
POLYMARS

Charles Kooperberg Martin O’Connor

December 12, 1997

1 Introduction

In this document we describe the POLYMARS procedure. POLYMARS is a variation on
the Multiple Adaptive Regression Spline (MARS) procedure of Friedman (1991)[6], that was
introduced by Kooperberg, Bose and Stone (1997)[7]. In POLYMARS a multiple regression
function is approximated using linear splines and their tensor products. POLYMARS can
take multiple responses and can be used for classification. The POLYMARS procedure has a
substantial number of options that make it a convenient tool for modeling. POLYMARS is
implemented to be applicable to large data sets.

2 Description of POLYMARS

The model

We assume that regression data is generated from a “true model”

Y = f(X1, . . . , Xp) + ε.

In POLYMARS the function f is approximated using functions that depend on only one or
two of the xi. That is, we use the model

f(X) = g0 +
∑
j1

gj1(Xj1) +
∑

j1<j2

gj1j2(Xj1 , Xj2) + ε

Stone et. al (1997)[10] motivate such an approximation from the perspective of ANOVA de-
compositions in which higher order interactions are ignored.

POLYMARS uses linear splines and their tensor products to model the functions g(). A one
dimensional linear spline can be written in the form

g(x) = b−1 + b0x +
K∑

k=1

bk(x− tk)+,

1

where

(x− tk)+ =

{
x− tk if x ≥ tk,
0 otherwise,

and the knots tk are in the range of X. Thus, the function g is in a linear space with the K + 2
basis functions

1, x, and (x− tk)+, k = 1, . . . , K.

We model the gj1j2 , that depend on two predictors, using tensor product splines:

g12(x1, x2) = g1(x1)× g2(x2).

Therefore, we use the model

g0 = β0

gj1(Xj1) =
∑

i

βj1
i Bj1

i (Xj1),

gj1j2(Xj1 , Xj2) =
∑

i

βj1j2
i Bj1j2

i (Xj1 , Xj2),

where the B’s are the spline basis functions discussed above and the β’s are coefficients. We
can now write the POLYMARS model as

f(X) =
∑

i

βiBi(X),

where the basis functions can be of the form 1, xi, (xi − tk)+, xixj, (xi − tk)+xj, and (xi −
tk)+(xj − tl)+. The coefficients are fitted by the method of least squares with the coefficients,

matrix β̂, described by
β̂ = (XT X)−1XTY. (1)

In the rest of this document X (design matrix) is the matrix of basis functions at the predictor
values and Y is the vector of responses.

Model fitting

The basic algorithm for modeling f is:

Initially the constant function g0 in equation is fitted to the data.

do{
decide which basis functions are candidates for addition

decide which basis function can be added to the current model

add the best candidate

fit the model

evaluate the model

if the model is better than the best one, save it

}until(maximum model size is reached or no candidates are left)

do{

2

decide which basis function can be removed from the model

remove the one that is the worst predictor

fit the model

evaluate the model

if the model is better than the best one, save it

}until(minimum model size)

At each stage the procedure must find which potential basis functions can be added to the
model. This procedure continues until a maximum model size is reached. (The maximum size
of the model is a user specified parameter, the default of which depends on the sample size.)
Then stepwise deletion of basis functions is employed. The candidates for removal are those
that are currently in the model that can be removed taking a set hierarchical constraints, that
are described in the next section, into account.

As basis functions are added to the model the residual sum of squares gets smaller, no matter
how unimportant the new basis function is. So, the residual sums of squares, while providing
a good comparison for lack of fit between models of the same size, does not penalize for over-
fitting. Instead we use a modified form of the cross-validation criterion originally proposed in
Craven and Wahba[1] and modified in Friedman and Silverman[4] and Friedman[2].

GCV (f̂M) =
1
n

∑N
i=1[yi − f̂M (xi)]

2[
1− C(f̂M)

n

]2 , (2)

where C(f̂M) is a function proportional to the number of basis functions added, C(f̂M) =
d ×M Here d is a constant that penalizes for larger models, usually 3 ≤ d ≤ 5. This criterion
is evaluated at the end of each addition and deletion step and the best-model-so-far by this
criterion is stored. In our implementation this constant d is referred to as gcv and can be
specified by the user.

Which candidate functions considered for model selection

At the initial (addition) stage a constant model is fit. After that, the number of basis functions
that are candidates for addition depends on the number of possible knots per predictor. With
more than a few predictors and knots this can be a large number, so evaluating each possible
candidate is the computationally most expensive chore of POLYMARS. To keep the procedure
fast we limit the possible candidates we use at each addition step. We specifically take these
rules, since this procedure will prefer univariate functions and linear functions, which will yield
a better interpretable final model.

