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Exercises and Further Exercises

For convenience we reproduce the exercises from the text as well as further
EXercises.

Chapter 2

2.1  How would you find the index(es) of specified values within avector? For
example, where isthe hill race (in hills) with aclimb of 2100 feet?  Answer

2.2  The column ftv in data frame birthwt counts the number of visits.
Reduce this to a factor with levels 0, 1 and ‘2 or more’. [Hint: manipulate the
levels, or investigate functions cut and merge.levels.] Answer

2.3  Writeasimple function to compute the median absolute deviation (used in
robust statistics, see Chapter 8) median|x — 1| with default o the sample median.
Compare your answer with the S-PLUS function mad . Answer

24  Suppose x is an object with named components and out is a character
string vector. How would you make a new object obtained from x by excluding
any components whose names arein out ? Answer

Further exercises

25 Givenamatrix X of distinct rows and avector w of the number of times
that each row should occur, reconstruct the original matrix. Answer
2.6  From aquestion of Daniel Svozil.

‘| calculated a cross-correlation matrix. | want to print only members of this
matrix that are larger than 0.90 and | want to include dimnames in the answer.
Answer

2.7 Andrew McCulloch asked:

‘| have alarge data frame (5000 observations) and | would like the cases where a
variable indicating ethnic group isin (1,3,4,6,7). Answer
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Chapter 3

3.1 Thedataframe survey contains the results of a survey of 237 first-year
Statistics students at Adelaide University. For a graphical summary of al the
variables, use plot(survey). Note that this produces a dotchart for factor
variables, and a normal scores plot for the numeric variables.

One component of this data frame, Exer, is a factor object containing the
responses to a question asking how often the students exercised. Produce a
barchart of these responses. Use table and pie or piechart to create apie
chart of the responses. Do you like this better than the bar plot? Which is more
informative? Which gives a better picture of exercise habits of students? The
pie function takes an argument names which can be used to put labels on each
pie sice. Redraw the pie chart with labels. Alternatively, you could add alegend
to identify the slices.

You might like to try the same things with the Smoke variable, which records
responses to the question “How often do you smoke?’ Note that table and
levels ignore missing values; if you wish to include non-respondents in your
chart use summary to generate the values, and names on the summary object to
generate the labels. Answer

3.2 Makeaplot of petal width vs petal length of the iris datafor apartially
sighted audience, identifying the three species. You will need to double the
annotation size, thicken the lines and change the layout to allow larger margins
for the larger annotation. Answer

3.3 Plot sin(z) against =, using 200 values of = between —7 and 7, but do
not plot any axes yet (use parameter axes=F inthecall to plot.) Adda y axis
passing through the origin using the ‘extended’ style and horizontal labels. Add
an x axiswith tick-marks from —x to 7 inincrements of 7 /4, twice the usual
length. Answer

34 Cleveland (1993) recommends that the aspect ratio of line plots is chosen
so that lines are ‘banked’ at 45°. By this he means that the averaged absolute
value of the slope should be around +45° . Write afunction to achieve thisfor a
time-series plot, and try it out on the sunspots dataset. (Average aong the arc
length of the curve. See the function banking for Cleveland's solution.)Answer

35  The Trellis function splom produces a complete matrix of scatterplots,
as does the basic plotting functions pairs, but in earlier versions of S-PLUS
pairs only plotted the lower triangle of the matrix. Write afunction to emulate
the earlier behaviour. (HINT: look at pairs.default. The graphics parameter
mfg may be useful.) Answer

Further exercise

3.6 Ternary plotsareused for compositional data (Aitchison, 1986) wherethere
are three components whose proportions add to one. These are represented by a
point in an equilateral triangle, where the distances to the sides add to a constant.
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Write an S function to plot a matrix of compositions on a ternary diagram.
Apply thisto the dataset Skye on the composition of rocks on the Isle of Skyein
Scotland. Answer

Chapter 4

4.1  Write afunction to determine which integers (less than 10'°) in a given
vector are prime. Answer

4.2  Given two vectors a and b, compute s, where s[i] isthe number of
alj] <= plil, for a much longer than b. Then consider a[j] >= b[i].
(Based on a question of Frank Harrell.) Answer

4.3 Implement print and plot method functions for the class "1da" of
Chapter 13. (Perhaps the plot method should give a barchart of the singular
values or plot the data on the first few linear discriminants, identifying the groups
and marking their means.) Answer

4.4  Write an S function to increment its argument object. [Not as easy as it
looks: based on an example of David Lubinsky, Satistical Science 6, p. 356.]
Answer

45  Write a function that generates the al possible subsets of size r from a
set of size n successively rather than simultaneously. Given one subset it should
produce the next in lexicographic order, or report that no further subsets exist in
some convenient way that can be trapped in a program. Answer

4.6  For each row of amatrix X, we want to find which row of a matrix M is
nearest in the sense of Euclidean distance. Use apply to find out. (You may
assume that there is a unique nearest row.) Answer

4.7  For designed experimentsit is often useful to predict the response at each
combination of levelsof thetreatment factors. Writeafunction expand.factors
which takes any number of factor arguments and returns a data frame with the
factors as columns and each combination of levels occurring as exactly one row.

Try adirect solution without using expand.grid. Answer

Further exercises

4.8 Thedataframe OME hascolumns Correct and Trials giving the number
of correct responses out of that number of trials. Generate anew dataframewith a
row for each individual trial and anew column Resp giving the response (correct
or not) for that trial. Answer

4.9 Isthereavectorized way to derive partial irregular sumsof vector el ements?
For instance, for avector v <- c¢(1:100) we might want to create a new vector

new <- c(sum(v[1:8]), sum(v[9:25]), sum(v[26:50]),
sum(v[51:100]))

In reality the vectors are long (more than 10000 el ements). Answer
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410  Write afunction to generate n samples from a multinomial distribution
with probability vector p. Answer

4.11  Write an S function to convert file paths between MS-DOS-style (with
separator \\) and Unix-style (with /). Answer

412 Writeafunctionto convertacall (asreturnedby sys.call and match.call)
to a character string in areadable form. (Using as.character givesalist of
strings with information loss.) Does your answer work with aformula (which is
of mode call)? Answer

Chapter 5

51  Experiment with our dataset galaxies. How many modes do you think
there are in the underlying density?

Further exercises

5.2  Write functions to produce QQ-plots for a gamma and a Weibull distribu-
tion. Note that unlike the normal QQ-plot, the shape parameters may need to be
estimated.

5.3 Theideas used in bandwidth selection for kernel density estimation which
are implemented in width.SJ can also be applied to the choice of bin width in
a histogram (Wand, 1997). Implement such a bin-width estimator in S-PLUS.
Answer

54  Rice (1995, p.390) gives the following data (Natrella, 1963) on the latent
heat of the fusion of ice (cal/gm):

Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02
Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

(a8 Assuming normality, test the hypothesisof equal means, both with and without
making the assumption of equal variances.

Comparetheresult with aWilcoxon/M ann-Whitney nonparametric two-sample
test.

(b) Inspect the data graphically in various ways, for example boxplots, QQ-plots
and histograms.

(c) Fitaone-way anaysis of variance and compare it with your ¢— test.
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Chapter 6

Programming exercises

6.1 How do you obtain the standard prediction and confidence intervals for a
linear model fitted by 1m? Answer

6.2 How can we we add a confidence or prediction region to an existing plot
of asimple linear regression?
As an example, add a prediction region to Figure 6.1. Answer

6.3 Writeafunctiontofit alinear model by generalized least squares, that isto
minimize

(y—XB)'W(y - XB)
for a given symmetric positive definite matrix W, or given ¥ = W~1. Answer

6.4 Implement a ridge regression (Brown, 1994, Sen & Srivastava, 1990)
functionin S. Answer

Data analysis exercises

6.5 The data frame rubber in the library MASS gives 30 measurements
of rubber loss under accelerated testing together with the hardness and tensile
strength of the rubber itself. Explore the data in brush, then fit linear and
quadratic regressions of loss on hard and tens. Select a suitable submodel
of the quadratic model, and inspect the fitted surface by a perspective plot.

6.6 Anayse the data on CPU performance in data frame cpus and compare
your model with that fitted by Ein-Dor & Feldmesser (1987). See also Ripley
(1994).

6.7  Criminologists are interested in the effect of punishment regimes on crime
rates. This has been studied using aggregate data on 47 states of the USA for
1960, available in data frame UScrime (Ehrlich, 1973, Vandaele, 1978, Raftery,
1995). Theresponse variableistherate of crimesin aparticular category per head
of population. There are 15 explanatory variables; most of these and the response
variable have been rescaled to convenient numbers,

(8) Anaysethesedata. Inyour report pay particular attention to how your model
was sel ected.

(b) Comment on the effect of the last two explanatory variablesin relation to the
criminologists' interest in the effect of punishment.

(c) Comment critically on the assumptions needed to draw conclusions from
aggregate studies such as this.

6.8  Susan Prosser collected data on the concentration of a chemical GAG in
the urine of 314 children aged from zero to seventeen years. The data are in data
frame GAGurine. Analyse these data, and produce a chart to help a paediatrican
to assessif achild’'s GAG concentration is‘normal’.
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6.9 TheJankahardnessdatain dataframe janka givesthedensity (Dens) and
hardness (Hard ) of a sample of Australian Eucalypt hardwoods. The problem is
to build a prediction equation for hardness in terms of density.

6.10 The Cars93 data frame gives data on 93 new car models on sale in the
USA in 1993. Use this dataset to predict fuel consumption from the remaining
variables. (HINT: Thefuel consumptionisin milesper USgallon. In metric units
fuel consumption is expressed in litres/100km, areciprocal scale.)

6.11 Thedatain Table 6.1 (from Scheffé, 1959, and in dataframe genotype)

Table6.1: Therat genotype data

Foster mother
Litter A B [ J

A 615 550 525 420
68.2 420 618 540
640 60.2 495 610
65.0 527 482
59.7 39.6
B 60.3 508 56,5 513
51.7 647 59.0 405

493 617 472

480 640 530

62.0

[ 370 563 39.7 500
36.3 698 46,0 438
68.0 670 613 545

55.3

55.7
J 500 595 452 4438
574 528 570 515
540 56.0 614 530
47.0 42.0
54.0

refer to rat litters which were separated from their natural mothers at birth and
givento foster mothersto rear. Theratswere classified into one of four genotypes,
A, B, I and J. Theresponseisthelitter average weight gain, in grams, over the
time of the study. The aim is to test whether the litters' and mothers’ genotypes
act additively and if this may beretained to test for differencesin litter and mother
genotype effects.
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Chapter 7

New exercises

7.1  Anayse the menarche dataset on the proportions of female children in
Warsaw at various ages during adol escence who have reached menarche (Milicer
& Szczotka, 1966) using both logit and probit links.

