced. In most cases some modifications are needed for us&SWALIUS 5.x
and6.0: try the migration tools.


http://www.stats.ox.ac.uk/pub/SWin/
http://lib.stat.cmu.edu/DOS/S/SWin/
http://www.stats.ox.ac.uk/pub/MASS3/Winlibs
http://lib.stat.cmu.edu/S/
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Chapter 5

Distributions and Data Summaries

5.6 Density estimation

Spline fitting to log-densities

There are several closely-related propostdsuse a univariate density estimator
of the form

fly) = expg(y;0) (5.7)

for a parametric familyg(-; 8) of smooth functions, most often splines. The fit
criterion is maximum likelihood, possibly with a smoothness penalty. The ad-
vantages off.7) is that it automatically provides a non-negative density estimate,
and that it may be more natural to consider ‘smoothness’ on a relative rather than
absolute scale. It is necessary to ensure that the estimated density has unit mass,
and this is most conveniently done by taking

fy) = expg(y:0)/ [ exp g(y; ) dy (5.8)

The library 1ogspline 2 by Charles Kooperberg implements one variamt
this theme byKooperberg & Ston€1992. This uses a cubic spline far in (5.8),
with smoothness controlled not by a penalty (as in smoothing splines) but by the
number of knots selected. There is an AlC-like penalty; the number of the knots
is chosen to maximize

Zg(yi; 6) — nlog [ expg(y; 0)dy — a x number of parameters  (5.9)
i=1

The default value ofa is logn (sometimes known as BIC) but this can be set
as an argument ofogspline.fit. A Newton method is used to maximize the
log-likelihood given the knot positions. The initial knots are selected at quantiles
of the data and then deleted one at a time using the Wald criterion for significance.
Finally, (5.9) is used to choose one of the knot sequences considered.

We first try out our two running examples:

! seeSimonoff(1996 pp. 67—70, 90-92) for others.

2 logsplin onWindows.

3 although a later version describedStoneet al. (1997 has been long promised to replace it, it
has not appeared.
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Figure 5.15 Histograms and logspline density plots of (left) the Old Faithful eruptions
data and (right) bootstrap samples of the median ofgtiraxies dataset. Compare with
Figures 5.9 (on page 136) and Figure 8.5 (page 262).

library(logspline) # logsplin on Windows
attach(geyser)

geyser.ls <- logspline.fit(duration, lbound=0)

x <- seq(0.5, 6, 1len=200)

truehist(duration, nbins=15, xlim=c(0.5,6), ymax=1.2)
lines(x, dlogspline(x, geyser.ls))

detach()

truehist (tperm, xlab="diff")
tperm.ls <- logspline.fit(tperm)
x <- seq(-5, 5, 1len=200)

lines(x, dlogspline(x, tperm.ls))

sres <- c(sort(tperm), 5); yres <- (0:1024)/1024
plot(sres, yres, type="S8", xlab="diff", ylab="cdf")
lines(x, plogspline(x, tperm.ls))

par (pty-:lls n

x <= ¢(0.0005, seq(0.001, 0.999, 0.001), 0.9995)

plot( qt(x, 9), qlogspline(x, tperm.ls),
xlab="Quantiles of t on 9 df", ylab="Fitted quantiles",
type="1", xlim=c(-5, 5), ylim=c(-5, 5))

points( qt(ppoints(tperm), 9), sort(tperm) )

The functionsdlogspline, plogspline and qlogspline compute the den-
sity, CDF and quantiles of the fitted density, so the final plot is a QQ-plot of the
data and the fitted density against the density. The final plot shows that the

to density is a better fit in the tails; the logspline density estimate always has
exponential tails. (The functiohogspline.plot will make a simple plot of the
density, CDF or hazard estimate.)

We can also explore density plots of the bootstrapped median values from
page 142 (which we recall actually has a discrete distribution).

truehist(res, nbins=nclass.FD(res), ymax=4,
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Figure 5.16 Plots of the logspline density estimate of the permutation dategsetm.

The three panels show the histogram with superimposed density estimate, the empirical
and fitted CDFs and QQ—plots of the data and the fitted density against the convengional
distribution.

xlab="bootstrap samples")
x <- seq(20, 22, length=500)
res.ls <- logspline.fit(res)
lines(x, dlogspline(x, res.ls))
points(res.ls$knots, dlogspline(res.ls$knots, res.ls))
res.ls <- logspline.fit(res, penalty=2)
lines(x, dlogspline(x, res.ls), 1lty=3)
points(res.ls$knots, dlogspline(res.ls$knots, res.ls))

Changing the penalty to the AIC value of 2 has a small effect. The dots show
where the knots have been placed. (The functiogspline.summary shows
details of the selection of the number of knots.)

The results for theggalaxies data are also instructive (Figusel?).

x <- seq(8000, 35000, 200)
plot(x, dlogspline(x, logspline.fit(galaxies)), type="1",
xlab="velocity of galaxy", ylab="density")
lines(density(galaxies, n=200, window="gaussian",
width=width.SJ(galaxies)), 1lty=3)

Maximum-likelihood methods and hengegspline.fit can easily handle
censored data (see pa4@.

Local polynomial density estimation

The local regression approach abess can be extended to local likelihood
estimation and hence used for density estimation. One implementation is the
function Locpoly in library KernSmooth 4. This uses a fine grid of bins on the
x axis and applies a local polynomial smoother to the counts of the binned data.

4 xsmooth onWindows. The currentUnix sources are at
http://www.biostat.harvard.edu/~mwand


http://www.biostat.harvard.edu/~mwand
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Figure 5.17. Logspline (solid line) and kernel density (dashed) estimates fog#hexies
data. The bandwidth of the kernel estimate was chosewilath.SJ.

Loader (1997 introduces his implementation in theocfit package; the
theory for density estimation is inoader(1996. The default is thatog f(y) is
fitted by a quadratic polynomial: to estimate the density ate maximize

DK (455) gy 0(2)) — nlog [ K (5% exp g(y: 0(a)) dy

thatis, (5.9) localized near, and with a quadratic polynomial model fofy; 0) .

The function K is controlled by the argumemtern ; by default it is the tricubic
functionused byloess ; kern="gauss" gives a Gaussian kernelwith bandwidth
2.5 times the standard deviation. The documentation with the package is sparse:
the Web site

http://cm.bell-labs.com/stat/project/locfit

has the sources but the help there refers to the muchRMension, and the various
on-line documents have been removed. Unfortunately many of our examples no
longer work in the current (June 1999) releaselokfit, SO our remaining
examples should be seen as indicative only.

We can uselocfit on the duration data by

library(locfit)
geyser.1lf <- locfit(~ duration, data=geyser, flim=c(0.5, 6))
plot(geyser.1lf, get.data=T, mpv=200, ylim=c(0,1))

whereget.data addsthe rug andpv evaluates at 200 points to ensure a smooth
curve. (Theflim parameter asks for a fit to cover that rangero¥alues.)

As for loess we have to choose how much to localize, that is to choose the
bandwidthh , possibly as a function of: . This is done inlocfit by choosing
the larger of a nearest-neighbour-based estimate and a fixed banduddttier
(1997 suggests

5 density and hence our accountin Chapter 5 udes.


http://cm.bell-labs.com/stat/project/locfit
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Figure 5.18 locfit density estimates for the duration from tigeyser dataset.The
solid line is the default, the dashed line is the adaptive bandwidth chodevallgr(1997).

geyser.1fl <- locfit(~ duration, data=geyser, flim=c(0.5,6),
alpha=c(0.15, 0.9))
lines(geyser.1f1, m=200, 1ty=3)

but without explaining where these numbers came from. (The default is
c(0.7, 0). The notes on the Web site hatb.1, 0.8). Clearly this is

not an automated choice!) The first number is equivalent tosgen parameter

of loess; set it to zero to remove the adaptive part of the bandwidth choice. The
second number is a fixed bandwidth; there is also a third argument related to the
penalty in (5.9).



Chapter 6

Linear Statistical Models

6.5 Robust and resistant regression

Median polish

Consider a two-way layout. The additive model is

Yij =p+oi+0;, oa=p=0

The least squares fit corresponds to choosing the parametess and 3; so
that the row and column sums of the residuals are zero.

Means are not resistant. Suppose we use medians instead. That is, we
seek a fit of the same form, but with median) = median(3;) = 0 and
median (e;;) = mediarn (e;;) = 0. This is no longer a set of linear restrictions,
so there may be many solutions. The median polish algorithos(eller & Tukey
1977 Emerson & Hoaglin1983 is to augment the table with row and column
effects as

€11 -+ €lc a1
€r1 ' Epc Qp
by e br m

where initially e;; = v, a; = b; = m = 0. Atall times we maintain
Yij = m+a; +bj + e

In arow sweepfor each row we subtract the median of columns. ., ¢ from
those columns and add it to the last column. Foolamn sweefor each column
we subtract the median of rowls .. . ., » from those rows and add it to the bottom
row.

Median polish operates by alternating row and column sweeps until the changes
made become small or zero (or the human computer gets tired!). (Often just two
pairs of sweeps are recommended.) The answer may depend on whether rows
or columns are tried first and is very resistant to outliers. Using means rather
medians will give the least-squares decomposition without iteration.
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An example

The table below gives specific volumec(gn) of rubber at four temperatures
(°C) and six pressurekg/cnm? above atmh These data were published by

Wood & Martin(1964 p. 260), and used iandel(1969 andEmerson & Wong
(1985.

Pressure
Temperature 500 400 300 200 100 0
0 1.0637 1.0678 1.0719 1.0763 1.0807 1.0857
10 1.0697 1.0739 1.0782 1.0828 1.0876 1.0927
20 1.0756 1.0801 1.0846 1.0894 1.0944 1.0998
25 1.0786 1.0830 1.0877 1.0926 1.0977 1.1032

The defaulttrim=0.5 option of twoway performs median polish. We have,
after multiplying by 10*,

Pressure

Temperature 500 400 300 200 100 0 a;

0 7.0 4.5 15 -15 -65 -9.0 -96.5
10 3.0 15 05 -05 -15 -3.0 -32.5
20 -30 -15 -05 05 15 3.0 32.5
25 -45 -40 -10 10 3.0 55 64.0
b; -111.0 -67.5 -23.5 235 725 125.0m =10837.5

This is interpreted as
Yij = m+a; +bj + e

and the body of the table contains the residua/s These have both row medians
and column medians zero. Originally the value for temperature 0, pressure 400
was entered as 1.0768; the only change was to increase the resiéual to10—*

which was easily spotted.

Note the pattern of residuals in the table; this suggests a need for transforma-
tion. Note also how linear the row and column effects are in the factor levels.

Emerson & Wong1985 fit Tukey’s ‘one degree of freedom for non-additivity’
model

Yij = m+a; +bj + e;; + ka;b; (6.11)
by plotting the residuals againsatb; /m and estimating a power transformation

y* with A\ = 1 — mk estimated as-6.81. As this is such an awkward power,
they thought it better to retain the modél11).
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Brownlee’s stack loss data

We considerBrownleés (1969 much-studied stack loss data, given in the
datasetsstack.x and stack.loss. The data are from the operation of a
plant for the oxidation of ammonia to nitric acid, measured on 21 consecutive
days. There are 3 explanatory variables (air flow to the plant, cooling water inlet
temperature, and acid concentration) and the response, 10 times the percentage of
ammonia lost.

> summary(lm(stack.loss ~ stack.x), cor=T)
Residuals:
Min 1Q Median  3Q Max
-7.24 -1.71 -0.455 2.36 5.7

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) -39.920 11.896 -3.356 0.004
stack.xAir Flow 0.716 0.135 5.307 0.000
stack.xWater Temp 1.295 0.368 3.520 0.003
stack.xAcid Conc. -0.152 0.156 -0.973 0.344

Residual standard error: 3.24 on 17 degrees of freedom

> 1gs(stack.x, stack.loss, method="lms", nsamp="exact")

Coefficients:
(Intercept) Air Flow Water Temp Acid Conc.
-34.2 0.714 0.357 0

Scale estimates 0.551 0.48

> summary(lgs(stack.x, stack.loss, method="1lms",
nsamp="exact")$residuals)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.89 -0.25 0.107 1.08 1.39 9.46

> 1gs(stack.x, stack.loss, method="1ts", nsamp="exact")

Coefficients:
(Intercept) Air Flow Water Temp Acid Conc.
-35.8 0.75 0.333 0

Scale estimates 0.848 0.865
> summary(lgs(stack.x, stack.loss, method="1lts",
nsamp="exact")$residuals)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.36 -0.361 0.306 0.976 1.31 9.31

Functionlgs normally uses arandom search, but here we can afford an exhaustive
search.

Now consider M-estimators:
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> stack.rl <- rlm(stack.loss ~ stack.x)
> summary(stack.rl, cor=F)
Residuals:
Min 1Q Median  3Q Max
-8.92 -1.73 0.0617 1.54 6.5

Coefficients:
Value Std. Error t value
(Intercept) -41.027 9.807 -4.183
stack.xAir Flow 0.829 0.111 7.460
stack.xWater Temp 0.926 0.303 3.052
stack.xAcid Conc. -0.128 0.129 -0.992

Residual standard error: 2.44 on 17 degrees of freedom
> round(stack.rl$w, 2)

[1] 1.00 1.00 0.79 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[13] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37
> summary(rlm(stack.loss ~ stack.x, method="MM"), cor=F)
Residuals:

Min 1Q Median 3Q Max
-10.5 -1.44 -0.0908 1.03 7.23

Coefficients:
Value Std. Error t value
(Intercept) -41.523 9.307 -4.461
stack.xAir Flow 0.939 0.106 8.898
stack.xWater Temp 0.579 0.288 2.012
stack.xAcid Conc. -0.113 0.122 -0.923

Residual standard error: 1.91 on 17 degrees of freedom

The components returned byrlm contains the final weights in (6.6). Although

all methods seem to agree about observation 21, they differ in their view of the
early observationsAtkinson (1985 pp. 129-136, 267-8) discusses this example
in some detail, as well as the analyses performeddnyiel & Wood(1980. They
argue for a logarithmic transformation, dropping acid concentration and fitting
interactions or products of the remaining two regressors. However, the question
of outliers and change of model are linked, since most of the evidence for changing
the model comes from the possible outliers.

