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1 Introduction

This software package contains functions to fit several different non-linear sur-
vival models. There are three main functions, each with predict, print, and sum-
mary methods.

The first function,survnnet, fits discrete time models of various sorts, andpara-
metricmodels in continuous time. The second,phnnet, fits proportional hazards
models in continuous time, and the thirdphtnnet, fits a time-varying version of
phnnet, where the ratio of hazards varies over time.

This explanation is written in terms of analysing the time to relapse of breast
cancer patients but the software is applicable in any survival context.

2 Background

Traditional survival models are linear in the predictors. Various non-linear meth-
ods have been suggested (splines, trees and local methods), but none has become
widely used. Neural network models provide an alternative to these methods and
offer a relatively parsimonious framework compared to that of splines.

Details ofnnet, the neural network package on which these functions are based,
may be found in Venables and Ripley (1997).

In our survival problem, we take our covariates as inputs to the net and the time
to relapse as the output(s): neural network models can then be used to extend
the various statistical models. We can fit unspecified non-linear functions of the
covariates and also allow the effect of the covariates to vary with time. In some
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models the time to relapse appears as an input rather than an output, the output
being an indicator of relapse or not at that time.

The simplest method considers survival for some fixed number of months or years,
and ignores patients censored before that time, thereby giving a standard two-class
classification problem. Omitting censored patients may bias the result, however.
If we can estimate the survival probability for these censored patients, we can
include them and hope to reduce the bias.

There are several ways to use more than two intervals, but only one will be de-
scribed here: this estimates the probabilities of relapse in the time periodsless
than one year, one to two years, two to three years, three to five years, and greater
than five years. We can now include all patients for whom the outcome for at least
the first time period is known, thus reducing the bias due to censoring. We fit a
model which ignores the ordering of the outputs, since this can be done with a
softmax network: an ordinal model is available in the packagenolr developed by
Mathieson (1996), and in our experience is a better model.

Using continuous time values allows the problem to be treated as regression rather
than classification. The package allows fitting of four non-linear parametric mod-
els: exponential, Weibull, log-logistic and log-normal. It also includes functions
to fit non-linear proportional hazards models, and a time-varying model based on
the proportional hazards model where the ratio of hazards is allowed to vary over
time.

3 Models

We work in the framework of a non-zero random variableT representing the time
to relapse of a patient, or in the discrete time case, a multinomial (or binomial)
variableY which takes the value 1 if a relapse occurs within a particular time
period and 0 otherwise.

3.1 Discrete time

The simple model which predicts directly the probability of relapse within 5 years
is a standard classification network with likelihood function∏

patients

pti
i (1− pi)

(1−ti)
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and log likelihood ∑
patients

ti log pi + (1− ti) log(1− pi) (1)

wherepi is the probability of relapse within five years for theith patient andti,
the target, is 1 if the patient relapsed within five years and 0 if not.

In the case of censored observations we do not know the outcome. If we wish
to include these patients with an estimate of their outcomes, we would include
them twice, once with target 1, with weight equal to their estimated probability of
relapse before five years,t̂i say, and once with target 0, with weight1 − t̂i. This
weights their contribution to the log likelihood, and leads to the same expression
as (1), usinĝti in place ofti.

The model requires entropy likelihood fitting, one logistic output unit, and may
include skip-layer connections if desired:

plearn <- survnnet(ti ~ ., data=X, decay = 0.1, size=2,

bias.decay=25, entropy = T, skip = T)

The other classification network estimates probabilities of relapse in the time pe-
riods less than one year, one to two years, two to three years, three to five years,
and greater than five years. We include all patients for whom the outcome for at
least the first time period is known and obtain the likelihood∏

patients

li∑
k=mi+1

pki (2)

wheremi is the last time period theith patient is known to have survived without
relapse,li is the final time period during which the patient may have relapsed, and
pki is the probability that theith patient relapses in time periodk. For a patient
known to relapse in the second year, say,mi + 1 = li = 2, while for a patient
lost to follow-up in the third time period without known relapse we would have
mi = 2, li = 5.

We ignore the ordering of the time periods, and fit the model

log pk − log p1 = ηk(x) (k = 2, . . . , 5)

(anη1(x) is not required: since the probabilities must add to 1 only four can vary
independently). This model is fitted using asoftmaxneural network where we first
obtain the outputsyk from a network with five linear output units:

yk =
∑

j

wjkxj +
∑

h

whk`

(∑
j

wjhxj

)
(k = 1, . . . , 5)
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and then calculate the probabilities by

pk =
exp(yk)∑
l exp(yl)

.

(Here we have setηk(x) = yk − y1, for k = 2, . . . , 5. The outputy1 is not
necessary, but a symmetric model is preferred when using weight decay.)

This can be fitted with the following

plearn <- survnnet(cat ~ .,data=X, decay = 0.1, size = 2,

bias.decay=25, censored=T, skip = T)

Here the variablecat should be set up to be a matrix, theith row corresponding
to theith patient, with value 1 for time periods betweenmi + 1 andli and zero
otherwise.