7.2  Knight & Skagen (1988) collected the data shown in the table during afield
study on the foraging behaviour of wintering Bald Eagles in Washington State,
USA. Thedataconcern 160 attempts by one (pirating) Bald Eagle to steal achum
salmon from another (feeding) Bald Eagle. The abbreviations used are

L =‘large S=‘small’; A =‘adult’ | = ‘immature’

Report on factors which explain the success of the pirating attempt, and give a
prediction formulafor the probability of success.

Number of  Total Sizeof Ageof  Sizeof
successful  number of pirating pirating feeding
attempts attempts Eagle Eagle Eagle

17 24 L A L
29 29 L A S
17 27 L I L
20 20 L I S
1 12 S A L
15 16 S A S
0 28 S I L
1 4 S I S

7.3  Thefollowing data are part of a survey by Dr Mutch of low weight births
in Scotland between 1981 and 1988. The table refers to 661 children with birth
weights between 650g and 1749g all of whom survived for at least one year. The
variables of interest are:

Cardiac: Mild heart problems of the mother during pregnancy.

Comps. Gynaecological problems during pregnancy.

Smoking: Mother smoked at least one cigarette per day during the first 6 months
of pregnancy.

BW. Was the birth weight less than 1250g?

Cardiac Yes No

Comps Yes No Yes No

Smoking Yes No Yes No Yes No VYes No

BW Yes| 10 25 12 15 18 12 42 45
No 7 5 22 19 10 12 202 205

Analysethistable.
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7.4 A survey was made of bicycle and other traffic in the neighbourhood of
the Berkeley campus of the University of Californiain 1993 (Gelman et al ., 1995,
p. 91). Sixty city streets were selected at random, with a stratification into three
levels of activity and whether or not the street had a marked bicycle lane. The
counts observed in one hour are shown in the table: for two of the streets the data
were lost.

Type of Bike
Street lane? Counts

Residential yes  bikes 6 9 10 13 19 20 18 17 35 55
other 58 90 48 57 103 57 86 112 273 64

Residential no bikes 12 1 2 4 9 7 9 8
other 113 18 14 44 208 67 29 154

Side yes  bikes 8 3 31 19 38 47 4 4 29 18
other 29 415 425 42 180 675 620 437 47 462
Side no bikes 10 43 5 14 58 15 0 47 51 32
other 5571258 499 6011163 700 90 1093 1459 1086
Main yes  bikes 60 51 58 59 53 68 68 60 71 63
other 15451499 1598 503 407 1494 1558 1706 476 752
Main no bikes 8 9 6 9 19 61 31 75 14 25

other 1248 1246 1596 1765 1290 2498 2346 3101 1918 2318

Report on these data, paying particular attention to the effects of bicyclelanes.

7.5 To study therelative survival capacities of two species of native and exotic
snails, here labelled A and B, groups of 20 animals were held in controlled
laboratory conditions for periods of 1, 2, 3 or 4 weeks. At the end of the period
the animals were checked for whether or not they had survived, but as the check
itself is a destructive process a longitudinal study with the same animals was not
possible. The groups were held in chambers where the temperature and relative
humidity were held fixed at three and four levels respectively. There were thus
2 x4 x 3 x4 =296 groupslad out in acomplete factorial design.

The data are shown in Table 7.2, where each entry is the number who did not
survive out of the 20 test animals. The data set is also available as the data frame
snails inlibrary MASS. Variable Species is atwo-level factor but treat the
other stimulus variables as quantitative.

(@) Fit separate logistic regression models on exposure, relative humidity and
temperature for each species, that isalogistic regression of the form
Species/(Exposure + Rel.Hum + Temp) .

(b) Fit paralel logistic regressions for the two species on the three stimulus
variables and show that it may be retained when tested within the separate
regressions model.
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Table 7.2: The snail mortality data

Species A Species B

Exposure Exposure
Rel. Hum. Temp. (° C) 1 2 3 4 1 2 3 4
60.0% 10 0O O 1 7 0O O 7 12
15 0 1 4 7 0 3 11 14
20 0 1 5 7 0 2 11 16
65.8% 10 0O 0 0 4 0O O 4 10
15 0 1 2 4 0 2 5 12
20 o o 4 7 0 1 9 12
70.5% 10 O o0 o0 3 0O O 2 5
15 o 0 2 3 o o0 4 7
20 0O 0 3 5 0 1 6 9
75.8% 10 0O 0 ©O 2 0 1 2 4
15 0O O 1 3 0O 0 3 5
20 o o0 2 3 0 1 5 7

(c) There are no deaths for either species for the 1 week exposure time. This
suggests a quadratic term in Exposure might be warranted. Repeat the
analysis above including such a quadratic term.

(d) Because deaths are so sparse aresidual analysisis fairly meaningless. Nev-
ertheless look at the residuals to see how they appear for this kind of data
Set.

(e) Isthere asignificant difference between the survival rates of the two species?
Describe qualitatively how the probability of death depends upon the stimulus
variables. Summarise your conclusions.

7.6 Anexperiment was performed in Sweden in 1961-2 to assess the effect of
speed limits on the motorway accident rate (Svensson, 1981). The experiment was
conducted on 92 daysin each year, matched so that day j in 1962 was comparable
today 5 in1961. On some daysthe speed limit was in effect and enforced, while
on other days there was no speed limit and cars tended to be driven faster. The
speed limit days tended to be in contiguous blocks.

The data set isgiven in the dataframe Traffic with factors year, day and
limit and theresponseisthe daily traffic accident count, y .

Fit Poisson log-linear models and summarize what you discover.

You might assume day occurs as a main effect only (fitting models with
interaction termsinvolving factors of 92 levels may take sometime and memory!),
but assessif an interaction between 1imit and year isneeded.

Check if the deviance residuals provide any hint of irregular behaviour.
1.7 The data given in data frame Insurance consist of the numbers of

policyholders n of an insurance company who were exposed to risk, and the
numbers of car insurance claims made by those policyholdersin the third quarter
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of 1973 (Baxter et al., 1980; Aitkin et al., 1989). The data are cross-classified
by District (4 levels), Group of car (4 levels), and Age of driver (4 ordered
levels). The other variables in the data frame are the numbers of Holders and
Claims.

Therelevant model istaken to be a Poisson log-linear model with offset log n .

() Fitaninitial model with all terms present up to the three-way interaction, that
IS

Claims ~ District*Group*Age - District:Group:Age
+ offset(log(Holders))

(b) Using stepAIC, or otherwise, prunethe model of unjustified termsand report
your findings.

Present your results as a table of estimated claim rates per policy holder for
each category of holder.

(c) Itisnot strictly valid to regard such data as having the obvious binomial dis-
tribution, since some policyholders may make multiple claims. Nevertheless
it should be a reasonable approximation. Repeat the analysis with abinomial
model and compare the outcomes on estimated claim rates (or in this case,
estimated probabilities of making a claim).

Chapter 9

9.1 Fortheweight loss example compare the negative exponential model with
guadratic and cubic polynomial regression alternative models, in particular check
the behaviour of each model under extrapolation into the future. Answer

9.2  Fit the negative exponential weight loss model in the *goal weight’ form,
equation (9.5), for the three goal weights, wy, = 110, 100 and 90 kg. Plot the
profiles and compare the local curvature measures. Answer

9.3 Themode used in connection with the Stormer datamay also be expressed
asageneralized linear model. To do thiswe write

frv 1
w— L2 Y121 + Y222

where v; = 1/61, v2 = [2/01, 21 = w/v and zo = —1/v. Thishasthe form
of ageneralized linear model with inverselink. Fit the model in thisform using a
quasi family with inverse link and constant variance function.

Back-transform the estimated coefficients and show that they agree with the
values obtained using the non-linear regression approach.

Also compute the estimated standard errors and verify that they also agree
with the values obtained directly by the non-linear regression approach.
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Finding the standard errors is more challenging. We need first to find the
variance matrix from the generalized linear model. The large sample variance
matrix for 3 is related to that for & by Var[B] = JVar[7] JT where J is
the Jacobian matrix of the inverse of the parameter transformation:

J = 9P1/0m 3ﬁ1/872}:[—1/ﬁ 0 }
0B2/0v1 0B2/02 /7 1/m

(To achieve close agreement you may need to tighten the convergence criteriafor
the glm fit, for example by setting eps=1.0e-10.) Answer

94  Sable parameters

Ross (1970) has suggested using stable parameters for non-linear regression,
mainly to achieve estimates which are as near to uncorrelated as possible. It turns
out that in many cases stable parameters aso define a coordinate system within
the solution locus with a small curvature.

The idea is to use the means at p well-separated points in sample space as
the parameters. Writing the regression function in terms of the stable parameters
is often intractable, but in the case of a negative exponential decay model of the
type we considered for the weight loss data it is possible if the points are chosen
equally spaced.

If thethree mean parameters, j; arechosenat x—points xy+id,, i = 0,1, 2,
show that the model may be written explicitly as:

_ 5s
L 1 (1o — p1)? (ul — Mz)(x w0/
po —2p1 + p2 po — 2p1 + p2 \ po — K1

Fit the negative exponential decay model to the weight loss data using this
parametrization and choosing, say, o = 40 days and §, = 80 days. Look
at the characteristics of the fit, including the correlations between the parameter
estimates. Explain in heuristic terms why they are relatively low.

Examine the profiles of the fit and check for straightness. Also look at the
local relative curvature measures'. Verify numerically that the intrinsic curvature
is unchanged (as it must be), but that the parametric curvature is much reduced.
Answer

9.5 Heteroscedastic regression models

A common heteroscedastic regression model specifies that the observations have
constant coefficient of variation, that is Y ~ N(u,0u?) where § > 0 and g
depends on regressor variables according to some linear model perhaps with a
link function such as 1 = expn. Write afunction to fit such models and try it
out using the Quine data. Compare with the negative binomial models fitted in
Section 7.4, page 243ff.