Rather than fit a parametric model we examine the points in the air flow —
water temp space, using the robust fitting optiorLoéss ; see Figureés.10

x1 <- stack.x[,1]; x2 <- stack.x[,2]

stack.loess <- loess(log(stack.loss) ~ x1*x2, span=0.5,
family="symmetric")

stack.plt <- expand.grid(x1l=seq(50,80,0.5), x2=seq(17,27,0.2))

stack.plt$z <- as.vector(predict(stack.loess, stack.plt))

dupls <- ¢(2,7,8,11)

contourplot(z ~ x1*x2, stack.plt, aspect=1,
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xlab="Air flow", ylab="Water temp",
panel = function(x, y, subscripts, ...){
panel.contourplot(x, y, subscripts, ...)
panel.xyplot(xl, x2)
text (x1[-dupls] + par("cxy")[1] ,
x2[-dupls] + 0.5% par("cxy")[2],
as.character(seq(x1) [-dupls]), cex=0.7)
b

This shows clearly that the ‘outliers’ are also outlying in this space. (There are
duplicate points; in particular points 1 and 2 are coincident.)

Water temp

Air flow

Figure 6.1Q Fitted surface for Brownlee’s stack loss data on log scale usitgss .



Chapter 7

Generalized Linear Models

7.6 Over-dispersion in binomial and Poisson GLMs

The role of dispersion parameter in the theory and practice of GLMs is often
misunderstood. For a Gaussian family with identity link and constant variance
function the moment estimator used foris the usual unbiased modification of
the maximum likelihood estimator (see equations (7.6) and (7.7)). For binomial
and Poisson families the theory specifies thhat= 1, but in some cases we
estimatep as if it were an unknown parameter and use that value in standard error
calculations and as a denominator in approximateests rather than use chi-
squared tests. This is ad hocadjustment for over-dispersion (or ‘heterogeneity’,
seeFinney (1971 who seems to have proposed the technique originally) but the
corresponding likelihood may not correspond to any family of error distributions.
(Of course, for the Poisson family the negative binomial family introduced in
Section 7.4 provides a parametric alternative way of modelling over-dispersion.)
In this section we discuss thatl hocadjustment further.

We begin with a warning. A common way to ‘discover’ over- or under-
dispersion is to notice that the residual deviance is appreciably different from the
residual degrees of freedom, since in the usual theory the expected value of the
residual deviance should equal the degrees of freeddhis can be seriously
misleading. The theory is asymptotic, and only applies for larggp; for a
binomial and for largeu; for a Poisson. Figur&.3 shows the exact expected
value, calculated by

x <- 0:100
plik <- function(lambda)
sum(dpois(x, lambda) * 2 *
( (lambda - x) + x * log(pmax(1l,x)/lambda)))
lambda <- c(0.01, 0.05, seq(0.1, 5, 0.1))
plot(lambda, sapply(lambda, plik), type="1", ylim=c(0, 1.4),
ylab = "E(deviance)")
abline(h=1)

and for a binomial

11
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Figure 7.3 Plots of the expected residual deviance against (left) the parameter of a Poisson
and (right) thep for a binomial(n, p) for n = 1,2,...,10,25.

n<-1
blik <- function(p, n)
{
y <= (0:n)/n
devy <- sum(dbinom(1l:n, n, p) * y[-1] * log(y[-11)) +
sum(dbinom(1:n, n, 1-p) * y[-1] * log(y[-1]1))
devmu <- sum(dbinom(O:n, n, p) * (y * log(p) + (1-y)*log(1l-p)))
2 * n * (devy - devmu)
}
p <- seq(0.01, 0.99, 0.01)
plot(p, sapply(p, blik, n=n), type="1", ylim=c(0, 1.4),
ylab = "E(deviance)")
for(n in 2:10) lines(p, sapply(p, blik, n=n), type="1",
lty= 2 + (n-2)%%4)
lines(p, sapply(p, blik, n=25), type="1")
abline(h=1)

The estimate ofy used bysummary.glm (if allowed to estimate the dis-
persion) is the (weighted) sum of the squared pearson residuals divided by the
residual degrees of freedom (equation (7.8) on page 215). This has much less
bias than the other estimator sometimes proposed, namely the deviance (or sum
of squaredievianceesiduals) divided by the residual degrees of freedom.

Many authors (for examplEinney, 1971, Collett 1991 Cox & Snell 1989
McCullagh & Nelder 1989 discuss over-dispersion in binomial GLMs, and
Aitkin et al. (1989 also discuss over-dispersion in Poisson GLMs. For bino-
mial GLMs, the accounts all concentrate on sampling regimes that can give rise
to over-dispersion in a binomiéh, p) observationY” for n > 1. Suppose that
p is in fact a random variabl@ with mean p: this might arise if there were
random effects in a linear logistic model specifyipg Then if we assume that
var 0 = ¢p(1 — p) we find that

EY =np, varY = np(l —p)[1 + (n — 1)¢]

One example occurs #f has a betéx, 3) distribution, in which case = E6 =
a/(a+p),andvard =p(1 —p)/(a+ [+ 1).
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In the special case that the in a binomial GLM are all equal, we have

varY = np(l —p)[1 + (n — 1)¢] = pnp(1l — p)

say, so this appears to provide an explanation foathkocadjustment. However,
there are problems with this.

e Itis notapplicable forn = 1, a common circumstance in which to observe
over-dispersion.

e Thereis an upper bound af and hencep. The most extreme distribution
for & hasd = 1 with probability p and § = 0 with probability 1 — p,
hence variancg(1—p). Thus¢ < 1 andy < n. Plausible beta-binomial
models will lead to much lower bounds, say'5.

e If this model is accepted, thad hocadjustment of the GLM fit is not
maximum likelihood estimation, even for the regression parameters.

McCullagh & Nelder(1989 pp. 125-6) prefer a variation on this model, in
which the n data points are assumed to have been sampled frodlusters,
and there is independent binomial sampling within the clusters (whose size now
varies with n), but the clusters have probabilities drawn independently from a
distribution of the same form as before. Then it is easy to show that

EY = np, varY = np(l —p)[1 + (k — 1)¢]

This does provide an explanation for tad hocadjustment model for variable
n, but the assumption of the same number of (equally-sized) clusters for each
observation seems rather artificial to us.

Asymptotic theory for this model suggestddCullagh & Nelder 1989 that
changes in deviance and residual deviarsssed by have asymptotic chi-
squared distributions with the appropriate degrees of freedom. Sinosust
be estimated, this suggests th&t tests are used in place of chi-squared tests
in, for example, the analysis of deviance aaddterm and dropterm. At the
level of the asymptotics there is no difference between the use of estimators (7.7)
and (7.8), but we have seen that (7.8) has much less bias, and it is this that is used
by anova.glm and addterm and dropterm.

Another explanation that leads to the same conclusion is to assume that
trials that make up the binomial observations are exchangeable but not necessarily
independent. Then the results for any pair of trials might have correlatiamd
this leads to

varY =np(1 —p)[1 + (n — 1)d] = pnp(1l — p)

say. In this model there is no constraint thiag> 0, but only limited negative
correlation is possible. (IndeedarYy > 0 implies § > —1/(n — 1), and
assuming that the trials are part of infinite population does reduize .)

All these explanations are effectively quasi-likelihood models, in that just the
mean and variance of the observations are specified. We believe that they are
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best handled aguasi models. However, one has to be careful as they have
been implemented otherwise. For a long tiB¥wLUS was inconsistent in that

the dispersion was (by default) fixed at one for binomial and Poisson models
in summary.glm butestimated in functions such agedict.glm that applied
1m-based methods. OWASS library has for a long time supplied a workaround
for predict.glm that was incorporated i8-PLUS 2000.

Over-dispersion is handled slightly differently & as from version 1.1.0.
The binomial and Poisson families never allgwto be estimated, but there are
additional familiesquasibinomial andquasipoisson for which ¢ is always
estimated. (Asquasi models have no true likelihood, they have no AIC either,
and sostepAIC will not work for them.)

7.7 Gamma models

The role of dispersion parameterfor the Gamma family is rather different. This
is a parametric family which can be fitted by maximum likelihood, including its
shape parameter. Elsewhere we have taken its density as

log f(y) = alog A + (o — 1) logy — Ay — log I'(«v)
so the mean ig. = a/\. If we re-parametrize by, o) we obtain

log f(y) = a(~y/p —logpn) + alogy + aloga —logy — log I'()

Comparing this with the general form in equation (7.1) (on page 223) we see
that the canonical link i¥ = —1/x and ¢ = 1/« is the dispersion parameter.

For fixed ¢, fitting by glm gives the maximum likelihood estimates of the
parameters in the linear predictor (which do not depend on the fixed valpé, of

but ¢ is estimated from the sum of squares of the pearson residuals, which may
(but need not) approximate the maximum likelihood estimator. Note ghat

used to estimate the standard errors for the parameters in the linear predictor, so
appreciable differences in the estimate can have practical significance.

Some authors (notablyicCullagh & Nelder 1989 pp. 295-6) have argued
against the maximum likelihood estimator ¢f. The MLE is the solution to

2n [loga —¢(a)] = D

wherey = I"/I" is the digamma function and is the residual deviance. Then
the customary estimator of = 1/« is D/(n—p) and the MLE is approximatety
D(6+ D)/(6 +2D) where D = D/n . Both the customary estimator (7.7) and
the MLE are based on the residual deviance

D= —22 log(yi /i) — (yi — fu)/ fui]

L for large &
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and this is very sensitive to small values gf. Another argument is that if the
gamma GLM is being used as a model for distributions with a constant coefficient
of variation, the MLE is inconsistent for the true coefficient of variation except
at the gamma family. These arguments are equally compelling for the customary
estimateMcCullagh & Neldemprefer the moment estimator

0° = A5 > i — )/ fu]” (7.11)

for the coefficient of variationr? which equalsy under the gamma model. This
coincides withy as quoted bysummary.glm (see (7.8) on page 215).

The functionsglm. shape and glm.dispersion in library MASS compute
the MLEs ofa and ¢ respectively from a fitted Gammglm object. We illustrate
these with an example on clotting times of blood taken fMaCullagh & Nelder
(1989 pp. 300-2).

> clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lotl = ¢(118,58,42,35,27,25,21,19,18),
lot2 = ¢(69,35,26,21,18,16,13,12,12) )
> clotl <- glm(lotl ~ log(u), data=clotting, family=Gamma)
> summary(clotl, cor=F)
Coefficients:
Value Std. Error t value
(Intercept) -0.016554 0.00092754 -17.848
log(u) 0.015343 0.00041496 36.975

(Dispersion Parameter for Gamma family taken to be 0.00245 )

> cloti$deviance/clot1$df .residual
[1] 0.00239

> gamma.dispersion(clotl)

[1] 0.0018583

> clot2 <- glm(lot2 ~ log(u), data=clotting, family=Gamma)
> summary(clot2, cor=F)
Coefficients:
Value Std. Error t value
(Intercept) -0.023908 0.00132645 -18.024
log(u) 0.023599 0.00057678 40.915

(Dispersion Parameter for Gamma family taken to be 0.00181 )

> clot2$deviance/clot2$df .residual
[1] 0.0018103

> gamma.dispersion(clot2)

[1] 0.0014076

The differences here are enough to affect the standard errors, but the shape pa-
rameter of the gamma distribution is so large that we have effectively a normal
distribution with constant coefficient of variation.
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These functions may also be used forgaasi family with variance pro-
portional to mean squared. We illustrate this on theine dataset. We adjust
the response slightly, as a response of zero would have a zero variance and the
quasi-likelihood would not be properly defined.

> gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,
quasi(link=log, variance=mu~2), data=quine)
> summary(gm, cor=F)
Coefficients: (4 not defined because of singularities)
Value Std. Error t value
(Intercept) 3.06105 0.39152 7.818410
AgeF1 -0.61870 0.52528 -1.177863
AgeF2 -2.31911 0.87546 -2.649018
AgeF3 -0.37623 0.47055 -0.799564

(Dispersion Parameter for Quasi-likelihood family taken
to be 0.61315 )

Null Deviance: 190.4 on 145 degrees of freedom
Residual Deviance: 128.36 on 118 degrees of freedom

> gamma.shape(gm, verbose=T)
Initial estimate: 1.0603

Iter. 1 Alpha: 1.23840774338543
Iter. 2 Alpha: 1.27699745778205
Iter. 3 Alpha: 1.27834332265501
Iter. 4 Alpha: 1.27834485787226

Alpha: 1.27834
SE: 0.13452
> summary(gm, dispersion = gamma.dispersion(gm), cor=F)
Coefficients: (4 not defined because of singularities)
Value Std. Error t value
(Intercept) 3.06105 0.44223 6.921890
AgeF1 -0.61870 0.59331 -1.042800
AgeF2 -2.31911 0.98885 -2.345261
AgeF3 -0.37623 0.53149 -0.707880

In this example the McCullagh—Nelder preferred estimate is given by

> sum((residuals(gm, type="resp")/fitted(gm))"2)/gm$df.residual
[1] 0.61347

which is the santeas the estimate returned Bymmary . glm, whereas (7.7) gives

2 up to the convergence tolerance: sgtilon=1e-10 inthe callglm to get equality to 7 decimal
places..
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> gm$deviance/gm$df .residual
[1] 1.0878

> gamma.dispersion(gm)

[1] 0.78226

There will also be differences between deviance tests and the AIC used by
step.glm and likelihood-ratio tests and the exact AIC. Making the necessary
modifications is left as an exercise for the reader.



Chapter 8

Non-linear Models

8.5 Profiles

Measures of local curvature

It is convenient to separate two sources of curvature, that of the solution locus
itself, theintrinsic curvature and that of the coordinate system within the solution
locus, theparameter-effects curvaturd he intrinsic curvature is fixed by the data
and solution locus, but the parameter-effects curvature additionally depends upon
the parametrization.

Summary measures for both kindselfativecurvature were proposed Bgale
(1960 and elegantly interpreted Bates & Wattg198Q 1988. (The measures
are relative to the estimated standard erroyaéind hence scale free.) The two
measures are denoted by and ¢* for the parameter-effects and intrinsic root-
mean-square curvatures respectively. FiIfis the F), ,_, critical value, Bates
& Watts suggest that a value ef/F > 0.3 should be regarded as indicating
unacceptably high curvature of either kind. Readers are referigatés & Watts
(1988 or Seber & Wild(1989 §4.3) for further details.