The output is the estimated absolute probability of relapse in each of the intervals:
to predict prognosis, consider the cumulative probability over the intervals.

3.2 Continuous time

3.2.1 Parametric models

Details of the density functions and survivor functions are standard: they are
quoted here to demonstrate the parametrisation used in the network. This differs
from that used insurvreg, for example, in having the coefficients of the model
reversed in sign.

Exponential distribution

f(t) = λ exp(−λt), S(t) = exp(−λt).

Weibull distribution

f(t) = λp(λt)(p−1) exp(−(λt)p), S(t) = exp(−(λt)p).

Log-logistic distribution

f(t) =
λp(λt)(p−1)

[1 + (λt)p]2
, S(t) =

1

1 + (λt)p
.

Log-normal distributtion

f(t) = 2(π)−1/2pt−1 exp

(
−p2(log(λt))2

2

)
, S(t) = 1− Φ(p log(λt))

4



whereΦ is the incomplete normal integral.

In all cases, we modellog λ as a function ofx by a neural network with a single
linear output. Sincep must be positive, we useα = log p in the optimisation. The
shape parameter does not depend on the inputs: a single value for the training data
will be fitted. Again, skip-layer units may be used if desired.

For example, to fit a log-logistic model,

plearn <- survnnet(Surv(RFS,Relapse) ~ ., data = X,

model = ’llog’, decay = 0.1, bias.decay = 25, size = 2,

skip = T, alpha =0.1)

3.2.2 Proportional hazards

For this model we assume only that the ratio of the hazards for two patients is
constant over time:

h(x, t) = h0(t) exp η(x).

whereh0, thebaseline hazard, is unspecified.

We modelη(x) as the output from a neural network with one linear output unit.
We omit the bias on the output unit since this is incorporated in the baseline hazard
h0.

The log partial likelihood is

∑
r

(
η(xr)− log

∑
a

exp η(xa)

)
. (3)

wherer runs over the relapses only anda runs over all the patients at risk at the
time of this event. The censored patients only occur in the denominator. The
partial likelihood is invariant if a constant is added to each of the scoresη(x).

In practice relapse times may be tied: they may be recorded only to the nearest day.
Various adjustments are possible for this case: we chose to break them arbitrarily,
as the difference in partial likelihood will be small unless there are many ties.

This may be fitted using the following

plearn <- phnnet(Surv(RFS,Relapse) ~ ., data=X, decay = 0.1,

size = 2, skip=T, bias.decay=25)

plearn <- phnnet(Relapse ~ ., data=X, decay = 0.1, size = 2,

skip=T, bias.decay=25)
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The second form is acceptable if the data are sorted in decreasing order of RFS,
otherwise the former will allow the sort to be performed byphnnet.

The baseline cumulative hazard (estimated by the Breslow estimator) can be ob-
tained by using the optiondohaz=T.

3.2.3 Time-varying

This model is similar to the proportional hazards one above but relaxes the re-
striction that the effect of covariates must be constant over time. We allow the
functionη to depend on time as well as the covariatesx. We want the model to
vary smoothly with time, so we divide the whole range of follow-up times into a
small number ofzones, and use the number of the zone as an input to the neural
network, alongside the covariates. The model becomes

h(x, t) = ho(t) exp η(x, t).

This is a very flexible model, since each patient can have a different shaped hazard
function. The amount of flexibility can be controlled by the number of zones used,
and by the regularisation used in the fitting process. The log partial likelihood
changes subtly:

E = −
∑

r

(
η(xr, tr)− log

∑
a

exp η(xa, tr)

)

The termsη(xr, tr) are calculated using the value ofη at the time zone corre-
sponding totr, the time of the eventr, and the partial sums over the risk set must
also be calculated using this time zone for all the patients. Thus as the time of the
event changes, so does the contribution to the partial sums of each patient in the
risk set. The same values ofη are used in calculating the derivatives.

The survival probability at 5 years differs from the proportional hazard case since
the cumulative hazard is different. The Breslow estimator can be used as before
to obtain a baseline cumulative hazard estimate (using times as in the calculation
of the partial likelihood and the derivatives), but the relationship of the patient’s
cumulative hazardH(x, t) and the baseline hazardH0(t) is different: if we define
zi to be the half-open interval[zi1, zi2), and let thezi denote the zones into which
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we have dividedt we have

H(x, t) =

∫ t

0

h0(u) exp η(x, u)du

=
∑

i

exp η(x, zi)

∫
zi

h0(u)du

=
∑

i

exp η(x, zi)[H0(zi2)−H0(zi1)].

From this formula we can derive the survival probability using the relationship
S(x, t) = exp(−H(x, t)).

The simplest way to use this model is

plearn <- phtnnet(Surv(RFS,Relapse) ~ ., data=X, decay = 0.1,

size = 2, skip=T, bias.decay=25, breakpts=c(0,733,1826,5000))

Other options for specifying the time zones are described in the help page.

Further details of these models and their use may be found in Ripley (1998).
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