L For this rather complicated-looking model specification, using deriv3 to produce a model
function with gradient and hessian attributes may cause memory overflow problems on some
machines.
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New exercises

9.6 A deterministic relationship between pressure and temperature in saturated
steam can be written as

T
Pressure = aexp (6—)
v+T
where T' isthe temperature, considered the determining variable. Data collected
to estimate the unknown parameters «, 5 and ~ is contained in the data frame
Steam.

(a) Fit this model as a non-linear regression assuming additive errors in the
pressure scale. Devise a suitable method for arriving at initial values.

(b) Fitthe model again, thistime taking logarithms of the relationship above and
assuming that the errors are additive in the log(pressure) scale, (and hence
multiplicative on the original scale).

() Whichmodel doyou consider isbetter supported onthe basisof model checks?

9.7 Sarah Hogan collected dataon the * binaural hearing’ ability of children with
ahistory of otitis mediawith effusion (OME). Some of the data (and adescription
of the problem) arein dataframe OME . Fit asuitable non-linear model, and assess
if thereisachangein ability with age and OME status.

(&) The suggested model is a logistic curve that ranges from 0.5 at low noise
levels (when the response is effectively a guess) to 1.0 at high noise levels.
Then the most important parameter will be the noise level L75 at which the
child has a 75% successrate. The amount of data on each child issmall, so fit
amodel with acommon slope but a separate L75 for each child, and analyse
thefitted parameters by age and group. [You may want to look up thefunction
nlsList.]

(b) Consider alinear model for L75 on age, and differences between the OME
groups, for each type of noise stimulus. Assessthe significance of your results
viastandard errors and/or F -tests. Answer

9.8 Writeafunctionto fit agammadistribution to n observations by maximum
likelihood. Answer

9.9 McLachlan& Jones(1988) (seeaso McLachlan& Krishnan, 1997, pp. 73ff)
give the following grouped data on red blood cell volume, in 18 equally spaced
bins of width 7.2 fl, starting at 21.6 fl.

Set 1: 10 21 51 77 70 50 44 40 46 54 53 54 44 36 29 21 16 13
Set 2: 9 32 64 69 56 68 88 93 87 67 44 36 30 24 21 14 8 7

McLachlan and Jones fit a mixture of two normal densities on log scale by an
involved method using the EM algorithm. Fit this model directly to each set of
data by a small modification of the approach in Section 9.7.
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Chapter 10

10.1 Addthefitted linesfor thefinal model for the petrol datato Figure10.2.

10.2  Find away to plot the Sitka data which facilitates comparison of the
growth curves for the two treatment groups.

Add to your plot the fitted mean growth curve and some 95% confidence
intervals.

10.3  Consider how to explore the assumptions made for the 1me model for the
Sitka data. Arethe plot methodsfor 1me objectshelpful inthis? In particular,
how would you check the adequacy of the AR(1) model for ¢;; ? How much is
thislikely to matter?

104 The object Sitka89 contains the 1989 data on the same 79 Sitka trees
measured on 8 days in 1989. Analyse the 1989 data separately, and then in
conjunction with the 1988 data.

10.5 Investigaterestricting the covariance matrix of the random effectsin model
R.nlme3.

10.6  For the rabbit data, the PGB was administered in increasing doses at 10
minute intervals. Consider how to allow for seria correlation between measure-
mentsin an nlme fit and investigate if this might have any effect on the estimates
and conclusions. (It may help to start by considering each treatment separately.)

10.7 Consider models that use a multiplicative effect of treatment on the
asymptote A inthe Rabbit example, and explore the assumption of a constant
residual variance.

10.8 The default estimation method for 1me is REML but the default method
for nlme isML. Why do you suppose thisis the case? Investigate the difference
changing from ML to REML makes in both the small but complex Rabbit data
set and the larger but smpler Sitka set.

Note that the estimation method can be changed using update::

fmRML <- update(fmML, est.method="RML",
start=list (fixed=fixed.effects(fmML),
random=random.effects (fmML)))

but even starting from thisinitial value set the cal cul ations can still be quitelengthy.
For serially correlated structures such as sitka.nlme you may also want to set
aninitial valuefor alpha.

New exercise

10.9 Exercise 7 discussed non-linear models for an auditory perception experi-
ment. Theanalysistheredid not take account of the differencesbetween individual
subjects. Repeat the analysis using non-linear mixed-effects models.

[The models are much easier to specify with nlme, but the fitting process is
much slower. Exercise 8 may help.] Answer
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Chapter 11

New exercises

11.1 Thisdataframegilgais was collected on aline transect survey in gilgai
territory in New South Wales, Australia. Gilgais are natural gentle depressions
in otherwise flat land, and sometimes seem to be regularly distributed. The
data collection was stimulated by the question: are these patterns reflected in
soil properties? At each of 365 sampling locations on a linear grid of 4 meters
spacing, samples were taken at depths 0-10 cm, 3040 cm and 80-90 cm below
the surface. pH, electrical conductivity and chloride content were measured on a
1.5 soil:water extract from each sample.

Produce smoothed maps of the measurements.

11.2  Exercise 8 considered linear regression for the GAG in urine datain data
frame GAGurine . Consider using anon-linear or smooth regression for the same
task.

Chapter 13

New exercises

13.1 Dataframebiopsy containsdataon 699 biopsiesof breast tumours, which
have been classified as benign or malignant (Mangasarian & Wolberg, 1990). The
nine variables on each biopsy are arating (1 to 10) by the coordinating physician;
ratings on one variable are missing for some biopsies.

Analyse these data. In particular, investigate the differences in the two types
of tumour, find aruleto classify tumours based solely on the biopsy variables, and
assess the accuracy of your rule. [ You may need some of the ideas of Chapter 17.]

13.2 DataframeUScereals describes sixty-five commonly avail able breakfast
cerealsinthe USA, based on theinformation available on the mandatory food | abel
onthepacket. Themeasurementsare normalized to aserving size of one American
cup.

(i) Isthere any way to discriminate among the major manufacturers by cereal
characteristics, or do they each have a balanced portfolio of cereals?
(if) Arethereinterpretable clusters of cereals?

(iii) Can you describe why cereals are displayed on high, low or middle shelves?
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Chapter 15

15.6.1 Usetheinformation gained in the analysisof beav1 to refinethe analysis
for beav2.

15.6.2 15.6.2If you have access to the S-PLUS module S+SPATIALSTATS, con-
sider how to apply the spatial linear model function s1m to this problem.
Answer

15.6.3 Consider the problem of estimating the effect of seat belt legidation on
road accident casualtiesin the UK considered by Harvey & Durbin (1986).
The data (from Harvey, 1989) are in the series drivers.

New exercises

15.1 Dataset austres isaquarterly seriesof thenumber of Australian residents
from March 1971 to March 1994. It comes from Brockwell & Davis (1996) who
analyse the percentage quarterly changes and consider a fractionally differenced
noise model. Explore suitable modelsin S-PLUS. Answer

152 Repest exercise 11.1 as atime series problem.
15.3  Writeafunction to fit a spatial autoregression (Ripley, 1981) of the form

Y =0HY + X3+ N(0,0?)

by maximum likelihood. (Thiswill be a limited version of the s1m function of
S+SPATIALSTATS.) Apply thisto the beaver data example of Section 15.6.

(For fixed 0 thisisan exampleof exercise3, since Y hasamultivariate normal
distributionwithmean X 3 and variancematrix o2(S7S)~! where S = I-6H .
Given the eignedecomposition of H , the profile log-likelihood can be written as
afunction of 5 alone, and directly optimized over 3.) Answer

Chapter 16

New exercises

16.1 Repeat exercise 11.1 as a spatial statistics problem.
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Answers to Selected Exercises

Chapter 2

2.1. Oneway isto use

find.val <- function(x, val) seq(along=x) [x==val]
row.names (hills) [find.val (hills$climb, 2100)]

although in most cases it is easier to subscript directly by alogica vector, for
example row.names (hills) [hills$climb==2100] .

2.2. Three solutions are:

res <- factor(ftv); levels(res)[-(1:2)] <- "2 or more"
res <- cut(ftv, c(-1,0,1, 10))

levels(res) <- c("0", "1", "2 or more")
merge.levels(factor(ftv), c(1,2,3,3,3,3))

where thefirst is explained in the help page for merge.levels.

2.3. Weused

mad <- function(y, mu=median(y))
median(abs(as.vector(y)-mu))

where as.vector strips off the name attribute which median retainsin some
versionsof S-PLUS. (Notethat the system function by default calculates 1.4826 x
median|z — p| which is a consistent estimator of the standard deviation for a
Gaussian model.)

2.4. Theideais to find any indices where the strings in out match the names
of x and to use their negatives as an index vector. Matching is such a common
problem there is ageneral function, match, to doit.

x.in <- x[-match(out, names(x), nomatch=0)]

Note the use of nomatch=0 to generate a zero index (and hence no action) if
some string in out isnot the name of any component in x.

This solution relies on the uniqueness of the names of the object (which is
not guaranteed in al instances), since match will find only the first match. An
alternative approach is to match the namesin out and use logical indexing, by

x.in <- x[match(names(x), out, nomatch=0) == 0]
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2.5. All that isneeded is

X[rep(1:nrow(X), w), ]

2.6. Try this:

r <- cor(X)

rc <- format(r)
rc[r < 0.9] <= "
print(rc, quote=F)

Notetheuse of format to get consistent formating of the entries, format could
also be used to prune the number of significant digits, if required.

2.7. Thefollowing solution extends exercise 2.4.
Use match and theindexing capabilities. If thedataframeis df and the variable
IS ethnic the subset you want is

df [match(df$ethnic, <(1,3,4,6,7), nomatch=0) > 0, ]
Thefunction is.element of S-PLUS 4.0 implementsthisideaas afunction.

is.element <-
function(el, set) !is.na(match(el, set, nomatch = NA))
df [is.element (df$ethnic, c(1,3,4,6,7)), ]

Thisisan alternative way to use match which has the advantage here of working
even when the first argument is empty.