Calculating curvature measures requires both first and second derivatives of
the solution locus with respect to the parameters at each observation. The second
derivatives must be supplied as anx p x p array where theth p x p “face”
provides the symmetric matrix of second partial derivatiiés;(3)/03,;00k .

This may be supplied askkessian attribute of the value of the model function
along with thegradient . (Unfortunately thenls fitting function can make no
use of anyhessian information.)

The functionrms . curv supplied with our library can be used to calculate and
display ¢?/F and ¢*v/F. The only required argument is ails fitted model
object, provided the model function has b@thadient andhessian attributes.
Consider our weight loss example.

> expn3 <- deriv3(~ b0 + b1x2~(-x/th), c("bO","b1i","th"),
function(x, b0, bl, th) {})

> wtloss.he <- nls(Weight ~ expn3(Days, b0, bl, th),
wtloss, start = coef(wtloss.gr))

> rms.curv(wtloss.he)

18
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0.1679
0.0101

Parameter effects: c“theta x sqrt(F)
Intrinsic: c“iota x sqrt(F)

Although this result is acceptable, a lower parameter-effects curvature would be
preferable (see Exercise 8.4 for a way to achieve this).

Profile traces

Profiles for non-linear regression models are discussed in Sections 8.4 and 8.5.
To calculate a profile log-likelihood we hold one parameter fixed and maximize
the log-likelihood with respect to all others. If we think of the fixed parameter as
the independent variable, the profile log-likelihood is a function of it, but so too
are the conditional maximum likelihood estimates of all other parameters. These
conditional MLEs as a function of the fixed parameter we callpitwdile traces

The generic functionprofile generates profile objects from non-linear
model objects by varying each parameter up and down from its maximum likeli-
hood value until a suitable cutoff value for the log-likelihood below the maximum
is reached on either side. The profile object contains both the profile likelihoods
and the traces for each parameter.

The standard&-PLUS library containsprofile methods fornls and ms
objects andplot methods for the objects that shows a particular view of the
profile likelihood. The quantity actually plotted is the non-lineastatistic,
7(6), defined in equation (8.5) on page 251.

In the MASS library? there is a simpleprofile method forglm objects as
well as (we claim) a betteplot method for the objects produced, as well as a
pairs method for displaying the profile traces.

We will illustrate the tools available for investigating profiles and profile traces
using a familiar example: the Stormer data and its non-linear regression model
introduced on page 253. The non-linear regression model is written as

511)
w — B2
Note that this can also be written in the form

1
B Y121 + Y122

T =

+ <

T + <

where, say;yn = 1/61, 21 = w/v, 72 = 1/82 and zo = —1/v. So the model

may also be fitted as a generalized linear model, as noted in Exercise 8.3. It
is interesting to see how much this non-linear transformation of the parameters
affects the parameter effects curvature.

First consider fitting the model as a non-linear regression and displaying both
views of the profile object.

I Note that this is not a true profile likelihood unless the variance is known.
2 From some as yet unpublished (but widely used) work of D. M. Bates and WNV.
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Figure 8.9 Profile and pairs-profile plots for the Stormer data example fitted as a non-linear
regression model.

> library(MASS, first = T)

> storm.nls <- nls(Time ~ bl*Viscosity/(Wt - b2), stormer,
start = c(b1=28, b2=2.2), trace = T)

1443.01 : 28 2.2

825.052 : 29.4012 2.21929

825.051 : 29.4013 2.21827

> storm.nls.pro <- profile(storm.nls)

> plot(storm.nls.pro)

> pairs(storm.nls.pro)

The results are shown in Figue. The straight lines in the first display reassure

us that the profile likelihood is very nearly quadratic in those directions so the
large-sample approximations are probably safe. With the pairs-profile plots note
that again the straightness of the lines indicate no serious bivariate departure from
normality of the estimates but the narrow angle between them suggests a very high
correlation between the estimates, which is certainly the case.

Another interpretation of the profile traces displayed in the pairs-profile plot
can be obtained by looking at Figure 8.3 on page 255. The profile traces are the



8.5 Profiles 21
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Figure 8.1Q Profile and pairs-profile plots for the Stormer data example with the model
fitted as a GLM.

lines that would join up the points where the contours have horizontal and vertical
tangents respectively, and the fine ‘hairs’ cutting the lines in the pairs plot are an
indication of those tangents. In this way the pairs-profile plot gives a hint of how
the bivariate region might look, though only through what would be called the
conjugate axes of the elliptical contours (if they were indeed exactly elliptical).

The software also has methods fgtm objects, and after fitting the model
as a GLM the procedure is essentially identical. We will turn on the trace when
calculating profiles, though, as it shows the discrete steps taken by the algorithm
and the way in which the log-likelihood falls below its global maximum value as
it does so. (The details are omitted here.)

> storm.glm <- glm(Time ~ I(Wt/Viscosity) + I(-1/Viscosity) - 1,
quasi(link=inverse), stormer, trace = T)

> storm.nls.pro <- profile(storm.nls)
> storm.glm.pro <- profile(storm.glm, trace=T)

> plot(storm.glm.pro)
> pairs(storm.glm.pro)
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The results are shown in Figu8el0. The non-lineart -statistics plots are again
quite straight indicating that even though this is a highly non-linear transformation
of the original parameters, for these, too, the assumption of marginal normality
of the estimates is probably quite reasonable, leading to symmetric confidence
intervals.

Not surprisingly the pairs plot shows us the high correlation between these
functions of the original parameters as well, though the sign has changed. Again
the lines are quite straight indicating no serious departure from bivariate normality
of the estimates, but only in so far as this kind of diagram can indicate.

Curvature questions can be important for GLMs, as we pointed out on page 225,
so theglm method ofprofile can be a useful exploratory tool.



Chapter 9

Smooth Regression

9.1 Additive models and scatterplot smoothers

Scatterplot smoothing

The methods expounded MWand & Joneq1995 are implemented in Wand'’s
library KernSmooth®. We can apply their local polynomial smoother to the
simulated motorcycle example by

library(KernSmooth) # ksmooth on Windows < 6.0

attach(mcycle)

plot(times, accel)

lines(locpoly(times, accel, bandwidth=dpill(times,accel)))

lines(locpoly(times, accel, bandwidth=dpill(times,accel),
degree=2), 1lty=3)

detach()

This applies first a local linear and then a local quadratic fit. The bandwidth is
chosen by the method &uppertet al. (1995.

Fitting additive models

Other ways to fit additive models B+PLUS are available from the contributions

of users. These are generally more ambitious tgan and step.gan in their
choice of terms and the degree of smoothness of each term, and by relying heavily
on compiled code can be very substantially faster. All of these methods can fit to
multiple responses (by using the total sum of squares as the fit criterion).

Library mda of Hastie and Tibshirani provides functiomsuto and mars.
The method BRUTO is described Hastie & Tibshirani(1990; it fits additive
models with smooth functions selected by smoothing splines and will choose
between a smooth function, a linear term or omitting the variable altogether.
The functionmars implements the MARS method ¢friedman(1991) briefly
mentioned on page 341 of the book. By default this is an additive method, fitting

I ksmooth onWindows. The currentUnix sources are at
http://www.biostat.harvard.edu/~mwand

23
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Figure 9.9 Smooths bylocpoly of the mcycle data. The solid line is a locally linear
fit and the dashed line a locally quadratic one.

splines of order 1 (piecewise linear functions) to each variable; again the number
of pieces is selected by the program so that variables can be entered linearly,
non-linearly or not at all.

The library polymars of Kooperberg and O’Connor implements a restricted
form of MARS (for example, allowing only pairwise interactions) suggested by
Kooperberget al. (1997).

An example: the cpus data

We consider BRUTO and MARS models. These need matrices (rather than
formulae and data frames) as inputs.

Xin <- as.matrix(cpusO[samp,1:6])
library(mda)
test2 <- function(fit) {
Xp <- as.matrix(cpusO[-samp,1:6])
sqrt (sum((logl0(cpusO[-samp, "perf"]) -
predict (fit, Xp))~2)/109)
}
cpus.bruto <- bruto(Xin, logl0(cpusO[samp,7]))
test2(cpus.bruto)
[1] 0.21336

cpus.bruto$type
[1] excluded smooth linear smooth smooth linear
cpus.bruto$df
syct mmin mmax cach chmin chmax
0 1.5191 1 1.0578 1.1698 1

# examine the fitted functions

par (mfrow=c(3,2))

Xp <- matrix(sapply(cpusO[samp, 1:6], mean), 100, 6, byrow=T)
for(i in 1:6) {
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xr <- sapply(cpusO, range)

Xpl <- Xp; Xpil[,i] <- seq(xr[1,il, xr[2,i], 1len=100)

Xf <- predict(cpus.bruto, Xpl)

plot(Xpi[ ,il, Xf, xlab=names(cpusO) [i], ylab="", type="1")
}

The result (not shown) indicates that the non-linear terms have a very slight
curvature, as might be expected from the equivalent degrees of freedom that are
reported.

We can usemars to fit a piecewise linear model with additive terms.

cpus.mars <- mars(Xin, logl0(cpusO[samp,7]))
showcuts <- function(obj)
{
tmp <- obj$cuts[obj$sel, ]
dimnames (tmp) <- list(NULL, dimnames(Xin) [[2]])
tmp
}
> showcuts (cpus.mars)
syct mmin mmax cach chmin chmax

[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0
[3,] 0 0.0000 3.6021 0 0 0
[4,] 0 3.1761 0.0000 0 0 0
(5,] 0 0.0000 0.0000 0 8 0
(6,] 0 0.0000 0.0000 0 0 0
> test2(cpus.mars)

[1] 0.21366
# examine the fitted functions
Xp <- matrix(sapply(cpusO[samp, 1:6], mean), 100, 6, byrow=T)
for(i in 1:6) {

xr <- sapply(cpusO, range)

Xpl <- Xp; Xp1l[,i] <- seq(xr[1,il, xr[2,i], 1len=100)

Xf <- predict(cpus.mars, Xpl)

plot(Xpi[ ,i], Xf, xlab=names(cpusO) [i], ylab="", type="1")
}
> cpus.mars2 <- mars(Xin, loglO(cpusO[samp,7]), degree=2)
> showcuts (cpus.mars2)

syct mmin mmax cach chmin chmax

[1,] 0 0.0000 0.0000 0 0 0
[2,] 0 0.0000 3.6021 0 0 0
[3,] 0 1.9823 3.6021 0 0 0
[4,] 0 0.0000 0.0000 16 8 0
(5,1] 0 0.0000 0.0000 0 0 0

> test2(cpus.mars?2)
[1] 0.21495
> cpus.mars6 <- mars(Xin, loglO(cpusO[samp,7]), degree=6)
> showcuts (cpus.mars6)
syct mmin mmax cach chmin chmax
[1,] 0.0000 0.0000 0.0000 0 0 0
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Figure 9.1Q Plots of the additive functions used lypus .mars.

[2,] 0.0000 1.9823 3.6021 0 0 0
[3,] 0.0000 0.0000 0.0000 16 8 0
[4,] 0.0000 0.0000 0.0000 16 8 0
[5,] 0.0000 0.0000 3.6990 0 8 0
[6,] 2.3979 0.0000 0.0000 16 8 0
[7,] 2.3979 0.0000 3.6990 16 8 0
[8,] 0.0000 0.0000 0.0000 0 0 0
> test2(cpus.mars6)

[1] 0.20604

Allowing pairwise interaction terms (byegree=2) or allowing arbitrary inter-
actions make little difference to the effectiveness of the predictions.

Local likelihood models

Local likelihood provides a different way to extend models such as GLMs to
use smooth functions of the covariates. In the local likelihood approach the
prediction atz is made by fitting a fully parametric model to the observations
in a neighbourhood of:. More formally, a weighted likelihood is used, where
the weight for observation is a decreasing function of the ‘distance’ ef from

x. (We have already seen this approach for density estimation.) Note that in this
approach we are compelled to have predictions which are a smooth functthn of
the covariates jointly and so it is only suitable for a small number of covariates,
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Figure 9.11 Probability of low birthweight in datasetirthwt. Left: Against mother’s
age, bysm.logit, with pointwise confidence intervals shown by dashed lineight:
Against mother’s age and last weight, bgcfit.

usually not more than two. In principle the computational load will be daunting,
but this is reduced (as inoess) by evaluating the prediction at a judiciously
chosen set of points and interpolating.

The library sm? of Bowman & Azzalini (1997 implements this approach
for a single covariate in functionsm.logit (a binomial log-linear model) and
sm.poisson (a Poisson log-linear model). For example, we can consider the
effect of the mother’s age on the probability of a low birthweight in the dataset
birthwt by

library(sm)

attach(birthwt)

sm.logit(age, low, h=5, display="se")
detach()

Here the bandwidth is the standard deviation of the Gaussian kernel used.

Loader’s library locfit provides a functionlocfit with much greater
flexibility. It can fit Gaussian, binomial, Poisson, gamma and negative binomial
GLMs with identity, log, logit, inverse and square root links and one or more (in
practice, two or three) covariates. We can try this for the joint responagdo
and lwt in birthwt.

library(locfit, first=T)

bwt.1lf <- locfit(low ~ age+lwt, data=birthwt, family="binomial",
deg=1, scale=0, alpha=c(0,5))

plot(bwt.lf, get.data=T)

Note that the use okcale=0 is essential as in density estimation. We chose
a local linear fit as the data are few and quadratic fitting (the default) has little
theoretical advantage over linear fitting.