The candidate basis functions are:

• xi, i = 1, . . . , p;

• (xi − tik)+ if xi is already a basis function in the model;

3

• xixj if xi and xj are already basis functions in the model;

• xi(xj − tjk)+, if xixj and (xj − tjk)+ are in the model;

• (xi − tik)+(xj − tjk)+ if xi(xj − tjk) and xj(xi − tik) are in model.

The number of candidate knots is a user specified parameter. Initially the procedure com-
putes order statistics for each predictor and take a subset of these as knots. Typically we may
consider 20 or so potential knots for a predictor. Kooperberg, Bose, and Stone (1997) [7] argue
that by limiting the number of candidate knots, the resulting procedure will be an order of
magnitude faster than MARS.

The first iteration would fit a linear basis function to one of the predictors and the second
iteration would consider linear basis functions in one of the other predictors as well as basis
functions with knots on the predictor already added. This creates a preference in the procedure
for linear models over nonlinear ones, while interactions are only considered if they are between
predictors that are already in the model.

For the deletion stage, the candidates for removal are the basis functions in the model that,
when removed, yield a valid remaining model. Each of these basis functions is taken out in turn
and the RSS for each reduced model is calculated. The model which results in the smallest
increase in RSS becomes the new model.

3 Options of POLYMARS

Multiple Response Regression

When the response for each observation is a vector, we can use a multiple response version of
POLYMARS. The model fitted uses the same basis functions for each response but has different
coefficients. The coefficients are computed as in equation (1)

β̂ = (XTX)−1XT Y

The usual expression for the RSS

RSS = Y T Y − Y TXβ̂,

now becomes
RSS = YT Y −YT Xβ̂.

The responses, Y and the coefficients β̂ are matrices.

Model selection using a test set

A test data set may be used to select the best overall model. The models fitted in the stepwise
addition and deletion stages uses the original (training) data. The overall best model for these
is then selected by how well it fits the test data by a lack of fit criteria, usually RSS.

4

Using POLYMARS as a classifier

As a multiple response regression procedure POLYMARS can be used as a classifier, see Kooper-
berg, Bose and Stone [7]. If we have a vector Y that can take on a finite number of discrete
values (classes) it may be appropriate to fit POLYMARS model to predict the corresponding
classes based on a vector of covariates X′.

Rather than fitting a multiple classification model using a polychotomous likelihood, we
use POLYMARS with multiple response regression. Here for each case Y is the binary vector
of length C with one 1, corresponding to the correct class. A numerical response vector can
be given with the argument classify = T and the procedure will convert this response to
multiple binary columns (Y should contain only integers). If Y is a vector of characters is
always considered a classification problem (classify = T need not be set).

For classification by POLYMARS with a training set and test set the best model is selected
using a loss function with unit loss for misclassification on the test set, adjusted for model-size
similar to how we deal with RSS in equation 2.

Weights can also be supplied for the training and test sets.

4 Using POLYMARS

4.1 Arguments to POLYMARS

See the help files for more details.

• responses and predictors

The only required arguments needed for the POLYMARS function.

• weights

Case-weights, nonnegative.

• maxsize

The maximum number of basis functions that the model can grow to. This will not be
reached if no more candidate basis functions can be fit to the model at any addition step
with model-size less than maxsize. By default maxsize = min(6 × n

1
3 , n

4
, 100) where n is

the number of cases in the dataset.

• no.interact

For interpretability it may be desired that certain interactions should not be allowed. A
2×m matrix of these disallowed interaction terms is given to the no.interact argument.
Each row contains the indices of a pair of predictor variables that may not contain inter-
action terms in the model. The procedure doesn’t normally support interactions involving
categorical variable levels, see factors below for more about this.

5

• additive

Setting additive = T requires that the procedure only considers additive models. No
interaction term will be considered for the model.

• startmodel

An initial model may be specified. This has three main purposes. It suggests a starting
point in model selection for datasets where there are many possible predictors but a small
subset may be considered more important than the others. Further it may specify basis
functions that the user feels must be in the model. Using startmodel, basis functions can
be specified to be in all models considered.