Chapter 3

3.1. To create a barchart of Exer wejust use plot (Exer) , Or
barplot (table(Exer), names=names (table(Exer)))

(Try them to seethe differences.) For apie chart, we need to tabulate the frequen-
ciesfirst:

exer.freq <- table(Exer)
exer.freq
Freq Some None

115 98 24

The command pie(exer.freq) will now create apie chart, but to add labelsto
the slices we use the names argument

pie(exer.freq, names=levels(Exer))

Adding alegend is accomplished by using legend withthe £i11 argument:
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legend(locator(1), names(exer.freq), £ill=1:3)

For the Smoke variable adightly different approach is needed if we wish to
include the missing value in the plot.

smoke.freq <- summary(Smoke)

smoke.freq

Heavy Regul Occas Never NA’s
11 17 19 189 1

Sincethe missing valuerepresents such asmall proportion of the data, we highlight
itwith explode=5 (because NA’s isthefifth category) soitisnot lost inthe pie:

pie(smoke.freq, names=names(smoke.freq), explode=5)
legend(locator(1), names(smoke.freq), fill=1:5)

Alternatives using Trellis graphics are

barchart(~ exer.freq, main="Exercise frequency")
piechart(~ exer.freq, main="Exercise frequency")
piechart(~ smoke.freq, explode = 5)

Adding legends and other annotationsiis |eft as a further exercise for the reader.

3.2. Thisis straightforward once the layout is adjusted. We just increased the
sizes of the margins which are to hold text.

ir <- rbind(irisl(,,1], iris[,,2], iris([,,3]1)[, 3:4]
irs <- c(rep("S", 50), rep("C", 50), rep("V", 50))

par (mar=c(7,7,7,5)) # more space on label sides
plot(ir, type="n", cex=2, lwd=2, tck=-0.02)

title("The Iris Data", cex=2)

text(ir, irs, col=c(rep(2,50), rep(3,50), rep(4, 50)))

On-screen thetitle sizeislimited by the displayable fonts under the motif driver
(and probably others).

3.3. Our solution was

x <- seq(-pi, pi, length=200)
plot(x, sin(x), type="1", axes=F, ylab="", main="sin(x)")
axis(2, pos=0, yaxs="e", las=1)
axis(l, pos = -1.1, at = pi*seq(-1, 1, 1/4), tck = -0.02,
labels = c("-Pi", "-3Pi/4", "-Pi/2", "-Pi/4", "O",
"Pi/4", "Pi/2", "3Pi/4", "Pill))
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3.4. We apply thisto the annual mean sunspot series. The function bank (based
on banking) computes an aspect ratio ar such that the average slope of theline
segments (dx, arxdy) is 45°. We adjust the aspect ratio by reducing the size
of one of the axes of the plot.

sunsp <- aggregate(sunspots, 1, mean)

bank <- function(dx, dy, iter = 20, tol = 0.5)
{
dx <- abs(dx)
dy <- abs(dy) [dx > 0]
dx <- dx[dx > 0]
mad <- median(dy/dx)
ar <- ifelse(mad > 0, mad, 1)
radians.to.angle <- 180/pi
for(i in 1:iter) {
distances <- sqrt(dx”2 + (ar * dy)~2)
orientations <- atan(ar * dy, dx)
avg <- (radians.to.angle * sum(orientations *
distances))/sum(distances)
if(abs(45 - avg) < tol) break
ar <- ar x (45/avg)
}
ar

}

bankplot <- function(x, y, type="1", ...)
{
dx <- diff(x/diff(range(x)))
dy <- diff(y/diff(range(y)))
ar <- bank(dx, dy)
pin <- par("pin")
ar <- ar/(pin[2]/pin[1])
oldpar <- par(pin=pin*c(1,ar)/max(1,ar))
on.exit (par(oldpar))
plot(x, y, type=type, ...)
}

bankplot (time(sunsp), sunsp)

3.5. The following function is based closely on pairs.default. We use mfg
to choose which panel tofill ina n x n grid. Aswe only ever write to the panels,
we need to clear the plot first with acall to frame.

mypairs <- function(x, labels = dimnames(x) [[2]],
panel = points, ...)
{
doaxis <- function(which, dolabel = T)
axis(which, outer = T, line = -0.5, labels = dolabel)
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setup <- function(x, y, ...)
.S(plot(range(x[!is.na(x)]), range(y[!'is.na(y)]),
type = "n", axes = F, ...), "plot")

x <- as.matrix(x)

if (is.character(panel)) panel <- get(panel, mode="function")

n <- ncol(x)

oldpar <_ par(llomall , llmarll , "CeX" s Htck" , Ilmfgll , llmgpll ,

"mex", "mfrow")
oldcex <- par("cex")
CEX <- oldcex * max(7.7/(2 * n + 3), 0.6)

par(mfrow = c(n, n), mgp = c(2, 0.80, 0), oma = rep(3, 4),

mar = rep(0.5, 4), tck = -0.03/n)

on.exit({par(oldpar)})
par(cex = CEX)
frame ()
if (length(labels) < n)

labels <- paste(deparse(substitute(x)),

n[’u’ 1:n, ||]||, sep = ny

if (par("pty") == "s") {

dif <- diff(par("fin"))/2

if(dif > 0) par(omi = c(dif*n, 0, dif*n, 0) + par("omi"))

else par(omi = c(0, -dif*n, 0, -dif*n) + par("omi"))
}
for(i in 1:n)
for(j in 1:i) {
par(mfg = c(i,j,n,n))
setup(as.vector(x[, jl), as.vector(x[, il), ...)
box ()
if(i == n && j < n) doaxis(1)
if(j == 1 && i > 1) doaxis(2)
if(i > j) {
panel(as.vector(x[, jl), as.vector(x[, il),
} else {
par(usr = c(0, 1, 0, 1))
text (0.5, 0.5, labels[i], cex = 1.5 * CEX)
}
}
invisible()

}

3.6. Asaprecaution, we rescale the entriesin X to sum to one.

ternary <- function(X, pch = par("pch"), lcex = 1,
add = F, ord = 1:3, ...)
{
if (any(X) < 0) stop("X must be non-negative")
s <= drop(X %x% rep(l, ncol(X)))

if (any(s<=0)) stop("each row of X must have a positive sum")

if (max(abs(s-1)) > 1e-6) {

20
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b
X

warning("row(s) of X will be rescaled")
X<-X/ s

<- X[, ord]

s3 <- sqrt(1/3)
if(tadd)

{

}

oldpty <- par("pty")
on.exit(par(pty=oldpty))

par(pty="s")

plot(c(-s3, s3), c(0.5-83, 0.5+s3), type="n", axes=F,
xlab="", ylab="")

polygon(c(0, -s3, s3), c(1, 0, 0), density=0)

lab <- NULL

if(!is.null(dn <- dimnames(X))) lab <- dn[[2]]
if (length(lab) < 3) lab <- as.character(1:3)
eps <- 0.05 * lcex
text (c(0, s3+eps*0.7, -s3-eps*0.7),
c(1l+eps, -0.1%eps, -0.1xeps), lab, cex=lcex)

points ((X[,2] - X[,3]1)*s3, X[,1], ...

}

This labels the vertices clockwise from the top, but other conventions are possi-
ble by altering the argument ord. For example, we can reproduce Fig. 1.9 of
Aitchison (1986) by

ternary(Skye/100, ord=c(1,3,2))
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Chapter 4

4.1. A simplefunction to test all potential divisors on each element inturnis

is.prime0 <- function(x)

{

}

is.primel <- function(x)
if (x <= 10) c(T,T,T,F,T,F,T,F,F,F)[x] else {
lany (x %% c(2, seq(3,sqrt(x),2)) == 0)}
if(any(x) <= 0 || sum(x - floor(x)) > 0)
error("not all positive integers")
sapply(x, is.primel)

However, most of the divisionswill be unnecessary, so wefirst screen out by small

divisors:

is.prime <- function(x)

{

}

is.primel <- function(x)

if(x <= 10) <(T,T,T,F,T,F,T,F,F,F)[x] else {
lany(x %% c(2, seq(3,sqrt(x),2)) == 0)}

is.prime2 <- function(x)

if(x <= 10) <(T,T,T,F,T,F,T,F,F,F)[x] else {
tany (x %% c(2, seq(3,min(sqrt(x),29),2)) == 0)}

if(any(x) <=0 || sum(x - floor(x)) > 0)

error("not all positive integers")

ind <- sapply(x, is.prime2)

ind[ind] <- sapply(x[ind], is.primel)

ind

Sieve methods could be employed, but is.prime is probably fast enough for
most practical purposes.

4.2. First we generate some test data and a naive solution, to test the answers:

set.seed(777)

a <- round(runif(10000), 2)

b <- round(runif (50), 2)

res <- integer(length(b))

for (i in seq(along=b)) res[i] <- sum(a <= b[i])

res

Then we time this and some alternatives

unix.time( for (i in seq(along=b)) res[i] <- sum(a <= b[i]) )
[1] 3.80 0.13 4.00 0.00 0.00

sapply(b, function(b) sum(a <= b))

as.vector(rep(1l, length(a)) %*} outer(a, b, "<="))
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Using outer used 20 Mb, and so was slow (32 secs).