As a second example, consider the dat®seta. tr of diabetes on 200 Pima
Indians. Previous studie$\@hbaet al, 1995 Ripley, 1996 have suggested that

2 available fromhttp: //www.stats.gla.ac.uk/~adrian/smand
http://www.stat.unipd.it/dip/homes/azzalini/SW/Splus/sm.
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Figure 9.12 Plots of the probability surface fitted to tieima.tr dataset bylocfit
using a local logistic regression.

the two continuous variableglu (plasma glucose level) anomi (body mass

index) have the most discriminatory effect. We consider a local logistic regression
on these two variables

pima.lf <- locfit(I(type=="Yes") ~ glu + bmi, data=Pima.tr,
family="binomial", scale=0, alpha=c(0,5))
par (mfrow=c(1,2), pty="s")

plot(pima.lf, get.data=T); plot(pima.lf, type="persp")

shown in Figure.12

9.4 Neural Networks

Internal details of nnet.default

TheC code on whichnnet .default is based is quite general and can in fact be
used for networks with an arbitrary pattern of feed-forward connections. Internally
the nodes are numbered so that all connections are from lower to higher numbers;
the bias unit has number 0, the inputs numbers:/htesay, and the output units are

the highest-numbered units. The codesimmary.nnet shows how to ‘unpack’

the connections. These are stored in vectors, so the weights are stored in a single
vector. The connections are sorted by tlsstinationso that all connections to

unit ¢ precede those to unit+ 1. The vectorconn gives the source unit, and

nconn iS an index vector for the first connection to that destination. An example
will make this clearer:

> rock.nn$nconn
[1] 0 0 O O O 4 8 12 19
> rock.nn$conn
[11 01 23012301230456123
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> summary(rock.nn)
network with 19 weights
were - skip-layer connections 1linear output units

a 3-3-1
options

decay=0.

b->h1
4.47
b->h2
9.15
b->h3
1.22
b->0
8.78

001

i1->h1 i2->hi
-11.16 15.31
i1->h2 i2->h2
-14.68 18.45
i1->h3 i2->h3
-9.80 7.10
hi->0 h2->o0
-16.06 8.63

i3->h1
-8.78
i3->h2
-22.93
i3->h3
-3.77
h3->0
9.66

29

il->o0 i2->o0 13->o0
-1.99 -4.15 1.65

Unit 0 is the bias(b"), units 1 to 3 are the inputs, 4 to 6 the hidden units and 7 the
output. The vectorgonn andnconn follow the C indexing convention, starting
with zero. Thus unit1 (4) has connections from units 0, 1, 2 and 3. The vector
nconn has a final element giving the total number of connections.

These connection vectors are normally constructed by the funatiannet ;
this automatically adds a connection to a bias unit whenever a unit gets its first
incoming connection.



Chapter 10

Tree-based Methods

10.4 Tree-structured survival analysis

Survival data are usually continuous, but are characterized by the possibility
of censored observations. There have been various approaches to extending
regression trees to survival data in which the prediction at each leaf is a survival
distribution.

The deviance approach needs a common survival distribution with just one
parameter (say the mean) varying between nodes. As the survival distribution
has otherwise to be known completely, we would need to take, for example, a
Weibull distribution with a specifiax. Thus this approach has most often been
used with an exponential distribution (it goes back at lea§igmpiet al., 1987
and is expounded in detail iyavis & Anderson1989.

Another family of approaches has been via impurity indices, which we recall
measure the decrease in impurity on splitting the node under consideration. This
can be replaced by goodness-of-splitcriterion measuring the difference in
survival distribution in the two candidate daughter nodes. In regression trees
the reduction in sum of squares can be seen as a goodness-of-split criterion, but a
more natural candidate might be the unpooled (Welclgst between the samples
passed to the two daughters. Given this change of viewpoint we can replace the
t -test by a test which takes censoring into account and is perhaps more appropriate
for the typical shape of survival curves. The split selected at a node is then the
candidate split with the most significant test of difference.

Library rpart

Library rpart has two further options selected by iisthod argument:

"poisson" in which the response is the number of eveXs in a specified
duration ¢; of observation. Deviance-based criteria are used to splitting
and for pruning, assuming a Poisson-distributed number of events with
mean\;t; where the rate depends on the nadelhe response is specified
as either a two-column matrix dfV;, ¢;) or just a vector of N; (in which
case the time intervals are taken to be of unit length for all observations).

30
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Figure 10.12 Plot by plotcp of the rpart objectVA.rp.

"exp" A survival tree in which the response must be a survival object, normally
generated bysurv. This is a variant of the'poisson" method. Suppose
that an exponential distribution was appropriate for the survival times. Then
by the duality between views of a Poisson process the observed number of
events (0 or 1) in the duration to censoring or death can be taken to be Poisson
distributed, and thepoisson" method will give the correct likelihood. In
general the exponential distribution is not appropriate, but it can perhaps
be made so by non-linearly transforming time by the cumulative hazard
function, and this is done estimating the cumulative hazard from thé.data
This gives a proportional hazards model with the baseline hazard fixed as
the estimated marginal hazard.

We use the VA cancer datasetncer.vet considered in Chapter 12 to
illustrate a survival example.

> set.seed(123)

> VA.rp <- rpart(Surv(stime, status) ~ ., data=VA, minsplit=10)
> plotcp(VA.rp)

> printcp(VA.rp)

Root node error: 158/137 = 1.15

CP nsplit rel error xerror xstd
1 0.1923 0 1.000 1.014 0.1034
2 0.0829 1 0.808 0.830 0.1071

I Note that this transformation is of tmearginal distribution of survival times, although an expo-
nential distribution would normally be assumed for the distribution conditional on the covariates. This
is the same criticism as we see for the HARE / HEFT methodology in Chapter 12 of these complements.
RPart followsLeBlanc & Crowley(1992 in this ‘one-step’ approach.
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3 0.0380 2 0.725 0.766 0.1067
4 0.0319 3 0.687 0.787 0.1102
5 0.0210 5 0.623 0.820 0.1045
6 0.0189 7 0.581 0.848 0.1060
7 0.0164 8 0.562 0.828 0.0982
8 0.0123 9 0.546 0.809 0.0966
9 0.0110 10 0.533 0.825 0.0999

> print (VA.rp, cp=0.09)
node), split, n, deviance, yval
* denotes terminal node

1) root 137 160 1.0
2) Karn>45 99 81 0.8 x*
3) Karn<45 38 46 2.5 *

Hereyval is the relative hazard rate for that node; we have a proportional hazards
model and this is the estimated proportional factor.

In our experience it is common for tree-based methods to find little structure in
cancer prognosis datasets: what structure there is depends on subtle interactions
between covariates.

Library tssa

This approach is outlined iyegal(1988, who considers a family of statistics in-
troduced byfarone & Waré€1977) which includes the log-rank (Mantel-Haenszel)
and Gehan tests and Prentice’s generalization of the Wilcoxon test. His approach
is implemented in thecssa library of Segal and Wager. This usessa as the

main function, and generates objects of cldsssa" which inherits from class
"tree". A member of the family of test statistics is selected by the argument
choice. Splitting continues until there aneaxnodes nodes (default 50) or no

leaf has as many asinbuc cases (default 3Bnda proportion at leaspropn
(default 15%) of uncensored cases.

We consider the VA lung cancer data of Section 12.4. Singga cannot
currently handle multi-level factors, we have to omit the variatdel .

> library(tssa, first=T)
> VA.tssa <- tssa(stime ~ treat + age + Karn + diag.time + prior,
status, data=VA, minbuc=10)
> VA.tssa
node), split, (n, failures), km-median, split-statistic
* denotes terminal node, choice is Mantel-Haenzel

1) root (137,128) 76.5 6.67
2) Karn<45 (38,37) 19.5 2.71
4) diag.time<10.5 (28,27) 21.0 2.08
8) age<62.5 (14,13) 18.0 *
9) age>62.5 (14,14) 33.0 x
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5) diag.time>10.5 (10,10) 8.0 *
3) Karn>45 (99,91) 110.5 2.74
6) Karn<82.5 (90,84) 104.0 2.22
12) age<67.5 (74,69) 111.5 1.34
24) prior<1.5 (50,48) 104.0 1.55
48) age<59 (24,23) 110.0 1.22
96) age<46.5 (13,13) 99.0 x
97) age>46.5 (11,10) 127.0 *
49) age>b59 (26,25) 95.0 0.91
98) diag.time<3.5 (11,11) 91.0 *
99) diag.time>3.5 (15,14) 98.5 *
25) prior>1.5 (24,21) 139.5 1.10
50) treat<1.5 (14,13) 122.0 *
51) treat>1.5 (10,8) 145.5 *
13) age>67.5 (16,15) 72.0 %
7) Karn>82.5 (9,7) 234.5 *

> summary(VA.tssa)

Survival tree:

tssa(formula = stime ~ treat + age + Karn + diag.time + prior,
delta = status, data = VA, minbuc = 10)

Number of terminal nodes: 11

> tree.screens()

plot (VA.tssa)

text (VA.tssa)

km.tssa(VA.tssa)

close.screen(all=T)

vV V V V

It can be helpful to examine more than just the mean at each node; the function
km.tssa will plot the Kaplan-Meier estimates of survival curves for the two
daughters of a non-terminal node. Interactive explorat&imows that there is
very little difference in survival between nodes at (Figligel3 or below node 6.

The change from a goodness-of-fit to a goodness-of-split view is not helpful
for pruning a tree.Segal(1988 replaced optimizing a measure of the fit of the
tree (as in cost-complexity pruning) with a stepwise approach.

(i) Grow a very large tree.

(i) Assign to each non-terminal node the largest split statistic in the subtree
rooted at that node. (This can be done in a single upwards pass on the tree.)

(iif) Obtain a sequence of pruned trees by repeatedly pruning at the remaining
node(s) with the smallest assigned values.

(iv) Select one of these trees, perhaps by plotting the minimum assigned value
against tree size and selecting the tree at an ‘elbow’.

This is implemented inprune.tssa. Like snip.tree (and snip.tssa), a
value is selected by a first click (on the lower screen), and the tree pruned at that
value on the second click. For our example we can use

2 this relies onerase.screen which is broken in some versions®PLUS 4.x.



10.4 Tree-structured survival analysis 34

Karn<45
1

Karn<82.5

age<67.5 7J

13/14 14/14 nrlolrz<l.5

treat<1.5
25

5 5
13/14 8/10

0.8

0.4

0.0

13 12
0 200 400 600 800 100C

Figure 10.13 Tree fitted bytssa to the cancer.vet dataset. The bottom screen shows
the output fromkm. tssa when node 6 was selected.

tree.screens()
plot (VA.tssa)
prune (VA.tssa)
close.screen(all=T)

The only clear-cut pruning point (Figurg0.19 is at a single split. There is
a function post.tssa the equivalent of (and modified fromgost.tree for
tssa trees.

Library survcart

The library survcart 2 is sparsely documented, but appears to implement the
strategy ofLeBlanc & Crowley(1993. Like Sega) LeBlanc & Crowleyuse a
goodness of split criterion for growing the tree, in this case the log-rank statistic
with some adjustment for selecting the maximal statistic over all possible splits of
continuous variables. However, the pruning strategy differs fteea . Associate

to each non-terminal node the goodness-of-split statistig , taking G to be zero

at the terminal nodes. ThdreBlanc & Crowleyapply cost-complexity pruning

to the measure of fit
R(T)=-> G(0)
eT

3 also known asCART_SD . Not available forS-PLUS 6 as it uses obselete language features.
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Figure 10.14 Tree fitted bytssa to the cancer.vet dataset. The bottom screen shows
the prune sequence froprune. tssa.

This is not a sum over cases, but as it is defined additively over branches the
standard pruning algorithnB¢eimanet al, 1984 Ripley, 1996 is still justified.
(The ‘deviance’ quoted byprune.survtree is ), G(¢).) The measure of fit
can be computed on a validation set based down the optimally pruned tree sequence
(T}), but as it is not a measure of performance there is no justification for then
choosing the best fit; indeeB(7") decreases monotonically as the tree is grown,
since G(¢) > 0. The suggestion dfeBlanc & Crowleyis to choose the pruning
minimizing R, (7") on the validation set forv € [2,4]. (LeBlanc & Crowley
also discuss using bootstrapping to bias-cori¢I’) computed on the training
set prior to pruning.)

Library survcart can be very memory-hungry: it comes with an informative
demonstration that needs over 50Mif virtual memory to run.

We can try ourVA cancer example by

library(survcart, first=T)
VA.st <- survtree(stime ~ treat + age + Karn + diag.time +
cell + prior,
data=VA, status, fact.flag=c(¥,T,T,T,F,F))
plot (prune.survtree(VA.st))

The argumentact.flag says which variables should be regardedaisactors
and included in the adjustment of the log-rank statistic for continuous variates

4 oneach oB-PLUS 3.3 for Windows andS-PLUS 3.4 on Sun Solaris; over 100Mb &PLUS 4.0
for Windows
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(although a factor with many levels will give rise t@ry many more possible
splits). The ‘deviance’ is-R(T}) — ag(|Tk| — 1)!
We can reserve a validation set and use this for pruning by

set.seed(123); tr <- sample(nrow(VA), 90)
VA1 <- VA[tr,]; VA2 <- VA[-tr,]
VA.stl <- update(VA.st, data=VA1l)
VA.stl.pr <- prune.survtree(VA.stl, newdata=VA2,
zensor .newdata=VA2$status)
VA.stl.pr
$size:
[1] 121110 9 8 5 4 3 2 1 0
$dev:
[1] 36.6986 36.0633 35.1245 24.2267 24.2514 13.5163
[7] 15.7134 15.5296 -16.7492 -8.2354 0.0000
$k:
[1] 0.000000 0.033653 0.048377 0.709060 0.733988 2.595874
[7] 2.692954 3.346168 12.984497 13.469285 19.090138

Note that the size is the number of splits, one less than the number of leaves. We
need to convert this to a split-complexity measure:

attach(VA.stl.pr)

dev <- dev + k*size

> dev - 2%*size
[1] 12.6986 14.4335 15.6082 12.6082 14.1233 16.4956 18.4853
[8] 19.5681 5.2198 3.2339 0.0000

> dev - 4*size
[1] -11.3014 -7.5665 -4.3918 -5.3918 -1.8767 6.4956
[7] 10.4853 13.5681 1.2198 1.2339 0.0000

detach()

which suggests a tree with three splits

> prune(VA.stl, k=4)

1) root 90 19
2) cell:2,3 49 13
4) prior:0 40 0 *
5) prior:10 9 0 *
3) cell:1,4 41 13
6) Karn<45 8 0 *
7) Karn>45 33 0 *

Note how the selection penalty on continuous variables suckaas reduces
their prominence.