Because of the order in which basis functions must be added for any one predictor the
procedure may be adverse to fitting the first linear term to predictors with a highly curved
relationship which is almost orthogonal to the predictor itself. In this case a linear basis
function may improve the RSS of the model very little beyond the intercept although two
basis functions would fit well. By introducing an initial linear term in the startmodel such
predictors have a better chance of being in the final model and if they are inappropriate
the procedure should remove them at the deletion stage.

See the help files for the required format of startmodel.

• knots

Crucial to the procedure in modeling non-linearity are the possible knots for the basis
functions. Ideally every data point for a predictor should be considered as a knot location.
However due to computational expense it is usually better to consider only a subset of the
data points.

See the help files for the possible formats of startmodel.

• knot.space

As noted in the section on the knots argument, the knots are selected as evenly spaced
ordered statistics of the original data points, constrained to be at most every third order
statistic. This is a numerical stability safeguard as basis functions with knots too close in
the model may cause the design matrix to be nearly singular and unstable. This can be
changed with the knot.space argument.

• factors

Categorical predictors are converted to dummy zero-one variables so a factor of k levels
can have at most k − 1 of its levels in the model. The factors argument specifies which
predictor variables are to be treated as categorical. All unique values in the data-set for
that predictor are then treated as levels.

The procedure doesn’t support interactions involving categorical variables. This can be
gotten around by some pre-processing of the data, converting categorical variables into
dummy 0/1 variables not defined as categorical.

• classify

For a classification problem the responses can be treated as classes instead of a continuous
variable. If the response is a vector of characters the procedure will automatically perform

6

POLY MARS with classification. If the response is of integer form this is done when
classify = T is given as an argument. See Section 3. If ts.resp and ts.pred are given
as arguments, the rate of misclassification of the test set response will be used to select
the overall model for the best model at each step. It is adjusted for model-size as RSS is.
Candidate basis functions are still evaluated by RSS.

• ts.resp and ts.pred

At each step a candidate is selected for addition or deletion and a new larger or smaller
model is then selected. Normally a GCV score based on the original training dataset is
computed, see Section 2, so as to compare the model selected at each step adjusting for
model size. When ts.resp and ts.pred are arguments, the RSS of the test set is used to
find the best overall model from the models produced at each addition and deletion stage.

• ts.weights

Case-weights for the test set, nonnegative.

• tolerance

We also take advantage of the fact that XT X grows only by adding a row and column
when we compute (XT X)−1 after one addition step. By storing the (XT X)−1 after each
addition step the new (XT X)−1 from an X matrix with one more column can be computed
without direct matrix inversion. Using a result from Rao[9] p.33 :- When A and D are
symmetric matrices and all inverses exist

(
A B
BT D

)−1

=

(
A−1 + FE−1F T −FE−1

−E−1F T E−1

)

where E = D− BTA−1B and F = A−1B.

The only inverses needed are A−1 which is the (XT X)−1 of the model produced by the
previous iteration and D−1 which in our case is a scalar (=

∑
Bi(xi)

2 for the new basis
fit). So the initial (XT X)−1 is a scalar and it is built on to get all the following (XT X)−1s.
The B and D components are gotten from the candidate part of the Y TX | XT X matrix.

This matrix inversion must be done for each candidate at each step of the procedure and
so benefits greatly from being fast.

Normally inverting an r×r matrix requires 0(r3) operations but here it is reduced to 0(r2).
So Y TX and (XT X)−1’s main components are stored from iteration to iteration. The X
matrix is also stored and updated for calculating inner products with new candidates.

This procedure is reversed during the deletion stage of the algorithm.

It has been found that the size of the element E which is a number in our case is important
for stability. Basis functions that cause the design matrix to become unstable (nearly
singular) produce either very large or very small values for E. To avoid instability of
the numerical procedure, (computing (XT X)−1), candidate basis functions are rejected if
they produce values of E less than the value of tolerance or greater than 1 divided by
tolerance. The default of tolerance is 1.0× 10−5.

7

Note This implementation uses a matrix inversion function from the Lapack libraries.
This function is called if there is an initial model specified and once per addition/deletion
step to update the (XT X)−1 matrix.

• verbose

When verbose = T is given as an arguement some information is printed during the model
fitting. A + means an addition to the model, a - means a basis function is taken away.
The model size is printed next and the basis function which is added or deleted.

4.2 Other functions

See the help files for details

• plot.polymars

Plots 1 and 2 predictor graphs of a model returned from polymars.

• predict.polymars

Computes fitted values of a model returned from polymars.

• print.polymars, summary.polymars

Prints formatted output of a model returned from polymars.