The next ideas depend on having sorted b, which has negligible cost. The
firstideais based on using a series of sieves, the second uses cut , and thelast two
will befamiliar to students of two-samplerank tests. (They rely on the ordering of
tiesbeing preserved. We could have (did) try rank, but thistreatstiesincorrectly
for this purpose and is slower.)

sieve <- function(a, b)
{
1 <- sort.list(b); 11 <- sort.list(l)
res <- integer(length(b))
x <- a
for (i in seq(along=b)) {
ind <- x > b[1[i]]
x <= x[ind]
res[i] <- length(x)

}

(length(a) - res)[11]
}
usecut <- function(a, b)
{

1 <- sort.list(b); 11 <- sort.list(1l)
breaks <- sort(c(b[1l], range(a,b)+c(-1,1)))
as.vector (cumsum(table(cut(a, breaks))) [-(1+length(b))]) [11]
}
interleave <- function(a, b)
{
1 <- sort.list(b); 11 <- sort.list(1l)
x <- c(a, b[1])
ind <- c(rep(1, length(a)), rep(0, length(b)))
ind <- ind[order(x)]
cumsum(ind) [ind == 0] [11]
}
viarank <- function(a, b)
{
1 <- sort.list(b); 11 <- sort.list(1l)
x <- sort.list(sort.list(c(a, b[1])))
(x[(length(a)+1): (length(a)+length(b))] - 1:length(b)) [11]
}

The order of merit varieswith the lengths of the vectors. Timingsin CPU seconds
on a SparcStation |PC were:

length(@) length(b) naive sapply sSieve usecut interleave viarank

104 50 4.0 4.0 30 17 1.0 1.3
10° 20 8.3 158 138 140 10.7 155
500 250 1.5 15 16 068 0.13 0.13

If the inequality is reversed, we can change the inequality in the first four
solutions. For the last three there are difficulties with the handling of ties, most
easily addressed by changing the signsof the vectorsand using rev ontheanswer.
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4.3. The print method functionin library MASS is

print.lda <- function(object, ...)
{
if ('is.null(cl <- object$call)) {
names(cl) [2] <= ""; cat("Call:\n"); dput(cl)
}
cat("\nPrior probabilities of groups:\n")
print(object$prior, ...)
cat ("\nGroup means:\n")
print(object$means, ...)
cat("\nCoefficients of linear discriminants:\n")
print(object$scaling, ...)

svd <- object$svd
names(svd) <- dimnames(object$scaling) [[2]]
if (length(svd) > 1) {

cat ("\nProportion of trace:\n")

print(round(svd~2/sum(svd~2), 4), ...)
}
invisible(object)
}
Possible plot methods are
plotl.lda <- function(x, ...)
{
x$sdev <- x$svd
invisible(screeplot.princomp(x, ...))
}

plot.lda <- function(obj, xlab="First LD", ylab="Second LD",
data = get(obj$call$data), ...)
{
if (!is.null(Terms <- obj$terms)) {
x <- model.matrix(delete.response(Terms), data)
m <- model.frame(obj$call$formula, data)
g <- model.extract(m, "response")
} else {
xname <- eval(substitute(obj$call$x))
x <- as.matrix(eval(parse(text=as.name(xname)),
sys.parent()))
gname <- eval(substitute(obj$call$grouping))
g <- eval(parse(text=as.name(gname)), sys.parent())
}
1d <- x %*% obj$scaling[,1:2]
egscplot(ld, type="n", xlab=xlab, ylab=ylab)
text (1d, as.character(g))
1ld.means <- obj$means %x*% obj$scaling[, 1:2]
points(ld.means[,1], 1d.means[,2], pch = 3, cex = 4)
}

Take care when calling plot.1lda from within afunction, asthe sys.parent
code may not be appropriate.
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4.4. The S language has no pointers, so we have to arrange for x <- x+1 to be
evaluated in the correct frame. The function

incr <- function(x)
eval (substitute(x <- x+1), local=sys.parent())

(Lubinsky’s solution) will work, but will leave anew name-value pair in the frame
of the calling function (or the working directory if called from the top level). Itis
exactly equivalent to replacing incr(a) by a <- a + 1.

We interpret the question to ask that the value of the actual object matching
x be incremented. To do that, we have to establish where x was matched, and
perform the evaluation in that frame. The possible choices are the parent frame,
frame 1, frame 0 and the search path, but we can only assume that database 1 is
writable, so if x was found anywhere on the search path we assign in database 1.

incr <- function(x)
{
dx <- deparse(substitute(x))
if (exists(dx, frame=sys.parent()))
assign(dx, x+1, sys.parent())
else if (exists(dx, frame=1)) assign(dx, x+1, 1)
else if(exists(dx, frame=0)) assign(dx, x+1, 0)
else assign(dx, x+1, where=1)
invisible (NULL)

4.5. A recursive way to do thisisto include v[1] with all subsets of size r-1
from v[-1], and to generate all subsets of size r from v[-1]:

subsets <- function(r, n, v = 1:n)
if(r <= 0) NULL else
if(r >= n) v[1l:n] else
rbind(cbind(v[1], Recall(r - 1, n - 1, v[-1]1)),
Recall(r, n - 1, v[-1]))

A follow-up exercise is to write a function that generates the subsets succes-
sively rather than simultaneously; given one subset it should produce the next in
lexicographic order.

4.6. Look at thefunctions predict.qda and predict.lda, which performthis
calculation. Sincefor vectors  and m,

lz = m|* = [lz]* + |m|* - 2m" =

we can ignore the first term in the comparison and only compute the other two.
Finally, the function

which.is.min <- function(x) seq(length(x)) [x == min(x)]

will pick out the minimum if used with apply.
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4.7. Thereisalazy way to do this using the system function expand.grid:

expand.factors <- function(...)

{
dfr <- expand.grid(lapply(list(...), levels))
names (dfr) <- as.character(match.call() [-1])
dfr

}

This assumes the function will be called with simple factor names as the actual
arguments. A more illuminating way to do thisuses apair of nested for loops:

expand.factors <- function(...)
{
lev <- lapply(list(...), levels)
df <- NULL
for(i in lev) A
df0 <- df; df <- NULL
for(j in i)
df <- rbind(df, cbind(df0, j))
}
df <- as.data.frame(df)
names (df) <- as.character(match.call()[-1])
df
}

A recursive solution is possible, but probably no more elegant. As a follow-up
exercise you might add some error protection and flexibility. For example, how
should arguments that are not factors be handled?

4.8. We can generate most of the data frame using answer 5, by
OMEf <- OME[rep(1l:nrow(OME), OME$Trials),]
To generate the Resp columnisdlightly trickier: we used

attach(0OME)

OMEf$Resp <- unlist(lapply(l:length(Trials), function(i)
c(rep(1, Correct[i]), rep(0, Trials[i] - Correct[i]))))

OMEf <- OMEf[, -match(c("Correct", "Trials"), names(0OMEf))]

It ispossible to fully vectorize this, for example by

OMEf$Resp <- rep(rep(c(1,0), length(Trials)),
t(cbind(Correct, Trials-Correct)))

where the matrix transposeisa‘trick’ to interleave thetwo vectors. Thisapproach
is significantly faster (0.21 secs versus 18 secs on a SparcStation IPC), but the
thinking time was much longer.

Another approach isto generate all the 1's before the 0's, then sort on the row
names.
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R <- c(rep(1, sum(Correct)), rep(0, sum(Trials-Correct)))
id <- c(rep(seq(along=Trials), Correct),

rep(seq(along=Trials), Trials - Correct))
OMEf$Resp <- R[sort.list(id)]

This took 0.45 secs.

4.9. Here are some solutions with timings on a SparcStation IPC; rowsum isa
builtin function.

> # 2000 partial sums

> partial.sum.sizes <- trunc(abs(rnorm(2000, 50, 10)))
> grouping <- rep(1:2000, partial.sum.sizes)

> length(grouping)

[1] 98985 # length of the data vector

> data <- rnorm(length(grouping))

# comparison of execution times on SparcStation IPC
> unix.time( tapply(data, grouping, sum) )
[1] 18.13 0.87 21.00 0.00 0.00
> unix.time( unlist(lapply(split(data, grouping), sum)) )
[1] 5.96 0.20 7.00 0.00 0.00
> unix.time( rowsum(data, grouping) )
[1] 216.97 2.66 240.00 0.00 0.00
> unix.time(
diff(c(0, cumsum(data) [cumsum(partial.sum.sizes)])) )
[1] 0.93 0.17 1.00 0.00 0.00

Notethat using split and lapply isfaster thanusing tapply, but vectorizing
isthefastest, and also used least memory. Using the builtin functionisin this case
by far the least efficient, and used 14 Mb of memory.

4.10. A one-line solutionis

rmultinomial0 <- function(n, p)
table(sample(seq(along=p), n, T, p))

However, if speed isimportant table israther Sow, and we can call tabulate
directly. For example,

rmultinomiall <- function(reps=1, n, p)

{
x <- matrix(sample(seq(along=p), reps*n, T, p), nrow = reps)
assign("k", length(p), frame = 1)
apply(x, 1, function(x) tabulate(x, k))

}

will generate reps simulations from our multinomial distribution. Actually,
apply itself isslow, and we can improve thisusing tabulate aone.
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rmultinomial2 <- function(reps=1, n, p)
{
tab <- tabulate(sample(length(p), reps*n, T, p) +
length(p) * (l:reps - 1),
nbins = reps * length(p))
dim(tab) <- c(length(p), reps)
matrix(tab, length(p), reps)
}

The difference can be marked: for 1000 replications these methods took 13, 20
and 6 seconds respectively. Thegaininusing tabulate issquandered in using
apply. Itisrelatively straightforward to extend rmultinomial2 sothat n can
vary between replications.

4.11. One direction, from Unix to MS-DOS, is easy on a Windows version of
S-PLUS; use the internal code for dos_sed found in the functions win3 and
dos. But thisonly applies in one direction, and not on Unix. The name of that
code gives a clue; seasoned Unix programmers would immediately call sed via
unix. There do exist versions of sed that run under Windows, but they cannot
be assumed to be present. So we need asolutionin S.

The character vectors in S are handled as units, so the most effective way
to solve this exercise is to ‘explode’ the path into a vector of single characters,
manipulate this and use paste to re-assemble the path.

path.d2u <- function(path) {
nc <- nchar(path)
tmp <- substring(path, 1:nc, 1:nc)
tmp [tmp == "\\"] <- "/"
paste(tmp, collapse="")

}

This exploits a vectorization of substring that goes a little beyond its docu-
mented actions. The changesfor path.u2d should be obvious.

There is a system function AsciiToInt that takes a character string and
returns a numeric vector of the ASCII positions of the characters. This is often
useful for this type of calculation (see the functionsin our library helpfix, but
unfortunately there is no converse function.

4.12. The print methodssuch as print.1m print thecall in asuitable form, but
they use dput, aninterna function that will only output to afile. So one solution
isto write to afile and scan the result back in.

call2char <- function(x)
{
file <- tempfile("call2char")
on.exit(unlink(file))
dput(x, file=file)
paste(scan(file = file, what = "", sep = "\n"),
collapse = "")



Answersto selected exercises from Chapter 4 29

We have to take care, as the printed version could cover more than one line.
Sometimes if the print method produces the output you want as a character
vector the only smplething to doisto use sink and scan.

An aternativeisto notethat acall object isalist, thefirst component being the
function name and remaining components the arguments, with component names
the argument names (if they are named). We can unravel this structure by

call2char <- function(x)
{
args <- x[-1]
argnames <- names(args)
havenames <- argnames != ""
args [havenames] <- paste(argnames[havenames], args[havenames],
sep =" =")
paste(x[[11], "(",
paste(unlist(args), collapse=", "),
")", sep="")
}

The final paste needs to be of a vector and not a list to have the desired effect,
hence theuse of unlist.