We can explore the spread of predictions over splits in a manner similar to
km.tssa by picking values ofk in

VA.st.tmp <- prune.survtree(VA.st, k=2)
plot(surv.fit(VA$stime, VA$status, factor(VA.st.tmp$where)))
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This shows the Kaplan-Meier estimates of survival at all the leaves, and by succes-
sively reducingk we can see when the range of variation is no longer essentially
covered.

The functiongraph.survtree allows various aspects of the tree model to
be plotted. The following call plots the median survival by node

graph.survtree (prune(VA.st, k=3.5), VA$stime, VA$status,
xtile=0.5, interactive=F)

but it can also show the survival probability at a fixed time.

1:137
Karn>45
Karn<45
2:38 3:99
ceII:l;'Zla
cell:2,37

6:-48

| tjeat
treatl

14 : 39

.ége>4.0(5
P9 : 3
7 Kam>65
Kari<65. : :
44} 5 4#] 8
[ I I I I |
0 50 100 150 200 250

time with survival-rate 0.5

Figure 10.15 Plot of median survival bygraph.survtree.



Chapter 11

Multivariate Analysis and
Pattern Recognition

11.3 Correspondence analysis

Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visual-
izing the joint properties gf > 2 categorical variables that doest reduce to
correspondence analysis (CA) fpr= 2, although the methods are closely related
(see, for exampleGower & Hand 1996 §10.2).

Suppose we have observations on the factors with/ total levels. Consider
G, the n x ¢ indicator matrix whose rows give the levels of each factor for each
observation. Then all the row sums ape MCA is often Greenacrel1992
defined as CA applied to the tabie, that is the singular-value decomposition of

DG/ Y, 9i)D2V? = UAVT . Note thatD, = pI since all the row sums
arep,andy’; . gi; = np, so this amounts to the SVD of 1/2GD;? Jpn 1

An alternative point of view is that MCA is a principal components analysis
of the data matrixX = G(pD.)~'/?; with PCA it is usual to centre the data but
it transpires that the largest singular value is one and the corresponding singular
vectors account for the means of the variables. Thus a simple plot for MCA is to
plot the first two principal components of . It will not be appropriate to add
axes for the columns oKX as the possible values are on{9, 1}, but it is usual
to add the positions of on each of these axes, and label these by the factor level.
(The ‘axis’ points are plotted at the appropriate row(pD..)~*/2V ) The point
plotted for each observation is the vector sum of the ‘axis’ points for the levels
taken of each of the factors. Gower and Hand seem to prefer (e.g. their figure
4.2) to rescale the plotted points by, so they are plotted at the centroid of their
levels. This is exactly the asymmetric row plot of the CA@f, apart from an
overall scale factor op/n .

We can apply this to the example Gbwer & Hand(1996 p. 75) by

I Gower & Hand(1996 omit the divisorpn .

38
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farms.mca <- mca(farms, abbrev=T) # Use levels as names
plot (farms.mca, cex=rep(0.7,2))
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Figure 11.21 Multiple correspondence analysis plot of data on 20 farms on the Dutch
island of Terschelling. Numbers represent the farms and labels levels of moisture, grassland
usage, manure usage and type of grassland management.

Sometimes it is desired to add rows or factors to an MCA plot. Adding
rows is easy: the observations are placed at the centroid of the ‘axis’ points for
levels that are observed. Adding factors (so-caflagplementary variablgss
less obvious. The ‘axis’ points are plotted at the rows@D.)~/?V . Since
UAVT = X = G(pD.)" Y2,V = (pD.)"'2GTUA~" and

(pD.) Y2V = (pD,) " *GTUA™?

This tells us that the *axis’ points can be found by taking the appropriate column of
G, scaling to totall /p and then taking inner products with the second and third
columns of UA~!. This procedure can be applied to supplementary variables
and so provides a way to add them to the plot. Hredict method for class
"mca" allows rows or supplementary variables to be added to an MCA plot.

11.10 Factor analysis

We return to discovering structure from the data mafXixalone, without prede-
termined groups. Factor analysis seeks linear combinatien®f the variables,
calledfactors which represent underlying fundamental quantities of which the
observed variables are expressions. The examples tend to be controversial ones
such as ‘intelligence’ and ‘social deprivation’, the idea being that a small number
of factors might explain a large number of measurements in an observational study.
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This aim seems close to that of principal component analysis, but the statistical
model differs. For a single common factgrwe have

T=p+A+u (11.6)

where\ is a vector known as tHeadingsand« is a vector olunique(or specifig¢
factors for that observational unit. To help make the model identifiable, we assume
that the factorf has mean zero and variance one, and thatas mean zero and
unknowndiagonalcovariance matrixt . For k < p common factors we have a
vector f of common factors and a loadings matrix and

r=p+Af+u (11.7)

where the components ¢f have unit variance and are uncorrelated gndnd u
are taken to be uncorrelated. Note thhtthe correlations amongst the variables
in & must be explained by the common factors; if we assume joint normality the
observed variableg will be conditionally independent giveyfi .

Principal component analysis also seeks a linear subspaca fike explain
the data, but measures the lack of fit by the sum of squares ofitheSince
factor analysis allows an arbitrary diagonal covariance malri¥s measure of
fit of the u; depends on the problem and should be independent of the units of
measurement of the observed variables. (Changing the units of measurement of
the observations does not change the common factors if the loadings and unique
factors are re-expressed in the new units.)

Equation (1.7) and the conditions orf express the covariance matnix of
the data as

S=AAT+ W (11.8)

Conversely, if {1.8 holds, there is & -factor model of the formX1.7). Note that

the common factor&” f and loadings matrixAG give rise to the same model

for X, forany k£ x k& orthogonal matrixG'. Choosing an appropriat€ is known

as choosing #otation. All we can achieve statistically is to fit the space spanned
by the factors, so choosing a rotation is a way to choose an interpretable basis for
that space. Note that if

s=g3p(p+1) = [p(k+1) = k(k = 1)] = 5(p = k)* = (p+ k) <0

we would expect an infinity of solutions td1.8. This value is known as the
degrees of freedoyrand comes from the number of elementsXnminus the
number of parameters iP and A (taking account of the rotational freedom
in A since only AAT is determined). Thus it is usual to assume> 0; for

s = 0 there may be a unique solution, no solution or an infinity of solutions
(Lawley & Maxwell, 1971, pp. 10-11).

The variances of the original variables are decomposed into two parts, the
communalityh? = > . A7, anduniqueness);; which is thought of as the ‘noise’
variance.

Fitting the factor analysis model {.7) is performed by th&-PLUS function
factanal . The default method (‘principal factor analysis’) dates from the days
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of limited computational power, and is not intrinsically scale invariant—it should
not be used. The preferred method is to maximize the likelihood dvand ¥
assuming multivariate normality of the factofg, «), which depends only on
the factor space and is scale-invariant. This likelihood can have multiple local
maxima, this possibility is usually ignored bfibtctanal compares the fit found
from five separate starting points. It is possible that the maximum likelihood
solution will have some@-i = 0, so theith variable lies in the estimated factor
space. Opinions differ as to what to do in this case (sometimes known as a
Heywood casg but often it indicates a lack of data or inadequacy of the factor
analysis model.Rartholomew 1987 Section 3.6, discusses possible reasons and
actions.)

The data matrixX can be specified as the first argumentttctanal as a
matrix or data frame, or via a formula with a null left-hand side. Let us consider
the data on Swiss cantons in matexiss.x.

> swiss.FA <- factanal(swiss.x, factors=2, method="mle")
Sums of squares of loadings:
Factorl Factor?2

1.9384 1.2923

Test of the hypothesis that 2 factors are sufficient
versus the alternative that more are required:

The chi square statistic is 2.97 on 1 degree of freedom.
The p-value is 0.0847

The ‘Sums of squares of loadings’ are the )\fj , Wwhich do depend on the rotation
chosen, although their sum does not. The test statistic is a likelihood rafio test
of the fit, and may be used to help select the number of factors; here the fit is
marginal with two factors, the maximum possible with five original variables. The

summary method gives both more and less information:

> summary(swiss.FA)
Importance of factors:
Factorl Factor?2
SS loadings 1.93843 1.29230
Proportion Var 0.38769 0.25846
Cumulative Var 0.38769 0.64615

The degrees of freedom for the model is 1.

Uniquenesses:
Agriculture Examination Education Catholic Infant Mortality
0.40764 0.19008 0.20264 0.00014068 0.96878

2 with a Bartlett correction: seBartholomew(1987, p. 46) orLawley & Maxwell (1971, pp. 35—
36). For a Heywood case (as hekawley & Maxwell (1971, p. 37) suggest the number of degrees of
freedom should be increased by the number of variables with zero uniqueness.
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Loadings:
Factorl Factor?2
Agriculture -0.713 0.290
Examination O0.777 -0.453
Education 0.893
Catholic -0.161 0.987
Infant Mortality 0.170

The functionloadings gives just the loadingd , the smallest numbers in which
have been suppressed in the print method. This output is not quite what it appears,
as the original variables have been re-scaled to unit variance (with divisor
equivalently, > in (11.8 has been replaced by the correlation matrix), and so
the loadingA and uniquenessed$ refer to the rescaled variableBartholomew
(1987 p. 49) refersto this as tleandardor scale-invarianform of the parameters

A and ¥. The componenscale of the returned object relatethe output to the
original variables.

The scale-invariant output does show that €etholic variable is very
nearly explained by the common factors, amgfant Mortality variable is
poorly explained. In fact the uniquenesgs; for the Catholic variable is being
estimated as zero as tightening the convergence criteria shows:

> factanal (swiss.x, factors=2, method="mle",
control=list(iter.max=100, unique.tol=1e-20))$uniq

Agriculture Examination Education Catholic Infant Mortality
0.40764 0.19008 0.20264 2.8792e-09 0.96878

This confirms that theCatholic variable lies in the factor space, so we have
a Heywood case. (In this example religion is a plausible candidate for a latent
factor.) As the fit is marginal, it is instructive to considgr— AAT — W :

> A <- loadings(swiss.FA) %*}% t(loadings(swiss.FA)) +
diag(swiss.FA$uniq)
> round(cor(swiss.x) - A, 3)
Agriculture Examination Education Catholic Mortality

Agriculture 0.000 -0.001 0.000 0 -0.145
Examination -0.001 0.000 0.000 0 0.001
Education 0.000 0.000 0.000 0 -0.054
Catholic 0.000 0.000 0.000 0 0.000
Mortality -0.145 0.001 -0.054 0 0.000

Most of the lack of fit comes from just one correlation.

Note that unlike principal components, common factors are not generated one
at a time, and the two-factor space will usually not contain the single-factor space.
If we ask for one common factor (the default) rather than two we obtain

> swiss.FA1l <- factanal (swiss.x, method="mle")
> swiss.FA1l

3 This is a vectorz such that original variablg wasdividedby z; .
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Test of the hypothesis that 1 factor is sufficient

versus the alternative that more are required:

The chi square statistic is 17.53 on 5 degrees of freedom.
The p-value is 0.00359

> summary(swiss.FA1)

Uniquenesses:
Agriculture Examination Education Catholic Infant Mortality
0.52866 2.2139e-06 0.51222 0.67184 0.987
Loadings:

Factorl

Agriculture -0.687
Examination 1.000
Education 0.698
Catholic -0.573

Infant Mortality -0.114

This time theExamination variable is fitted almost exactly. Thus the one-factor
solution is theExamination variable, and it is easy to check that this is not in
the subspace spanned by the two-factor solution.

Itis hard to find examples in the literature for which a factor analysis model fits
well: many do not give a measure of fit, or have failed to optimize the likelihood
well enough and so failed to detect Heywood cases. We consider an example from
Smith & Stanley(1983 as quoted bartholomew(1987, pp. 61-65). Six tests
were give to 112 individuals, with covariance matrix

general picture blocks maze reading vocab

general 24.641 5.991 33.520 6.023 20.755 29.701
picture 5.991 6.700 18.137 1.782 4.936 7.204
blocks 33.520 18.137 149.831 19.424 31.430 50.753
maze 6.023 1.782 19.424 12.711 4.757 9.075
reading 20.755 4.936 31.430 4.757 52.604 66.762
vocab 29.701 7.204 50.753 9.075 66.762 135.292

The tests were of general intelligence, picture completion, block design, mazes,
reading comprehension and vocabulary. Bo#lttanal andprincomp can use
covariance matrices as input usingavlist argument

> ability.cl <- list(cov=ability.cov, center=rep(0,6), n.obs=112)
> ability.FA <- factanal(covlist=ability.cl, method="mle")
> ability.FA

The chi square statistic is 75.18 on 9 degrees of freedom.

> ability.FA <- update(ability.FA, factors=2)

4 Bartholomew gives both covariance and correlation matrices, but these are inconsistent. Neither
are in the original paper.
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> ability.FA

The chi square statistic is 6.11 on 4 degrees of freedom.
The p-value is 0.191

> summary(ability.FA)
Uniquenesses:

general picture blocks maze reading vocab
0.45523 0.58933 0.21817 0.76942 0.052463 0.33358

Loadings:
Factorl Factor?2
general 0.501 0.542
picture 0.158 0.621
blocks 0.208 0.859
maze 0.110 0.467
reading 0.957 0.179
vocab 0.785 0.222

Remember that the first variable is a composite measure: it seems that the first
factor reflects verbal ability, the second spatial reasoning. The main lack of fit is
that the correlatiord).308 betweenpicture andmaze is fitted as0.193.

Factor rotations

There are many criteria for selecting rotations of the factors and loadings matrix;
S-PLUS implements 12. There is an auxiliary functientate which will rotate

the fitted A according to one of these criteria, which is called via #heate
argument offactanal . The defaultvarimax criterion is to maximize

Z(d” — E.j)z where dij = )\12]/ Zj )\12] (119)

]

andd_; isthe mean of the,; . Thus the varimax criterion maximizes the sum over
factors of the variances of the (normalized) squared loadings. The normalizing
factors are the communalities which are invariant under orthogonal rotations.