4.3 Interpreting the returned model

• mymodel<-polymars(theresponse,thepredictors)

• The visible model
Using summary or print (which defaults to summary) on an object returned from polymars

prints out three components of the POLYMARS object “mymodel”.

– The call which produced the object.

– An Splus data-frame, fitting which contains certain statistics about the model fitting
routine. Each row represents one step in the fitting routine. The first column 0/1
has a 1 for an addition step and a zero for a deletion step. The second column, size,
contains the resulting number of basis functions in the model after this step. Next
there is a column RSS containing the residual sum of squares. For multiple response
regression or classification there will be more than one column RSS1, RSS2. . ., one
for each response or class.

The last column contains the measure of fit which used to find the best overall model.
It is normally GCV for generalized cross validation, see Section 2. But it can also be
T.S. RSS for test set residual sum of squares or T.S.M.C. for test set misclassification,
see Section 3.

8

– The POLYMARS model itself is printed as a data-frame, each row corresponding to
a basis function. The first row corresponds to the intercept. The first four (or five)
columns relate to the basis function and the last column (more than one for multi-
ple response regression or classification) contains the coefficients. For classification
coefficients see also conversion below.

The first column pred1 contains the index of the first predictor of the basis function.
Column knot1 is a possible knot in this predictor. If this column is NA, the first
component is linear. If any of the basis functions of the model are categorical then
there will be a level1 column. Column pred2 is the possible second predictor involved
(if it is NA the basis function only depends on one predictor). Column knot2 contains
the possible knot for the predictor pred2, and it is NA when this component is linear.
For example the following model

pred1 knot1 level1 pred2 knot2 coefs SE

1 0 NA NA 0 NA 59.123913 9.0277

2 13 NA NA 0 NA -5.508833 2.2838

3 13 6.29 NA 0 NA 4.834013 1.9678

4 4 NA 1 0 NA 9.486980 2.6050

has an intercept of 59.12 and predictor 13 has two terms in the model, a linear term
with coefficient−5.51 and a term with a knot (X13−6.29)+ with coefficient 4.83. One
level of variable 4 is in the model (this was actually a 0/1 variable) with coefficient
9.49. Standard errors for the coefficients are also included.

A line such as

pred1 knot1 pred2 knot2 coefs SE

2 0 3 0.28 12.45667 3.3382

corresponds to a basis function X2× (X3− 0.28)+ with coefficient 12.46.

• The invisible attributes

– model.size contains the number of basis functions in the returned model.

– fitted and residuals contain the fitted values and the residuals of the original dataset
used to fit the model.

– responses contains number of responses per case in original dataset.

– ranges.and.medians is a 3 × p matrix, where p is the number of predictors in the
original dataset, each column corresponding to a predictor. Rows 1 and 2 contain
the minimum and maximum values of the predictor and row 3 contains the median
value of the predictor. These are computed from the original (training) dataset and
are used in the plotting function.

– factor.matrix is is a r × s matrix where r is the number of categorical predictor
variables in the model and s is the maximum number of levels that any of these has
+2. Each column represents a categorical variable. The first row contains the index of
the predictor, the second row contains the number of levels it has and the remaining
rows contain the value of each level (filled out to the end with NA’s if necessary). This
is used in the plotting function.

9

– conversion is a c × 2 matrix where c is the number of classes or categories in the
response when POLYMARS is used as a classifier. In classification a single response
vector is split up into a multiple response matrix with each column corresponding to
a class and each case having a 1 in the column corresponding to it’s original response
and all other columns zero.

In the conversion matrix each row corresponds to one class. In the first column
it’s original class, as a character or number, is recorded. The second column holds
the response number, or column index of the new response matrix. The coefficients
of model are ordered according to this numbering. It is used for computing further
fitted values (classes).

5 Examples

5.1 Boston housing data

The data for this example comes from Statlib, (http://lib.stat.cmu.edu/). The data-set
contains variables on various criteria such as distance to urban amenities, pollution and crime
which may effect house prices. The data is originally from Harrison and Rubinfeld [5].

The variables in this data set are:

1. per capita crime rate by town.
2. proportion of residential land zoned for lots over 25,000 sq.ft.
3. proportion of non-retail business acres per town.
4. Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
5. nitric oxides concentration (parts per 10 million)
6. average number of rooms per dwelling
7. proportion of owner-occupied units built prior to 1940
8. weighted distances to five Boston employment centers
9. index of accessibility to radial highways
10. full-value property-tax rate per $10,000
11. pupil-teacher ratio by town
12. 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
13. % lower status of the population
14. Median value of owner-occupied homes in $1000’s

For this regression we left all variables untransformed. The response variable is x14, the
median value of owner-occupied homes in $1000’s. For demonstration we asked for 15 possible
knots per predictor, some predictors will have less than this, for example (x2 has 73% of it’s
cases equal to zero) so will have less knots. Variable 4, x4, is specified as a categorical variable
(this is a bit redundant as it only has two levels).