Thesesolutionsareinstructive, butinthiscaseareoverkill asusing deparse (x)
or as.character(as.name(x)) will producethedesired character string'. The
second version of call2char may be used asatemplate for other stylesof print-
ing acall.

The same ideas work for printing a formula; these have mode call (to the
function "~") but class "formula" . Thuscomponent 2 isthe left-hand side and

component 3 the right-hand side. These components may themselves be of mode
name Or mode call. For example

> as.character(as.name(x ~ y + 2))
[1] IIX —~ y + zll
> (x ~y + z)[[2]]

x

> (x ~y + z)[[3]]
v+ z

> mode((x ~ y + z)[[3]])
[1] "call"

> unlist((x ~ y + z)[[3]])
[1] ||+ll lly“ ||Z||
> mode((x ~ y + z)[[2]1])

[1] "name"
> mode ((log(x) ~ y + z)[[2]11)
[1] "call"

1 provided it is not too long for as.name which will truncate it, apparently to the current setting
of options("width") . deparse may give avector of character strings, one for each line.
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Chapter 5

5.2. The answersif the shape parameters are known are easy using ppoints.

gqgamma <- function(x, shape, ...)
plot (ggamma(ppoints(x), shape), sort(x), ...)
qqweibull <- function(x, shape, ...)
plot(qweibull (ppoints(x), shape), sort(x), ...)

To fit agammawe can use the function gamma.mlel of the answer to exercise 8,
by

qqgamma <- function(x, shape = gam.mle(x),
xlab = paste("Quantiles of gamma(",
format (shape, digits=3), ")", sep=""),
ylab = deparse(substitute(x)), ...)
{
gam.mle <- function(x) gamma.mlel(x)$alpha
plot (ggamma (ppoints(x), shape), sort(x),
xlab=xlab, ylab=ylab, ...)

For aWeibull we can fit using survreg, converting from its parametrization to a
more standard one.

qqweibull <- function(x, shape = wei.shape(x),
xlab = paste("Quantiles of Weibull(",
format (shape, digits=3), ")", sep=""),
ylab = deparse(substitute(x)), ...)
{
wei.shape <- function(x) exp(-survreg(Surv(x) ~ 1)$parms)
plot(qweibull (ppoints(x), shape), sort(x),
xlab=xlab, ylab=ylab, ...)

It is possible to avoid estimating the shape parameter in this case, as a QQ-plot

of any Weibull against aWeibull(1,1) isastraight lineonalog-log scale. Thusitis
possibleto assessthefit of aWeibull (of any shape) by qqweibull(x, 1, log="xy").
In any case, alog-log plot is desirable for small values (less than 0.5) of the shape
parameter as those distributions have a very long right tail.

It is easy to produce Trellis versions of these plots using qgmath, with a
common shape parameter across panels.

5.3. Seethefunction dpi in Wand'slibrary KernSmooth.
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Chapter 6

6.1. Hereis an example for the hills dataset of how to find the confidence
interval for the fit at each data point.

hills.1lm <- 1m(time ~ dist + climb, data=hills)
hills.pred <- predict(hills.lm, se.fit = T)
hills.ci <- pointwise(hills.pred, coverage = 0.95)

The prediction interval is a little trickier. The simplest ideaisto add s? to the
squared standard errors returned by predict, noting that s? has in fact been
stored already.

hills.s <- summary(hills.lm)$sigma

hills.pred$se.fit <- sqrt(hills.pred$se.fit"2 +
hills.pred$residual.scale”2)

hills.ci <- pointwise(hills.pred, coverage = 0.95)

6.2. Most of the work was done in the previous exercise. We will try this out on
the data for male cats.

Mcats <- cats[cats$Sex == "M", ]
cats.lm <- 1m(Hwt ~ Bwt, data=Mcats)
attach(Mcats)

plot (Bwt, Hwt)

conflines.lm <- function(obj, coverage = 0.95, pred = F, ...)
{
# Check for simple linear regression

xnames <- attr(obj$terms,"term.labels")

if (length(xnames) != 1)

stop("First argument is not a simple linear fit")

# Work out the range of the existing plot.

ux <- par("usr")[1:2]

xp <- seq(ux[1], ux[2], length = 100)

newdf <- data.frame(xp)

names (newdf) <- xnames

pr <- predict(obj, newdf, se.fit = T)

if (pred) {

pr$se.fit <- sqrt(pr$se.fit + préres~2)
}
ci <- pointwise(pr, coverage = coverage)
lines(xp, ci$lower, ...)
lines(xp, ci$upper, ...)

}
conflines.lm(cats.1lm)
conflines.lm(cats.lm, pred=T, lty=2)
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Figure6.1isaTrellis plot, so we cannot add information to it; rather we have
to create a new Trellis plot by adding to the panel function. We could do this by
operating on the datafor each panel, but we will illustrate amore general solution,
which allows the pooling of standard errors between the sexes.

cats.lm <- 1m(Hwt ~ Sex/Bwt - 1, data=Cats)
pr <- predict(cats.lm, se=T)

Cats.ci <- pointwise(pr)

pr$se.fit <- sqrt(pr$se.fit + pr$res~2)
Cats.ti <- pointwise(pr)

prepanel.cats <- function(x, y, subscripts, ...)
{
xlim <- range(x)
ylim <- range(y, Cats.ti$fit[subscripts],
Cats.ti$upper [subscripts],
Cats.ti$lower [subscripts])
list(xlim = xlim, ylim = ylim,
dx = diff(xlim), dy = diff(ylim))
}
panel.cats <- function(x, y, subscripts, ...)
{
panel.xyplot(x, y, cex = 0.5)
ord <- order(x)
lines(x[ord], Cats.ci$fit[subscripts] [ord])
lines(x[ord], Cats.ci$upper [subscripts] [ord], 1ty=3)
lines(x[ord], Cats.ci$lower[subscripts] [ord], 1ty=3)
lines(x[ord], Cats.ti$upper[subscripts] [ord], 1lty=2)
lines(x[ord], Cats.ti$lower[subscripts] [ord], lty=2)
}
xyplot (Hwt ~ Bwt | Sex, Cats, aspect = "xy",
prepanel = prepanel.cats,
panel = panel.cats,
xlab = "Body weight (kg)", ylab = "Heart weight (gm)",
strip = function(...) strip.default(..., style = 1)
)

The prepanel function is needed both to ensure that the tolerance bands fall
inside the display and to allow the slopes of the fitted lines to be used in setting
the aspect ratio.

6.3. We choose to use an eigendecomposition of W, asit is more stable than a
Choleski factorization, and also makes it easier to use the same code for W or
Y.Let W=UDUT. Then

(y—XB) " W(y—Xp) = (y—XB)"UDU" (y—XB) = | D*UT (y—XB)|]

so we can regress Ay on AX where A = DYV2UT. If W = £~! we can
take the eigendecomposition of ¥ and replace D by D~!. We modify 1m as
necessary.
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lm.gls <- function(formula, data, W, subset, na.action,

}

inverse = F, method = "qr",
model = F, x = F, y = F, contrasts = NULL, ...)

call <- match.call()

m <- match.call(expand = F)

m$W <- m$inverse <- m$method <- m$model <- m$x <-
n$y <- m$contrasts <- m$... <- NULL

m[[1]] <- as.name("model.frame")

m <- eval(m, sys.parent())

if (method == "model.frame") return(m)

Terms <- attr(m, "terms")

Y <- model.extract(m, response)

X <- model.matrix(Terms, m, contrasts)

n <- nrow(X)

if (any(dim(W) '= c(n, n))) stop("dim(W) is not correct")

eW <- eigen(W, T)

d <- eW$values

if(any(d <= 0)) stop("W is not positive definite")

A <- diag(d~ifelse(inverse, -0.5, 0.5)) %xJ t(eW$vector)

fit <- Im.fit(A %x% X, A %*% Y, method, ...)

fit$terms <- Terms

fit$call <- call

if (model) fit$model <- m

if(x) fit$x <- X

if(y) fit$y <- Y

attr(fit, "na.message") <- attr(m, "na.message")

class(fit) <- c("lm.gls", class(fit))

fit

33

Our task is not over, since we need to be able to do something useful with the
output. However, much of the print and summary methodsfor class "1m" are
based on the stored results for the transformed problem and so are approximately
correct. The fitted values and residuals are not simply related to the origina
problem.

We can test this with an example from Section 15.6. There we fitted a

regression with autoregressive errors, and the covariance matrix for AR(1) errors
is proportional to (a!*=71).

alpha <- 0.8255; n <- 100
arow <- c(1, alpha~(1:n))

B

<- matrix(c(rep(arow, n-1),1), n,n, byrow = T)

B[lower.tri(B)] <- 0

B

<- B + t(B) - diag(n)

beav.gls <- 1lm.gls(temp ~ activ, W = B , inverse = T)

>

summary (beav.gls)

Call: 1lm.gls(formula = temp ~ activ, W = B, inverse = T)
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Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 37.166 0.091 408.776 0.000
activ 0.669 0.098 6.809 0.000

This is reasonably consistent with the results of Section 15.6, where we noted
appreciable end effects.

An important special caseisfor W adiagona matrix. Asa extension of the
exercise modify 1m.gls to alow the user to specify this case by supplying a
vector of weightsin W rather than a matrix. Notethat 1m can handle this can by
the use of (case) weights.

6.4. Recall what ridge regression does (Brown, 1994, Sen & Srivastava, 1990).
Instead of fitting X3 to Y by least squares, it solves [XTX + M]3 = XTY.
(Thecase A = 0 istheleast-sguares solution, but the ridge constant )\ is positive
in ridge regression.) Suppose X isan n x p matrix. Then the ridge regression
problem is equivalent to the regression of Y/ on X’ where

e-[al e[

Thus we can implement ridge regression by adding p imaginary observations of
0, with v/A asthevalue of the ith regressor and the others zero, for i = 1,...,p.
Conventionally ridge regression is applied to the data with the mean removed and
scaled so that the columns of X have constant length. (Any intercept term must
then be removed.)

There is another approach that is more efficient if we need multiple values
of A, for example to plot aridge trace or to choose )\ by cross-validation. Let
X = UAVT bethe singular-value decomposition of X . Then [XTX + M]3 =
XTY may be rewritten as V[A2 + A\]VT3 = VAUTY and hence V73, =
AJ(A2 + N UTY = A?/(A%2 + \)VTBrs. Weimplement this for a vector of
values of )\, and compute some statistics to help choose A, from Brown (1994,
pp. 63-64).