The usual aim of a rotation is to achieve ‘simple structure’, that is a pattern of
loadings which is easy to interpret with a few large and many small coefficients.
The effect of normalization is to rescale the variables so the variance explained by
the common factors is one for each variable. Normalization makes this rotation
criterion scale-invariant; this is not the case for all the criteria, buSHRLUS
functions work with the scale-invariant loadings.

Not all the ‘rotations’ are orthogonal, for example theomax criterion seeks
factors (such as arithmetical and verbal reasoning skills in psychology) that might
be expected to be correlated. It is constructed by a least-squares fit tof
Q = [|\i;l*sign(\;;)], and so tends to increase in magnitude large loadings
relative to small ones. An initial value ok is needed, by default the varimax
solution. For our example we have
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> rotate(swiss.FA, rotation="promax")
Sums of squares of loadings:
[1] 1.9796 1.2511

Test of the hypothesis that 2 factors are sufficient
versus the alternative that more are required:

The chi square statistic is 2.97 on 1 degree of freedom.
The p-value is 0.0847

> rotate(loadings(swiss.FA), rotation="promax")
$rmat:

[,1] [,2]
Agriculture -0.720923 0.269493
Examination 0.789990 -0.431096
Education 0.892821 0.015316
Catholic -0.189352 0.981838
Infant Mortality -0.053304 0.168463

Note that not all rotation methods produce objects of classlings describing
the rotated factors (themat component). so the print method for loadings is not
always used, as here. Some care is needed to interpretablegeerotations, as
the rotated factors are no longer uncorrelated; for exanidlé(has to modified.

The oblimin criterion is another idea to produce oblique rotations: it min-
imizes the sum over all pairs of factors of the covariance between the squared
loadings for those factors. We can illustrate this on the intelligence test data.

> loadings(rotate(ability.FA, rotation="oblimin"))
Factorl Factor?2
general 0.379 0.513

picture 0.640
blocks 0.887
maze 0.483

reading 0.946
vocab 0.757 0.137

Component/Factor Correlations:
Factorl Factor2

Factorl 1.000 0.356

Factor2 0.356 1.000

We can illustrate the oblique rotation graphically; see Figuir@2

par (pty="s ")

L <- loadings(ability.FA)

eqgscplot (L, xlim=c(0,1), ylim=c(0,1))

identify(L, dimnames(L) [[1]])

oblirot <- rotate(loadings(ability.FA), rotation="oblimin")
naxes <- solve(oblirot$tmat)

arrows (rep(0,2), rep(0,2), naxes[,1], naxes[,2])
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Figure 11.22 The loadings for the intelligence test data after varimax rotation, with the
axes for the oblimin rotation shown as arrows.

It is also possible to rotate the loadings frompaincomp fit, but care is
needed as these are not the usual defini8asilevsky 1994 p. 258) of loadings
for rotation.

Estimating the factor scores

Once factors have been fitted and perhaps interpreted, it may be of interest to
estimate the scores of future individuals on the factors. Suppose that the observed
vector of observations on a future individual &5, and the sample mean is

. Bartlett suggested the use of (weighted) least squares, that is to regress the
observations on the fitted loadings treating theas randomV (0, ¥) terms and

f as the parameters, giving

F =TT AT ATO (=g — T) (11.10)

Onthe other hand, Thomson noted that if the factors are treated as random variables
(as they are in the statistical model),

E[f|xo] = AT[AAT + 0] Yo — p) = ATE N — T)
which suggests the use of
F=A"S" Yz —7) (11.11)

The functionpredict.factanal uses thetype of "weighted.ls" for the
Bartlett approach, andregression" for the Thomson approach (its default).
The scores for the data are tkeores component of afactanal object, of
type specified by theype argument tofactanal (with Thomson scores as the
default).
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Comparisons with principal component analysis

Despite the many protestations in the literature of a fundamental difference, factor
analysis continues to be confused with principal component analysis. Selecting
the first k principal components fits the moddl1(.7) with criterion _ ||u,||? =

Yo j ui; - By contrast, maximum-likelihood factor analysis uses the criterion

—trace X719 + log |15

which matches the observed covariances (or correlati®ne): = AAT4+ ¥, and
there is no assumption that the specific factareeed be small, just uncorrelated.

Nevertheless, we often find that if the variables have been suitably scaled, for
example scaled to unit variance, factor analysis chodses that either one (or
more)¥,; = 0 orthe ¥, are fairly similar and quite small. Then either the factor
analysis solution is a subspace containing one or more of the variables or itis likely
to be rather similar to the subspace spanned by theffiygtincipal components.
(Theoretical supportis given yower, 1966 andRaq 1955) Althoughin theory
the interest in factor analysis is in explaining correlations not variances, this is
belied by the output of factor analysis functiornsifimary.factanal indicates
the importance of the factors by the proportions of variance explained) and by
the way case studies are explained. (See, for example, Sections 8.3 and 8.4 of
Reyment & dreskog1993)

The fundamental difference is that factor analysis chooses the scaling of the
variables vial' whereas in principal component analysis the scaling must be
chosen by the user. If the user chooses well, there may be little difference in the
factors found.

Rotation of principal components

The usual aim of both PCA and factor analysis studies is to find an interpretable
smaller set of new variables that explain the original variables. Factor rota-
tion is a very appealing way to achieve interpretability, and it can also be ap-
plied in the space of the first: principal components. Th8-PLUS function
rotate.princomp applies rotation to the output of princomp analysis. For
example, if we varimax rotate the first two principal componentsiofpca

(page 383 of the text) we find

> loadings(rotate(ir.pca, n=2))
Comp. 1 Comp. 2 Comp. 3 Comp. 4
Sepal.L 0.596 0.324 0.709 0.191

Sepal.W 0.935 -0.331
Petal.L 0.569 -0.102 -0.219 -0.786
Petal.W 0.560 -0.583 0.580

Note that only the first two components have been rotated, although all four are
displayed.

It is important to consider normalization carefully when applying rotation to
a principal component analysis, which is not scale-invariant.
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(a) Using argumentor=T to princomp ensures that the original variables are

(b)

(c)

rescaled to unit variance when the principal components (PCs) are selected.

The ‘loadings’ matrix given byrincomp is the orthogonal matrix” which
transforms the variableX to the principal component® = XV ,s0 X =
ZV'T | Thisis notthe usual loadings matrix considered for rotation in principal
component analysiBasilevsky 1994 p. 258), although it is sometimes used
(Jolliffe, 1986 §7.4). The loadings of a factor analysis correspond to a set of
factors of unit variance; normalizing the principal components to unit variance
corresponds taX = Z*AT for A = VA and Z* = ZA~!. where (as on
page 304)A denotes the diagonal matrix of singular values. The matris
known as thecorrelation loadings since 4;; is the correlation between the

i th variable and the th PC (provided the variables were normalized to unit
variance). Orthogonal rotations ¢&* remain uncorrelated and correspond
to orthogonal rotations of the correlation loadings.

TheS-PLUS default for rotations such as varimax is to normalize the loadings
as at (1.9 so the sum of squares for each row (variable) is one. Thus
(standardized) variables which are fitted poorly by the firsPCs are given

the same weight as those which are fitted well. This seems undesirable for
PCs Basilevsky 1994 p. 264), so it seems preferable not to normalize.

Taking these points into account we have

> A <- loadings(ir.pca) %*J, diag(ir.pca$sdev)
> dimnames (A) [[2]] <- names(ir.pca$sdev)
> B <- rotate(A[, 1:2], normalize=F)$rmat
> print.loadings(B)
Comp. 1 Comp. 2
Sepal.L 0.963
Sepal.W -0.153 0.981
Petal.L 0.924 -0.350
Petal.W 0.910 -0.342

which does have a clear interpretation as dividing the variables into two nearly
disjoint groups. It does seem that one common use of rotation in both principal
component and factor analysis is to cluster the original variables, which can of
course also be done by a cluster analysis<df .



Chapter 12

Survival Analysis

12.1 Estimators of survival curves

In the text we concentrated on wholly non-parametric estimators of the survivor
function S and cumulative hazard/ ; the resulting estimators were not smooth,
indeed discontinuous. There are analogues of density estimation for survival data
in which we seek smooth estimates of the survival functiorthe densityf or
(especially) the hazard functiai.

Kernel-based approaches

Kernel-based approaches are describedand & Jonesl995 §6.2.3, 6.3). The
codemuhaz ! implements an approach bjueller & Wang(1994. This does not
work at all well for small datasets such geghan, but we can apply it to the
Australian AIDS datasekids by

attach(Aids2)
plot (muhaz(death-diag+0.9, status=="D"), n.est.grid=250)

This is slow (takes 30 seconds) and we had to refine the output grid to produce a
fairly smooth result. The result shown in Figur2.13is unconvincing.

Likelihood-based approaches

Censoring is easy to incorporate in maximum-likelihood estimation; the likelihood
is given by (12.1) on page 368. One approach to using a smooth estimator is
to fit a very flexible parametric family and show the density/hazard/survivor
function evaluated at the maximum likelihood estimate. This is the approach of
the logspline library that we considered in Chapter 5 of these complements.
Consider thegehan dataset.

! available on a good day fasnix fromhttp://odin.mdacc.tmc.edu/anonftp.
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Figure 12.13 Hazard function fitted to thaids dataset bymuhaz.
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Figure 12.14 Smooth survival (left, bylogspline.fit) and hazard (right, byocfit)
fits to the gehan dataset. The solid line indicates the control group, the dashed line that
receiving 6-MP.

library(logspline) # logsplin on Windows < 6
gl <- gehan[gehan$treat=="control",]
g2 <- gehan[gehan$treat=="6-MP",]
logspline.plot(
logspline.fit(uncensored=gi[gi$cens==1,"time"],
right=gl[gl$cens==0,"time"], lbound=0),
what="s", x1lim=c(0,35))
g2.1ls <- logspline.fit(uncensored=g2[g2$cens==1,"time"],
right=g2[g2$cens==0,"time"], lbound=0)
xx <- seq(0, 35, 1len=100)
lines(xx, 1 - plogspline(xx, g2.1ls), lty=3)

As there is no function for plotting lines, we have to add the second group by
hand. Small changes allow us to plot the density or hazard function.

Once again there is a local likelihood approach (see, for exaHjplt, 1997
to hazard estimation, in which the terms are weighted by their proximity. to
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The full log-likelihood is

Z logh(t;) — Z/ i h(u)du
ti:0;,=1 i 70

and we insert weighting terms as before. This is implemented in Loader’s library
locfit: using alocally polynomial (by default quadratic) hazard.

library(locfit)
plot(locfit( ~ time, cens=1-cens, data=gl, family="hazard",
alpha=0.5, x1im=c(0, 1e10)),
x1lim=c(0, 25), ylim=c(0, 0.3))
lines(locfit( ~ time, cens=1-cens, data=g2, family="hazard",
alpha=0.5, xlim=c(0, 1el10)), 1lty=3)

The x1im=c (0, 1e10) argument sets a lower bound (only) on the support of the
density.

Both there approaches can have difficulties in the right tail of the distribution,
where uncensored observations may be rare. The righttail of a distribution fitted by
logspline.fit necessarily is exponential beyond the last observation. In HEFT
(Hazard Estimation with Flexible Tail&ooperberget al,, 1995g. a cubic spline
model is used for the log hazard, but with two additional tedn®g t/(t + ¢)
and 6, log(t + ¢) wherec is the upper quartile for the uncensored data. Then the
space of fitted hazards includes the functions

ht) = e®t% (t +c)2 "
which includes the Weibull family and the Pareto density

beb

f(t):m

for given ¢. Thus there is some hope that the tail behaviour can be captured
within this parametric family. This is implemented in functidreft.fit in
library heft .2 Toillustrate this, let us consider the whole of the Australian AIDS
datasetAids2.

library (heft)

attach(Aids2)

aids.heft <- heft.fit(death-diag+0.9, status=="D")
heft.summary (aids.heft)

par (mfrow=c(2,2))

heft.plot(aids.heft, what="s", ylim=c(0,1))
heft.plot(aids.heft)

This is rather slow (20 seconds). The sharp rise at O of the hazard reflects the
small number of patients diagnosed at death. Note that this manginalhazard

and its shape need not be at all similar to the hazard fitted in a (parametric or Cox)
proportional hazards model.

2 Not ported toS-PLUS 6.0 on Windows.
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Figure 12.15 Survivor curve and hazard fitted toids by heft.fit.

12.5 Non-parametric models with covariates

There have been a number of approaches to model the effect of covariates on
survival without a parametric model. Perhaps the simplest is a localized version
of the Kaplan-Meier estimator

Siley = ] [1_ w(z; — )

t;<t,6;=1 EzjeR(M)1U<$j — )

which includes observations with weights depending on the proximity of their
covariates toxz. This does not smooth the survivor function, but the function
sm.survival in library sm (Bowman & Azzalinj 1997 plots quantiles as a
function of x by smoothing the inverse of the survival curve and computing
guartiles of the smoothed fit. Following them, we can plot the median survival
time after transplantation in the Stanford heart transplant desat by

library(sm)

attach(heart [heart$transplant==1,])

sm.survival (age+48, loglO(stop - start), event, h=5, p=0.50)
detach()

This shows some evidence of a decline with age, which can also be seen in the
Cox analysis.

The local likelhood approach easily generalizes to localizing in covariate space
too: in locfit thisis requested by adding covariate terms to the right-hand-side
of the formula.

library(locfit)
attach(heart [heart$transplant==1,])
td <- stop - start; Age <- age+48
plot(locfit(~ td + Age, cens=1-event, scale=0, alpha=0.5, family="hazard",
xlim=1list (td=c(0,1e10)), flim=1list(td=c(0,365))),
type="persp")

Gray (1996 1994 takes a similar but less formal approach, usingss to
smooth a discretized version of the problem. This is implemented in his function
hazcov in library hazcov. First the data are grouped on the covariate values,
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Figure 12.16 Median survival time for the Stanford heart transplant data by
sm.survival.
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Figure 12.17 Smooth hazard functions (in days) as a function of age post-transplantation

in the Stanford heart-transplant studyeft: by locfit andright: by hazcov using
local scoring.

using quantiles of the marginal distributions or factor levels. Then time is divided
into intervals and the number of events and total follow-up time computed for
each interval for each covariate combination. In the default method described
in the 1996 paper, the numbers of events and the follow-up totals are separately

smoothed usingoess function, and the hazard estimate formed by taking ratios.
We can try this by

library(hazcov)

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5)
plot(heart.hc)

persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

The loess span was chosen by guesswork. Gray describes an approximate
version of C), to help select the span which we can use by

heart.50 <- hazcov(Surv(td, event) ~ Age, span=0.5,
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trace.hat="exact")
for(alpha in seq(0.1, 1, 0.1))
{
heart.tmp <- hazcov(Surv(td, event) ~ Age, span=alpha,
trace.hat="exact")
print(c(alpha, wcp(heart.tmp, heart.50)))
}

This indicates a minimum a& = 0.2, but very little difference over the range
[0.2,0.5].