The procedure will use a test set and training set instead of the usual GCV parameter to
select the model so we split the data into two groups.

For interpretation of the final model we may want to exclude certain possible interactions

10

such as a nitrous oxide/rooms per dwelling effect. In this example we picked two interactions
that we didn’t want to see in the model, those between x5 and x6 and between x3 and x11. For
a realistic analysis there are other interactions which are just as uninterpretable.

The Splus code was
index<-sample(nrow(boston.dat),nrow(boston.dat)/2)

dni<-matrix(c(5,6,3,11),byrow=T,ncol=2)

boston.mars<-polymars(boston.dat[index,14], boston.dat[index,-14],

knots=15,factor=4, ts.resp=boston.dat[-index,14],

ts.pred=boston.dat[-index,-14], no.interact=dni)

The returned model was:

Basis function Coefficient
Intercept -115.92
x1 -0.18
x6 31.10
(x6 − 6.44)+ 5.94
(x6 − 7.84)+ -9.37
x8 -43.72
(x8 − 1.53)+ 43.07
x11 11.34
(x11 − 17.80)+ -2.02
x13 -1.21
(x13 − 5.52)+ -1.98
x6 × x11 -1.56
x8 × x13 0.04
x11 × x13 -0.07

This model has a multiple R2 of 0.93.

5.2 A simple function of ten variables

This example is taken from Friedman’s MARS [3] paper which as an example illustrates the
ability of the procedure to find structure is data while ignoring noise. The data is created using
the function

f(x) = 10 sin(πx1x2) + 20(x3 − 1

2
)2 + 10x4 + 5x5 + ε

in a n = 10 dimensional hypercube using N = 100 points. Covariates were drawn from a
uniform distribution and ε is from a standard normal distribution. Figure 1 shows the original
function without noise for variables x1, x2 and x3. f(x) is linear in x4 and x5.

This example with it’s highly curved relationships is not an ideal setting for POLYMARS
with it’s piecewise linear splines. This is particularly true for x3 as our procedure insists that a
linear basis function is the first term fit to any variable. A linear term will not improve the fit
any more than just the constant intercept term so the model building procedure will be averse

11

to adding any x3 terms. For this reason we specify x3 to be in the startmodel.

The model with gcv equal to 3.0 and the default number of knots, knots = 20.

The Splus code was
mars2 <- polymars(responses = yy, predictors = cbind(x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10), gcv = 3, startmodel = c(3, NA, 0, 0))

12

The returned model was

Basis function Coefficient
Intercept -2.21
x1 13.83
x2 13.18
(1− 0.71)+ -23.50
(2− 0.55)+ -12.16
x3 -10.18
(3− 0.45)+ 17.94
x4 9.37
x5 4.69

Figure 2 shows the fitted functions for x1, x2 and x3. The coefficients of x4 and x5 are quite
close to that of the original function. The procedure works quite well in picking up the main
structure present in the data without picking up any of the 5 noise covariates.

The introduction of an initial linear term to detect U-shaped relationships is something that
would be explored in exploratory data analysis.

Calling POLYMARS with a linear term for all 10 variables in startmodel may be also a
reasonable thing to do. The maximum size the model should grow to (maxsize), was set to
35 to compensate for these initial basis functions being already in the model (by default the
maximum size is 25 for this size of a dataset, see section 4). The model produced was very
similar to the one above with one extra basis function, x6. This had a coefficient of −2.43. It
did pick up one of the noise variables but regressing the x variables on y using Splus function
lm fits a coefficient of −3.35 on x6 with a t-value of −3.37 with 89 degrees of freedom, the most
“significant” of the noise variables.

This example was original chosen to demonstrate the capabilities of a different procedure,
but this piecewise linear MARS implementation works quite well.

5.3 Phoneme data

The source of this data is the Center for Spoken Language Understanding in Portland, Oregon.
A full description of the data can be found in Kooperberg and Stone [8]. The data used in this
example is a subset of the original dataset consisting of a three class response, corresponding
to three phonemes; the vowels in beet, bet and bought. The predictor set consists of 81
variables. These variables were obtained by processing the audible spectrum of the utterance
that produced each phoneme, to produce perceptual linear predictive (PLP) features. The
dataset consists of a training set of 14,735 cases and a test set of 10,167 cases. We selected
a random subset of 1000 cases from the training set and 300 from the test set although this
implementation has also be used on the full set.