Im.ridge <- function(formula, data, subset, na.action,
lambda = 0, model = F, x = F, y = F, contrasts = NULL, ...)
{
call <- match.call()
m <- match.call(expand = F)
m$model <- m$x <- m$y <- mPcontrasts <-
m$... <- m$lambda <- NULL
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
Terms <- attr(m, "terms")
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)
n <- nrow(X); p <- ncol(X)
if (Inter <- attr(Terms, "intercept"))
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Xm <- apply(X[, -Inter], 2, mean)
Ym <- mean(Y)

p<-p-1
X <- X[, -Inter] - rep(Xm, rep.int(n, p))
Y<-Y-Ym

} else Ym <- Xm <- NA
Xscale <- drop(rep(1/n, n) %*% X°2)°0.5
X <- X/rep(Xscale, rep.int(n, p))

Xs <- svd(X)
rhs <- t(Xs$u) %*% Y
d <- Xs$d

lscoef <- Xs$v %*% (rhs/d)

lsfit <- X %x% lscoef

resid <- Y - 1lsfit

s2 <- sum(resid”2)/(n - p - Inter)

HKB <- (p-2)*s2/sum(lscoef”2)

LW <~ (p-2)*s2*n/sum(1sfit~2)

k <- length(lambda)

div <- d°2 + rep(lambda, rep.int(p,k))

a <- (dxrhs)/div

dim(a) <- c(p, k)

coef <- Xs$v %*% a

dimnames (coef) <- list(names(Xscale), format(lambda))

GCV <- apply((Y - X %x% coef)”2, 2, sum)/

(n-apply (matrix(d~2/div,p), 2, sum)) 2

structure(list(coef = drop(coef), scales = Xscale,
Inter = Inter, lambda = lambda, ym = Ym, xm = Xm,
GCV = GCV, kHKB = HKB, kLW = LW), class="ridgelm")

print.ridgelm <- function(obj)

{

}

scaledcoef <- t(as.matrix(obj$coef / obj$scales))
if (obj$Inter) {
inter <- obj$ym - scaledcoef %*% obj$xm
scaledcoef<- cbind(Intercept=inter, scaledcoef)

}
print (drop(scaledcoef))

choose <- function(obj)
UseMethod ("choose")

choose.ridgelm <- function(obj)

{

cat("modified HKB estimator is", format(obj$kHKB), "\n")
cat("modified L-W estimator is", format(obj$kLW), "\n")
GCV <- obj$GCY

if (Length(GCV) > 0) {
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k <- seq(along=GCV) [GCV==min(GCV)]
cat("smallest value of GCV at",
format (obj$lambdalk]), "\n")

plot.ridgelm <- function(obj)
{

matplot (obj$lambda, t(obj$coef), type = "1")
}

We can apply this to the celebrated Longley data, get a ridge trace and some
estimatesof \.

longley <- data.frame(y = longley.y, longley.x)
lm.ridge(y ~ ., longley)
plot(lm.ridge(y ~ ., longley,

lambda = seq(0,0.1,0.001)))
choose(1m.ridge(y ~ ., longley,

lambda = seq(0,0.1,0.0001)))
modified HKB estimator is 0.0042754
modified L-W estimator is 0.032295
smallest value of GCV at 0.0028

Thereisonly alittle evidence for the necessity to use ridge regression here, but it
can be seen as an alternative to variable selection.

Chapter 9

9.1. The code from the First Edition follows.

attach(wtloss)

plot(Days, Weight, xlab= "days", ylab ="weight (kg)",
x1im=c(0,730), ylim=c(70, 200))

xx <- seq(0, 730, 10)

lines(xx, 81.37+ 102.68 * 2~ (-xx/141.91))

wtloss.quad <- lm(Weight ~ poly(Days, 2))

lines(xx, predict.gam(wtloss.quad, data.frame(Days=xx)), lty=2)

wtloss.cub <- lm(Weight ~ poly(Days, 3))

lines(xx, predict.gam(wtloss.cub, data.frame(Days=xx)), lty=3)

legend(locator(1l), c("exponential", "quadratic", "cubic"),
lty=1:3)

Note the use of predict.gam to get valid predictions.
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9.2. Tofind the curvatureswe need to computethe Hessian, so expn2 iscomputed
with deriv3 rather than deriv.

expn2 <- deriv3(~ b0 + b1*((wO - b0)/b1)"~(x/d0),
c("b0","b1","d0"), function(bO, bl, 40, x, w0) {})
wtloss.init <- function(obj, w0) {
p <- coef(obj)
d0 <- - log((wO - p["00"1)/p["b1"], 2) * p["th"]
c(plc("b0", "b1")], dO0 = as.vector(d0))
}
for(wO in c(110, 100, 90)) {
fm <- nls(Weight ~ expn2(b0, bl, 40, Days, wO),
wtloss, start = wtloss.init(wtloss.gr, w0))
print(plot(profile(fm)))
print (rms.curv(fm))

}

9.3. [ From the fourth printing of the First Edition. ]

> attach(stormer,1)
> z1 <- Wt/Viscosity
> z2 <- -1/Viscosity
> detach(1,save="stormer")
> attach(stormer)
> storm.gm <- glm(Time ~ zl + z2 - 1,
family=quasi(link=inverse, variance=constant),
data=stormer, trace=T, eps=1.0e-10)
GLM linear loop 1: deviance = 860.92
GLM linear loop 2: deviance = 825.06
GLM linear loop 3: deviance = 825.05
GLM linear loop 4: deviance = 825.05
> g <- coef(storm.gm)
> b <- coef(storm.fm)
> b0 <- c(1/gl1], gl21/g[1])
> cbind(b,b0)
b b0
z1 29.4013 29.4013
z2 2.2182 2.2183

To find the standard errors we used

> J <- matrix(c(-1/gl[1]"~2, -gl[2]/gl1]1"2, 0, 1/g[11), 2, 2)
> J %*% vcov(storm.gm) %*% t(J)
[,1] [,2]
[1,] 0.83820 -0.56055
[2,] -0.56055 0.44292

Note that to achieve agreement to this accuracy we had to tighten the convergence
criteria for the glm fit by setting eps=1.0e-10. With the default convergence
criteriathere is agreement to about 3 significant digits.
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9.4. [ From the First Edition. ]

We fit the model using the stable parametrization. Good initial values are aways
easy to find by estimating the mean at the required points by an approximating
linear model.

> stab <- deriv3(~ ((uO*u2-ui~2) +
(u0-u1) "2 *((u1l-u2)/(uo0-ul)) "~ ((x-40)/80))/(u0-2%ul+u2),
c("u0","ul","u2"), function(x, u0, ul, u2) NULL)

> mu <- predict(lm(Weight ~ Days+Days~2, data=wtloss),
newdata=data.frame (Days=c(40,120,200)))

> names(mu) <- paste("u", 0:2, sep="")

> wtloss.st <- nls(Weight ~ stab(Days, u0, ul, u2),
start=mu, data=wtloss, trace=T)

43.3655 : 166.18 138.526 119.742

39.2447 : 165.834 138.515 120.033

> rms.curv(wtloss.st)

Parameter effects: c”"theta x sqrt(F)

Intrinsic: c”iota x sqrt(F)

0.0101
0.0101

> summary (wtloss.st)$correlation
u0 ul u2

u0 1.00000 0.43675 -0.11960

ul 0.43675 1.00000 0.25806

u2 -0.11960 0.25806 1.00000

> plot(profile(wtloss.st))

9.7. Some of the children were tested at more than one age, so first we generate
unique IDs for each experiment.

aa <- factor(OME$Age)

ab <- 10*0OME$ID + unclass(aa)

ac <- unclass(factor(ab))

OME$UID <- as.vector(ac)

OME$UIDn <- OME$UID + 0O.1*x(OME$Noise=="incoherent")
rm(aa, ab, ac)

Our first model is least-squares fitting to the success probabilities.

fpl <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/scal)),
c("L75", "scal"),
function(x,L75,scal) NULL)

Theeffectiverange of alogisticisabout +3 times scal, so by inspecting the data
we can choose initial valuesof L75 as45 and scal as3. It seems appropriate to
analyse the two types of noise stimulus separately, at least initially.

> nls(Correct/Trials ~ fpl(Loud, L75, scal),
data=0ME [OME$Noise=="coherent",],
start=c(L75=45, scal=3))
L75 scal
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47.993 1.2594
> nls(Correct/Trials ~ fpi(Loud, L75, scal),
data=0ME [OME$Noise=="incoherent",],
start=c(L75=45, scal=3))
L75 scal
38.866 2.1702

This suggests fixing on scal = 2, and fitting a separate L75 for each experi-
ment?. We used nlsList, and allow that asmall proportion of fits will fail.