The alternative method3ray, 1994 ‘local scoring’ invoked byls=T), the
counts are viewed a independent Poisson variates with mean total follow-up times
hazard, and a local log-linear Poisson GLM is fitted by IWLS, usiegss to
smooth the log-hazard estimates.

heart.hc <- hazcov(Surv(td, event) ~ Age, span=0.5, 1s=T)
plot(heart.hc)
persp.hazcov(Hazard.Rate ~ TimexAge, heart.hc)

Spline approaches

HARE (HAzard Rate EstimatiorKooperberget al., 19953 fits a linear tensor-
spline model for the log hazard function conditional on covariates, that is
logh(t|z) = n(t,z;0) is a MARS-like function of (¢, z) jointly. The fitting
procedure is similar to that forogspline and lspec: an initial set of knots is
chosen, the log-likelihood is maximized given the knots by a Newton algorithm,
and knots and terms are added and deleted in a stepwise fashion. Finally, the model
returned is that amongst those considered that maximizes a penalized likelihood
(by default with penaltylog n times the number of parameters).

It remains to describe just what structures are allowedrfi@gtz). This is
a linear combination of linear spline basis functions and their pairwise products,
that is a linear combination of terms liket, (t — ¢)4, z;, (x; — ¢)+, tx;, (tr; —
¢)+,x;Tk, (Tjzr — c)+ Where thec are generic constants. The product terms
are restricted to products of simple terms already in the model, and wherever a
non-linear term occurs, that term also occurs with the non-linear term replaced by
a linear term in the same variable. Thus this is just a MARS model irpthel
variables restricted to pairwise interactions.

The model for the hazard function will be a proportional hazards model if
(and only if) there are no products betweerand covariate terms. In any case
it has a rather restricted ability to model non-constant hazard functions, and it
is recommended to transform time to make the marginal distribution close to
exponential (with constant hazard) before applying HARE.

HARE is implemented in libraryhare ® by function hare.fit. The paper
contains an analysis of the dataseihcer.vet which we can reproduce by

3 Not ported toS-PLUS 6.0 on Windows.
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VA is constructed on page 363

attach(VA)

library (HARE)

options(contrasts=c("contr.treatment", "contr.poly"))

VAx <- model.matrix( ~ treat+age+Karn+cell+prior, VA)[,-1]
VA.hare <- hare.fit(stime, status, VAx)
hare.summary (VA.hare)

V V. V V V V #H

the present optimal number of dimensions is 9.
penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dimil dim?2 beta SE Wald
Constant -9.83e+00 2.26e+00 -4 .35
Co-3 1linear 2.50e-01 1.08e-01 2.31
Co-5 1linear 2.43e+00 4.72e-01 5.15
Co-4 1linear -1.39e+00 6.35e-01 -2.20
Time 1.56e+02 Co-5 1linear -1.25e-02 4.50e-03 -2.77
Time 1.56e+02 2.45e-02 5.84e-03 4.20
Co-3 2.00e+01 -2.60e-01 1.08e-01 -2.41
Co-3 1linear Co-4 1linear 3.87e-02 1.12e-02 3.46
Time 1.56e+02 Co-3 1linear -4.33e-04 9.58e-05 -4 .52

0.008 0.010
! !
Weibull-transformed

0.006
!

0.004

HEFT-transformed

Figure 12.18 The marginal distribution of lifetime in theancer.vet dataset. Left:
Hazard as fitted byheft.fit. Right: Time as transformed by the distribution fitted by
heft.fit and by a fitted Weibull distribution.

We found that an exponential model for the residual hazard was adequate,
but Kooperberget al. (19953 explore the marginal distribution by HEFT and
conclude that the time-scale could usefully be transformed. They used

library (HEFT)

VA.heft <- heft.fit(stime, status, leftlog=0)
heft.plot(VA.heft, what="h")

nstime <- -log(l - pheft(stime, VA.heft))

In fact the transformation used is close to that from fitting a Weibull distribution

survreg(Surv(stime, status) ~ 1, data=VA)
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Coefficients:
(Intercept)
4.7931

Dispersion (scale) = 1.1736

plot(sort(nstime),
-log(1-pweibull(sort(stime), 1/1.1736, exp(4.9731))),
type="1", xlab="HEFT-transformed", ylab="Weibull-transformed")

It does seem undesirable to ignore the highly significant covariate effects in making
such a transformation; this is illustrated in this example by the change in the
Weibull shape parameter fromn1736 to 0.928 (page 389) on fitting linear terms

in the survival regression model.

Having transformed time, we can re-fit the model.

> VA.hare2 <- hare.fit(nstime, status, VAx)

hare.summary (VA.hare2)

the present optimal number of dimensions is 10.

penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dimil dim?2 beta SE Wald
Constant -7.06e+00 2.60e+00 -2.72
Co-3 1linear 2.72e-01 1.10e-01 2.47
Co-5 1linear 5.54e+00 1.15e+00 4.81
Time 2.67e+00 2.24e+00 6.22e-01 3.60
Time 2.67e+00 Co-5 1linear -2.00e+00 5.40e-01 -3.70
Time 2.67e+00 Co-3 1linear -4.21e-02 9.54e-03 -4 .42
Co-4 1linear -1.16e+00 6.53e-01 -1.77
Co-3 8.50e+01 -2.73e-01 1.17e-01 -2.33
Co-3 1linear Co-4 1linear 3.39e-02 1.15e-02 2.94
Co-3 2.00e+01 -2.31e-01 1.08e-01 -2.13

Allowing for the time transformation, the fitted model is quite similar. Covariate

3 is the Karnofsky score, and 4 and 5 are the contrasts of cell type adeno and small
with squamous. It is not desirable to have a variable selection process that is so
dependent on the coding of the factor covariates.

This example was used to illustrate the advantages of HARE /HEFT method-
ology by their authors, but seems rather to show up its limitations. We have
already seen that thearginaltransformation of time is quite different from that
suggested for theonditionaldistribution. In our analysis via Cox proportional
hazards models we found support for models with interactions where the main
effects are not significant (such models will never be found by a forward selection
procedure such as used by HARE) and the suspicion of time-dependence of such
interactions (which would need a time cross covariate cross covariate interaction
which HARE excludes).
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12.6 Expected survival rates

In medical applications we may want to compare survival rates to those of a
standard population, perhaps to standardize the experience of the population under
study. As the survival experience of the general population changes with calendar
time, this must be taken into account.

Unfortunately, there are differences between versions in how calendar time
is recorded between the versions of the survival analysis functions: the ver-
sion in S-PLUS uses modified versions of functions from thiron library
whereassurvival5 uses the format of Therneau’s libragate (obtainable
from statlib). Both record dates in days since 1 Jan 1960, but with class
"dates" and "date") respectively. For th&-PLUS version the easiest way
to specify or print calendar dates is the functidates; for datasets such as
aids.dat with numerical day, month and year data the functigpnian may be
useful.

For a cohort study, expected survival is often added to a plot of survivor curves.
The functionsurvexp is usually used with a formula generated bytetable .

The optional argumentimes specifies a vector at which to evaluate survival,
by default for all follow times. For example, we could add expected survival for
65-year old US white males to the left plot of Figure 12.9 by

year <- dates("7/1/91")

expect <- survexp(~ ratetable(sex="male", year=year, age=65%365.25),
times = seq(0, 1400, 30), ratetable=survexp.uswhite)

lines(expect$time, expect$surv, lty=4)

but as the patients are seriously ill, the comparison is not very useful. As the
inbuilt rate tables are in units of days, all géar, age and times must be in
days.

Entry and date times can be specified as vectors, when the average survival
for the cohort is returned. For individual expected survival, we can use the same
form with cohort=F, perhaps evaluated at death time.

Some explanation of the averaging used is needed in the cohort case. We
can use the cumulative hazard functiéfy(¢) and survivor functionS;(¢) of the
exact match (on age and sex) to individaalThere are three possibilities, which
differ in the assumptions on what follow-up would have been.

1. The formula has no response. Then the function returns the average of
S;(t). This corresponds to assuming complete follow-up.

2. The death times are given as the response. TherHifie) are averaged
over the cases at risk at tinteto from a cohort cumulative hazard function
and converted to a survivor function.

3. The potential censoring times for each case are given as the response, and
conditional=F, when the weights in the cohort cumulative hazard func-
tion are computed as$;(¢)I (potentially in study at ). This corresponds
to assuming follow-up until the end of the study.
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The first is most useful for forecasting, the other two for comparing with the study
outcome. Thus to compare the survival in Figure 12.9 to matched males of the
same ages we might use

expect <- survexp(stop ~ ratetable(sex=1, year=year*365.25,
age=(age+48)*365.25), times = seq(0, 1400, 30),
ratetable = survexp.uswhite, data = heart,
subset = diff(c(id, 0)) != 0, cohort = T, conditional = T)
lines(expect$time, expect$surv, lty=4)

We do need to extract the second record corresponding to transplanted subjects to
get the correct death/censoring time for the cohort matching.

Itis possible to use the fit fromeoxph model in place of the inbuilt ratetables
to compare the present study to an earlier one.



Chapter 13

Time Series

13.1 Second-order summaries

Spectral analysis

The most common approach to estimating a spectral density is to use a kernel
smoother, as implemented bypectrum, but there are alternatives, including
the use of fitted high-order AR processes (page 448). One promising line is to
use some of the alternative methods of estimating a probability density function
function, since a spectral density is just a finite multiple of a pdf.

The library 1spec?! by Charles Kooperberg implements the logspline ap-
proach described in Sectidn6 of these complements. Its application to spectral
estimation is described iooperberget al.(19950; note that it is able to estimate
mixed spectra that have purely periodic components. We will illustrate this by
estimating the spectra of our running examplés and deaths as well as the
accdeaths andnottem Series.

For 1h we have

> library(lspec)

> lh.1ls <- lspec.fit(1lh)

> lspec.summary(lh.1ls)
Logspline Spectral Estimation

The fit was obtained by the command:

lspec.fit(data = 1lh)

A spline with 3 knots, was fitted; there were no lines in the model.
The log-likelihood of the model was 60.25 which corresponds to an
AIC value of -110.96 .

The program went though 1 updown cycles, and reached a stable
solution. Both penalty (AIC) and minmass were the default
values. For penalty this was log(n)=log( 24 )= 3.18 (as in BIC)
and for minmass this was 0.0329. The locations of the knots were:
1.178 2.749 3.142
> lspec.plot(lh.ls, log="y")
> lspec.plot(lh.ls, what="p")

I This is particularly hard to port as it uses calls to ompiled code inconsistently.

59
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Figure 13.22 Spectral density (left) and cumulative spectral distribution function (right)
for the seriesth computed by librarylspec.

(Figure13.22. Note that rather different conventions are used for the spectrum,
which is taken to run ove(—m, 7| rather than in cycles, and the amplitude is given

in the normal units, not decibels. The spectral density and cumulative spectrum
can be found bydlspec and plspec respectively.

deaths.ls <- lspec.fit(deaths)

lspec.plot(deaths.ls, log="y", main="deaths")
lspec.plot(deaths.ls, what="p")

accdeaths.ls <- lspec.fit(accdeaths)
lspec.plot(accdeaths.ls, log="y", main="accdeaths")
lspec.plot(accdeaths.ls, what="p")

nott.ls <- lspec.fit(window(nottem, end=c(1936,12)))
lspec.plot(nott.ls, log="y", main="nottem")
lspec.plot(nott.ls, what="p")

(Figurel13.23. Note howlspec.fit finds the discrete component at frequency
m/12 in all three cases, but is fooled by harmonics in the last two. We can
allow 1lspec.fit to fit more discrete components by reducing the value of its
argumentninmass (whose default can be found froirspec. summary ). In the
accdeaths example we can pick up all but one of the harmonics by

lspec.plot(1lspec.fit(accdeaths, minmass=7000), log="y")
lspec.plot(1lspec.fit(accdeaths, minmass=1000), log="y")

but reducingmninmass introduces discrete components at non-harmonic frequen-
cies (Figurel3.29.

The functionsclspec and rlspec compute the autocovariance (or autocor-
relation) sequence corresponding to the fitted spectrum and simulate a Gaussian
time series with the fitted spectrum respectively.

13.7 Multiple time series

The second-order time-domain properties of multiple time series were covered in
Section 13.1. The functiomr will fit AR models to multiple time series, but
ARIMA fitting is confined to univariate series. LeX; denote a multiple time
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Figure 13.23 Spectral density (top) and cumulative spectral distribution function (bottom)
for the seriesdeaths, accdeaths and nottem.
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series, ande; a correlated sequence of identically distributed random variables.
Then a vector ARf) process is of the form

p
X = Z A X + e

for matrices A; . Further, the components @ may be correlated, so we will
assume that this has covariance matrix Again there is a condition on the

coefficients, that
p

det[T — > A;z'] # 0forall 2] < 1
1

The parameters can be estimated by solving the multiple version of the Yule—
Walker equationsBrockwell & Davis 1991, §11.5), and this is used byr.yw,
the function called byar. (The other methodar.burg, also handles multiple
series.)