13

The model produced contained 17 of the predictor variables summarized as follows:
Intercept
Linear variables 9
Variables with 1 knot 5
Variables with 2 knots 1
Variables with 3 knots 1
Interactions with 2 linear terms 12
Total number of basis functions (with intercept) 39

Fitted values were obtained from this model for the remaining 13,736 cases. The model had a
misclassification rate of 6% on this data.

The Splus code was
index1<-sample(1:14736,1000)

index2<-sample(1:10617,300)

phoneme.mars<-polymars(phontr.dat2[index1,1],phontr.dat2[index1,-1],

ts.resp=phonts.dat[index2,1],ts.pred=phonts.dat[index2,-1],

knots=30,classify=T)

predictions<-predict.polymars(phoneme.mars,phontr.dat[-index1,-1],classify=T)

Appendix: Outline of the program

The basic program flow

1. Mesh computed

If the possible knots for each predictor are not given as an argument knots are calculated
for each predictor. They as selected as evenly spaced order statistics.

2. Initial model fit

If an initial model is an argument to polymars, it is checked for consistency to the addition
of terms ordering and then fit. Any knots involved are added to the mesh. If no initial
model is specified an intercept is fit.

3. Addition iteration

(a) All possible (new) candidates are found and stored.

(b) The best of these candidates is found

(c) The best of candidate is added to the model and removed from the candidates. If no
candidate can be fit, addition stops.

(d) If largest model size specified has been reached, addition to the model stops.

4. Deletion iteration

(a) From all possible candidates for removal from the model, the best one is calculated

14

(b) The best candidate for removal is taken out of the model

(c) If the smallest possible size is reached the deletion stage stops

5. Best model is reported

References

[1] Craven, P., and Wabha, G. (1979), Smoothing noisy data with spline functions: estimating
the correct degree of smoothing by the method of generalized cross-validation, Numerical
Mathematics, 31, 317–403.

[2] Friedman, J.H. (1988), Fitting functions to noisy data in high dimensions. In Comput-
ing Science and Statistics: Proceedings of the Twentieth Symposium on the Interface,
(E.J. Wegman, D.T. Gantz and J.J.Miller, eds.) 13–43. American Statistical Association,
Alexandra, Virginia.

[3] Friedman, J.H. (1991), “Multivariate Adaptive Regression Splines (with discussion),” The
Annals of Statistics, 19, 1–141.

[4] Friedman, J.H., and Silverman, B.W. (1989), “Flexible parsimonious smoothing and addi-
tive modeling,” Technometrics, 31, 3–39.

[5] Harrison, D. and Rubinfeld, D.L. (1978), “Hedonic prices and the demand for clean air,”
J. Environ. Economics & Management, 19, 81–102.

[6] Hastie, T.J., and Tibshirani, R.J. (1994), Generalized Additive Models, Chapman & Hall.

[7] Kooperberg, C., Bose, S., and Stone C.J. (1997), “Polychotomous Regression”, Journal of
the American Statistical Association, 92, 117–127.

[8] Kooperberg, C., and Stone C.J. (1997), “Using the Stochastic Gradient Method to fit
Polychotomous Regression Models”, University of Washington, Department of Statistics,
Technical Report 319.

[9] Rao, C. R. (1989), Linear Statistical Inference and Its Applications(2nd ed.), Wiley & Sons.

[10] Stone, C. J., Hansen, H., Kooperberg, C., and Truong, Y. K. (1997), “The use of polyno-
mial splines and their tensor products in extended linear modeling (with discussion),” The
Annals of Statistics, to appear.

15

Figure 1: Original function without noise

 0
0.2

0.4 0.6 0.8
1

X1
 0

0.2

0.4

0.6

0.8
1

X2

4
6

8
1
01

21
4
1
6

Y

X3
Y

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5

Figure 2: POLYMARS fit of the noisy data

0.2 0.4 0.6 0.8

Predictor 10.2

0.4

0.6

0.8
Predictor 2

 0
5

1
0

1
5

2
0

R
e
s
p
o
n
s
e

Predictor 3

R
e
s
p
o
n
s
e

0.0 0.2 0.4 0.6 0.8 1.0

1
7

1
9

2
1

16