Spectral analysis for multiple time series

The definitions of the spectral density can easily be extended to a pair of series.
The cross-covariance is expressed by

1 [ .
t) = 5= [ et ar,w)
for a finite complex measure ofr-, 7], which will often have a density;; so

that | g
15t = g [ e i) do

—T

and .
fiyW) = ya(t)e ™

Note that sincey;;(t) is not necessarily symmetric, the sign of the frequency
becomes important, and;; is complex. Conventionally it is written as
cij(w) —igij(w) where c is the co-spectrumand ¢ is the quadrature spec-
trum.  Alternatively we can consider the amplitudeg;(w) and phasep;;(w)

of fi;(w). Rather than use the amplitude directly, it is usual to work with the
coherence

;5 \W
bij( ) — ]( )
V fi(w) fi5 (w)
which lies between zero and one.
The cross-periodogranms

n n

Ij(w) = | Y e ™ Xi(s) Y _ e X;(t)|/n

s=1 t=1
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Figure 13.25 Coherence and phase spectra for the two deaths series, with 95% pointwise
confidence intervals.

and is a complex quantity. Itis useless as an estimator of the amplitude spectrum,
since if we define

Jilw) = e ™ X;(s)
then
i (W)|/1/ Lii(w) Lj (w) = [Ji(w) T (w)*|/|Ji(w)] | Jj(w)| =1

but smoothed versions can provide sensible estimators of both the coherence and
phase.

The function spec.pgram will compute the coherence and phase spectra
given a multiple time series. The results are shown in Fig3t25

spectrum(mdeaths, spans=c(3,3))

spectrum(fdeaths, spans=c(3,3))

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths),
spans=c(3,3))

plot(mfdeaths.spc$freq, mfdeaths.spc$coh, type="1",
ylim=c(0,1), xlab="squared coherency", ylab="")

gg <- 2/mfdeaths.spc$df

se <- sqrt(gg/2)

coh <- sqrt(mfdeaths.spc$coh)
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lines(mfdeaths.spc$freq, (tanh(atanh(coh) + 1.96%se)) "2, lty=3)
lines(mfdeaths.spc$freq, (pmax(0, tanh(atanh(coh) - 1.96%se))) "2, 1lty=3)
plot(mfdeaths.spc$freq, mfdeaths.spc$phase, type="1",

ylim=c(-pi, pi), xlab="phase spectrum", ylab="")
cl <- asin( pmin( 0.9999, qt(0.95, 2/gg-2)*

sqrt(gg*(coh™{-2} - 1)/(2x(1-gg)) ) ) )
lines(mfdeaths.spc$freq, mfdeaths.spc$phase + cl, 1ty=3)
lines(mfdeaths.spc$freq, mfdeaths.spc$phase - cl, 1ty=3)

These confidence intervals folloBloomfield (1976 §8.5). At the frequency of
1/year there is a strong signal common to both series, so the coherence is high
and both coherence and phase are determined very precisely. At high frequencies
there is little information, and the phase cannot be fixed at all precisely.

It is helpful to consider what happens if the series are not aligned:

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, lag(fdeaths, 4)),
spans=c(3,3))
plot(mfdeaths.spc$freq, mfdeaths.spc$coh, type="1",
ylim=c(0,1), xlab="coherency", ylab="")
gg <- 2/mfdeaths.spc$df
se <- sqrt(gg/2)
coh <- sqrt(mfdeaths.spc$coh)
lines(mfdeaths.spc$freq, (tanh(atanh(coh) + 1.96%se)) "2, 1lty=3)
lines(mfdeaths.spc$freq, (pmax(0, tanh(atanh(coh) - 1.96%se))) "2, 1lty=3)
phase <- (mfdeaths.spc$phase + pi)%%(2*pi) - pi
plot(mfdeaths.spc$freq, phase, type="1",
ylim=c(-pi, pi), xlab="phase spectrum", ylab="")
cl <- asin( pmin( 0.9999, qt(0.95, 2/gg-2)*
sqrt (gg* (mfdeaths.spc$coh™{-2} - 1)/(2x(1-gg)) ) ) )
lines(mfdeaths.spc$freq, phase + cl, lty=3)
lines(mfdeaths.spc$freq, phase - cl, lty=3)
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Figure 13.268 Coherence and phase spectra for the re-aligned deaths series, with 95%
pointwise confidence intervals.
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The results are shown in Figul8.26 The phase has an added component of
slope2r x4, since if Xo(t) = X1 (t — 1),

m2(t) =yt +7), fi1(w) = fir(w)e ™

For more than two series we can consider all the pairwise coherence and phase
spectra, which are returned pec . pgram .

13.8 Other time-series functions

S-PLUS has a number of time-series functions which are used less frequently and
we have not yet discussed. This section is only cursory.

Many of the other functions implement various aspects of filtering, that is
converting one times series into another while emphasising some features and
de-emphasising others. A linear filter is of the form

Y: = Z ajXi—;
J

which is implemented by the functiofiilter . The coefficients are supplied, and
itis assumed that they are non-zero only jop 0 (sides=1)or —-m < j <m
(sides=2, the default). A linear filter affects the spectrum by

. 2

fr(@) =3 ase™™|" fx(w)

and filters are often described by aspects of the gain fun¢lidmse =« | . Kernel
smoothers such agsmooth are linear filters when applied to regularly-spaced
time series.

Another way to define a linear filter is recursively (as in exponential smooth-
ing), and this can be done bfilter, using

l
Y;ﬁ - Z asY;ﬁ—s
s=1

in which case/ initial values must be specified by the argumentt .

Converting an ARIMA process to the innovations process one sort of
recursive filtering, implemented by the functiafima.filt .

A large number of smoothing operations suchlasess can be regarded as
filters, butthey are non-linear. The functioaan.filt, acm.ave andacm.smo
provide filters resistant to outliers.

Complex demodulatiois a technique to extract approximately periodic com-
ponents from atime series. Itisdiscussed in detaBlopmfield(1976 Chapter 7)
and implemented by the functiodemod .
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Some time series exhibit correlations which never decay exponentially, as they
would for an ARMA process. One way to model these phenomena is fractional
differencing Brockwell & Davis 1991, §13.2). Suppose we expand? by a
binomial expansion:

N TG-d)
V= ]2_:0 L'(j +1)I(—d) b

and use the right-hand side as the definition for non-integerThis will only
make sense if the series definifgf’ X; is mean-square convergent. A fractional
ARIMA process is defined forl € (—0.5,0.5) by the assumption tha? X, is

an ARMA(p, q) process, so

H(B)VIX =0(B)e, so ¢(B)X =0(B)V %

and we can consider it also as an ARMA( ) process with fractionally integrated
noise. The spectral density is of the form

2

9(6—144))
ACad

and the behaviour as—2¢ atthe origin will help identify the presence of fractional
differencing.

The functions arima.fracdiff and arima.fracdiff.sim implement
fractionally-differenced ARIMA processes.

|1 _ e—z‘w|—2d

flw) =0o°




Chapter 14

Spatial Statistics

14.5 Module S+3PATIAL STATS

The first release of th8-PLUS module S+$8ATIALSTATS was released in mid-
1996. That has a comprehensive manual (publishétbhszny & Vega 1997,
which we do not aim to duplicate, but rather to show how our examples in
Chapter 14 can be done using $ABAL STATS.

The module S+BATIALSTATS is attached and made operational by
module (spatial)

which we will assume has been done. Unfortunately the name is the same as our
library (as are some of the function names); modules take priority over libraries.

Kriging

The kriging functions use a slight extension of the model formula language. The
function loc is used to specify the two spatial coordinates of the points, which
are used to find the covariance matrix in kriging. Universal kriging is specified by
adding other terms to form a linear model. Thus we can specify the model used
in the bottom row of Figure 14.5 by

> topo.kr <- krige(z ~ loc(x, y) + x +y + X"2 + x*y + y~2,
data=topo, covfun=exp.cov, range=0.7, sill=770)
> topo.kr

Coefficients:
constant X y x"2 Xy y©2
808.3 -12.896 -64.486 62.137 1.6332 6.3442

> prsurf <- predict(topo.kr, se.fit = T,
grid = list(x=c(0, 6.5, 50), y=c(0, 6.5, 50)))
> topo.pltl <- contourplot(fit ~ x*y, data=prsurf, pretty=F,
at=seq(700, 1000, 25), aspect=1,
panel = function(...){
panel.contourplot(...)

67
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points(topo)
b
> topo.plt2 <- contourplot(se.fit ~ x*y, data=prsurf, pretty=F,
at=c(20, 25), aspect=1)
> print(topo.pltl, split=c(1,1,2,1), more=T)
> print(topo.plt2, split=c(2,1,2,1))

(The sill value is explained below.) We can of course obtain a least-squares
trend surface by giving a covariance function that drops to zero immediately, for
exampleexp.cov with range = 0, but there seems no simple way to obtain a
trend surface fitted by GLS. Theredict method forkrige objects takes either

a newdata argument or ggrid argument as used here. Theid argument
must be a list with two components with names matching those givelroto

and specifying the minimum, maximum and number of points. (This is passed to
expand.grid to compute a data frame farewdata.)

Analogues of the fits shown in Figure 14.7 may be obtained by

topo.kr2 <- krige(z ~ loc(x, y) + x +y + x"2 + xxy + y~2,
data = topo, covfun = gauss.cov,
range = 1, sill = 600, nugget = 100)

topo.kr3 <- krige(z ~ loc(x, y), data = topo,
covfun = gauss.cov, range = 2, sill = 6500, nugget = 100)

Various functions are provided to fit variograms and correlograms. We start
by fitting a variogram to the original data.

topo.var <- variogram(z ~ loc(x, y), data=topo)
model.variogram(topo.var, gauss.vgram, range=2,
$111=6500, nugget=100)

The functionmodel .variogram plots the variogram object (which may also
be plotted directly) and draws a theoretical variogram. It then prompts the user
to alter the parameters of the variogram to obtain a good fit by eye. It this
caserange = 3.5 seems indicated. The parametrization is thagget is the
increment at the origin, andill is the change over the range of increase of the
variogram. (In geostatistical circles the sum of ‘nugget’ and ‘sill’ is called the
sill.) Thus thealph of our covariance functions isugget/(sill + nugget) .

There are functiongorrelogram and covariogram which can be used in
the same way (including withodel.variogram).

topo.cov <- covariogram(z ~ loc(x, y), data=topo)
model .variogram(topo.cov, gauss.cov, range=2,
$111=4000, nugget=2000)

We can now explain how we chose the the parameters of the exponential
covariance in the first plot. An object of clas&rige" contains residuals, so we
can use



145 ModuleS+SPATIALSTATS 69

8000 o =
6000

o
4000 + . F

gamma

o
2000 4 °oF
o

distance
0 1 2 3 4
. | | |

1500 o ° F

1000 - ° o o ° ° 3

gamma
o
o

o
500 4 L% o R L

distance

Figure 14.1Q0 Directional variograms for theopo dataset. The top pair is for the raw
data, the bottom pair of residuals from a quadratic trend surface. The left plots are vertical
variograms, the right plots are horizontal ones. (The strip coverage is misleading, only
showing the positive part of the angular tolerance.)

topo.ls <- krige(z ~ loc(x, y) + x + y + X"2 + x*y + y~°2,
data=topo, covfun=exp.cov, range=0)

topo.res <- residuals(topo.ls)

topo.var <- variogram(topo.res ~ loc(x, y), data=topo)

model.variogram(topo.var, exp.vgram, range=1, sill1=1000)

This suggests a sill of about 800. The kriging predictions do not depend on the
sill, and ourspatial library relies on this to work throughout with correlograms
and to fit the overall scale factor when plotting the standard errors. Knowledge of
our code allowed us to read off the value 770. It would be a good idea to repeat
the forming of the residuals, this time from the GLS trend surface. We can choose
the covariogram for the Gaussian case in the same way.

topo.var <- covariogram(topo.res ~ loc(x, y), data=topo)
model .variogram(topo.var, gauss.cov, range=1, sill=210,
nugget=90)

Spatial anisotropy

The geostatistical functions in SP&IALSTATS have considerable support for
studying anisotropy of smooth spatial surfaces, and to correct for geometrical
anisotropy (anisotropy which can be removed by ‘squeezing’ the plot in some
direction). The functionloc has two additional parametessigle and ratio

to remove geometrical anisotropy. The functienRs iogram, correlogram and
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covariogram all allow multiple plots for pairs of distances in angular sectors.
For example

plot(variogram(z ~ loc(x, y), data=topo, azimuth = c(0, 90),
tol.azimuth = 45), aspect=0.7, layout=c(2,1))
plot(variogram(topo.res ~ loc(x, y), data=topo,
azimuth = c(0, 90), tol.azimuth = 45),
aspect=0.7, layout=c(2,1))

They show vertical and horizontal variograms (for pairs within a tolerance of
+45°) of the raw topo data and then the residuals from the quadratic trend
surface. (As these produead print Trellis plots, none of the normal ways to
put two plots on one page are possible and Fidud0is assembled from two
S-PLUS plots.)

Point process functions

Spatial point patterns are objects of classp" , with constructor functiorspp .
We can convert oupines.dat to a spp object by

library(spatial) # our library, for next line only.
pines <- data.frame(ppinit("pines.dat")[c("x", "y")1)
pines <- spp(pines, "x", "y", bbox(c(0,9.6), c(0, 10)), drop=T)
attributes(pines)

$class:

[1] "spp" "data.frame"

$coords:

[1] ny nyn

$boundary:

$boundary$x:

[1] 0.0 0.0 9.6 9.6

$boundary$y:

[1] 10 0 0 10

An object of class'spp" is a data frame with two attribute$coords" declares
which columns give the spatial coordinates, afgbundary" which gives the
boundary of a polygon within which the pattern was observed. (This defaults to
the bounding rectangle aligned with the axes, but the use of that is not advisable.)

We can reproduce Figure 14.9 quite closely by

par(pty = "s", mfrow=c(2,2))
plot(pines, boundary = T)

Lhat(pines, maxdist = 5)

Lenv(pines, 25, process = "binomial", maxdist=5)
Lhat(pines, maxdist =1.5)

Lenv(pines, 100, process = "Strauss", maxdist = 1.5,

cpar = 0.2, radius = 0.7)
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As this code showsLenv can simulate from several point process models: it
does so by calling the functionake . pattern whose functionality is equivalent
to that of our functionsPsim, SSI and Strauss plus certain Poisson cluster
processes.

There is no way to estimate parameters of point process models in the current
release of S+SATIALSTATS, but it does have functionBhat and Ghat to use
nearest neighboumethods, and functiointensity to estimate the intensity
function of a heterogeneous point process. (This is closely related to bivariate
density estimation.)
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