OMEi <- OME
parameters(OMEi) <- list(L75=45)
fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/2)),
"L75", function(x,L75) NULL)
OMEi.nls <- nlsList(Correct/Trials ~ fp2(Loud, L75),
data = OMEi, cluster = ~UIDn, control = list(maxiter=100))
tmp <- sapply(OMEi.nls, function(X)
{if(is.null(X)) NA else as.vector(X$param)})
OMEif <- data.frame(UID = round(as.numeric((names(tmp)))),
Noise = rep(c("coherent", "incoherent"), 110),
L75 = as.vector(tmp))
OMEif$Age <- OME$Age [match(OMEif$UID, OME$UID)]
OMEif$0ME <- OMES$OME [match(OMEif$UID, OME$UID)]

This provides adata frame of the result of each experiment to which we can apply
standard linear models. (The precise results will vary by platform, and it may be
necessary to exclude‘silly’ valuessuch as —39 dB.) For example, we can consider
if L75 varieslinearly with Age by

options(contrasts=c("contr.treatment", "contr.poly"))
summary (lm(L75 ~ Noise/Age, data=0MEif, na.action=na.omit))

and if the OME groups (only defined at ages 30 and 60 months) differ by

summary (1lm(L75 ~ Noise/(Age + OME), data=0MEif,
subset=Age >=30 & Age <= 60,
na.action=na.omit, singular.ok=T), cor=F)

The analysis so far does not take the varying number of trials into account.
We can do aweighted |east-squares analysis by, for example

fpl75 <-
deriv(~ sqrt(@)*(r/n - 0.5 - 0.5/(1 + exp(-(x-L75)/scal))),
c("L75", "scal"), function(r,n,x,L75,scal)NULL)
nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
data=0ME [OME$Noise=="coherent",],
start=c(L75=45, scal=3))

2In principle it would be better to fit a combined nls model with a separate L75
for each level of UIDn and a common vaue of scal. This can be specified by
Correct/Trials ~ 0.5 +0.5/(1 + exp(-(Loud - L75[UIDn])/scal)) but failed to con-
verge.
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L75 scal

47.798 1.2962

nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
data=0ME [OME$Noise=="incoherent",],
start=c(L75=45, scal=3))
L75 scal

38.553 2.0781

fpl75age <- deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/

(1 + exp(-(x-L75-slope*age)/scal))),
c("L75", "slope", "scal"),
function(r,n,x,age,L75,slope,scal) NULL)

OME.nlsl <- nls(0 ~ fpl75age(Correct, Trials, Loud, Age,
L75, slope, scal),
data=0ME [OME$Noise=="coherent",],
start=c(L75=45, slope=0, scal=2))
L75 slope scal
48.682 -0.028716 1.2596
sqrt (diag(vcov(OME.nls1)))
[1] 0.61093 0.01666 0.17565

OME.nls2 <-nls(0 ~ fpl75age(Correct, Trials, Loud, Age,
L75, slope, scal),
data=0ME [OME$Noise=="incoherent",],
start=c(L75=45, slope=0, scal=2))
L75 slop scal

41.73 -0.10006 1.9796

sqrt(diag(vcov(OME.nls2)))

[1] 0.495592 0.013484 0.244558

and similarly for the individual fits. It would also be possible to extract standard
errorsfor theindividual L75 estimates from the results of nlsList.

9.8. Let uswrite the gamma density as
flz; X\, a) = Az 1e™7 /T () on [0, c0)

Then the log-likelihood is

L\ a) = Z [oz log A+ (o — 1) log z; — Az; — log T'(v)

1

Reasonable initial estimates are given by the moment estimators 1 = a/\, 02 =
a/)? s0 A\ =7/s?, & =17%/s?. Thusafirst approach might be

gamma.mle0 <- function(x)
{
nloglik <- function(theta, x)
- (theta[2] - 1)*sum(log(x)) + theta[ll*sum(x) -
length(x) * (thetal[2]*log(thetal[1]) - lgamma(thetal2]))



Answersto selected exercises from Chapter 9 41

xbar <- mean(x)
lambda0 <- xbar/var(x); alphaO <- xbar*lambdaO
res <- nlminb(c(lambdaO, alphaO), nloglik, lower=c(0,0), x=x)
list(lambda = res$par[1], alpha = res$par([2],
loglik = -res$objective)

}

Such a function has been posted to S-news, but it can be improved in a number
of ways. The sufficient statistic (> x;, > log z;) iscomputed many times. The
range for the parametersisnot really [0, co) but (0, c0), and we would do better
to take 6 = (e, e®); at the very least we should give a lower limit at which
nloglik can beevaluated. We could use gradient information in the calculation,
but if we compute derivatives we find \ = a/T for given «, so we can reduce
the problem to maximizing

~

L(M\«a), ) = naloga/T + (o — 1) Zlog:r:i —na?/T —n log'(a)

We can easily find the derivative, but for one-dimensional optimization problems
itisnot particularly helpful, and optimize cannot make use of it.

gamma.mlel <- function(x)
{
nloglik <- function(alpha, n, xbar, st)
-(n*alphax*log(alpha/xbar) + (alpha - 1)*st
- n*alpha - n*xlgamma(alpha))

xbar <- mean(x); n <- length(x); st <- sum(log(x))
alpha0 <- xbar~2/var(x)
res <- optimize(nloglik, lower=alphaO/3, upper=alpha0*3,
n=n, xbar=xbar, st=st)
alpha <- res$min
list(lambda = alpha/xbar, alpha = alpha,
loglik = -res$objective)

}

We minimize minusthelog likelihood because optimize doesnotwork correctly
when maximizing (at least in S-PLUS 3.x).

> set.seed(123)

> xg <- rgamma(500, 1.4)

> unix.time(gamma.mleO(xg))
[1] 5.34 0.20 6.00 0.00 0.00
> unix.time(gamma.mlel(xg))
[1] 0.75 0.09 1.00 0.00 0.00
> gamma.mlel(xg)

$lambda:

[1] 0.93358

$alpha:

[1] 1.3737

$loglik:

[1] -678.95
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An alternative approach using a Newton algorithm is given in the function
gamma . shape.glm in library MASS.

Chapter 10

10.9. We have to use the expanded data frame OMEf created in answer 8, as it
is not sensible to weight mixed models. We change the parametrization of scal
to ensure it remains positive: we allow a random effect on log scale for this
parameter.

fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/exp(1lsc))),
c("L75", "lsc"),
function(x, L75, lsc) NULL)
Gl.nlme <- nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, 1lsc ~ .),
random = 1list(L75 ~ ., 1lsc ~ .),
cluster=~UID, data=0MEf [OMEf$Noise=="coherent",],
start = list(fixed=c(L75=c(48, -0.03), 1sc=0)), verbose=T)
summary (G1.nlme) $fixed
Value Approx. Std.Error z ratio(C)

L75. (Intercept) 48.158851 0.684821 70.32327
L75.Age -0.025208 0.020704  -1.21755
1sc 0.157546 0.167722 0.93932

G2.nlme <- nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, 1lsc ~ .),
random = 1list(L75 ~ ., 1lsc ~ .),
cluster=~UID, data=0MEf [OMEf$Noise=="incoherent",],
start = list(fixed=c(L75=c(41, -0.1), 1sc=0)), verbose=T)
summary (G2.nlme) $fixed
Value Approx. Std.Error z ratio(C)

L75. (Intercept) 41.73298 0.466101 89.5364
L75.Age -0.10012 0.012682 -7.8944
1sc 0.68361 0.116088 5.8887

Theresults are remarkably similar to those by weighted least squaresin answer 7.
In the case of G2.nlme thisisnot surprising as the estimates of the variances of
therandom effects are effectively zero. For G1.nlme thevariancesarereasonable
but the estimation of the correlation is-0.99858.

Chapter 15

15.6.2.15.6.2 Wetreat the AR(1) model asasimultaneous spatial autoregression
(SAR) athough it could also be handled as a conditional autoregression (CAR)
process. Note that unlike arima.mle this computes an exact (not conditional)
likelihood.
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module (spatial)
beav2.nbrl <- spatial.neighbor(2:100, 1:99, nregion=100)
slm(temp ~ activ, data = beav2, cov.family = SAR,
spatial.arglist = list(neighbor=beav2.nbrl))
Coefficients:
Value Std. Error t value Pr(>|tl)
(Intercept) 36.586 0.126 290.197 0.000
activ.  0.476 0.126 3.774 0.000
rho = 0.99521
Residual standard error: 0.12621 on 97 degrees of freedom

slm(temp ~ activ, data = beav2, subset = 6:100,
cov.family = SAR,
spatial.arglist = list(neighbor=beav2.nbrl))

Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 37.252 0.082 453.049 0.000
activ.  0.596 0.094 6.322 0.000

rho = 0.849
Residual standard error: 0.12067 on 92 degrees of freedom

15.1. We dstart by creating the quarterly percentage differences. Fitting by
ar suggests that AR(4) and AR(6) models are almost equally good. Thus
we try fractiona differencing without an AR component and with AR(4) and
AR(6) components. Unfortunately the likelihoods are not comparable between
arima.mle and arima.fracdiff, and it seems the latter cannot be used with
a specified degree d of (fractional) differencing. Since with the fractional
ARIMA(6,d ,0) model the estimate d ~ 0 we can guess that AR(6) has AIC
approximately —2 x 122.7 + 2 x 6 = —233.4 and the I(d) has an AIC of
—2 x 116.47 + 2 = —231.1. Thus we would choose the ARIMA(6,0,0) model.
This differs from the conclusions of Brockwell & Davis (1996), but with such a
short series end-effects may be important.

> y <- diff (austres)/austres * 100
> ar(y)

$order:

[1] 6

$ar:

[,1]
[1,] 0.422690
[2,] 0.081845
[3,] 0.124695
[4,] 0.232673
[5,] -0.016759
[6,] -0.199008
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$var.pred:
[,1]
[1,] 0.0040826

$aic:
[1] 30.89342 1.77094 2.48377 1.45398 0.53235 1.55605
[7] 0.00000 1.94228 3.26542 5.07989 5.44845 6.32720
[13] 8.13424 6.68541 5.62113 7.61780 9.52565 11.23940
[19] 13.23219 14.39861

> arima.mle(y-mean(y), model=list(ar=rep(0,6)), n.cond=6)$aic

[1] -218.41

> arima.mle(y-mean(y), model=list(ar=rep(0,4)), n.cond=6)$aic
[1] -218.31

> arima.mle(y-mean(y), model=list(ar=0), n.cond=6)$aic

[1] -215.28

> arima.fracdiff (y-mean(y), model=1list(d=0, ar=rep(0,6)))
$model:

$model$d:

[1] 4.583e-05

$model$ar:
[1] 0.3964324 0.1059762 0.1618604 0.2528531 -0.0094455
[6] -0.2029133

$loglik:
[1] 122.7

> arima.fracdiff (y-mean(y), model=1list(d=0))
$model:

$model$d:

[1] 0.43245

$loglik:
[1] 116.47

15.3. We modify 1m.gls (from answer 3). Computing the (possibly complex)
eigenvalues of 1 in advance makesthisadlightly easier calculation. We choose
a sensible range for 3, and try to ensure that the profile log-likelihood is not
evaluated at the extremes of that range.

SARfit <- function(formula, data, H, subset, na.action,
beta.range = c(-Inf, Inf),
model = F, x = F, y = F, contrasts = NULL, ...)
{
SAR.fit <- function(beta, n, X, Y, H, 4)
{
A <- diag(n) - betax H
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fit <- Im.fit(A %*% X, A %*% Y)
RSS <- sum(fit$residual~2)
log(RSS/n) - 2 * Re(sum(log(l-betaxd)))/n
}
call <- match.call()
m <- match.call(expand = F)
n$H <- m$beta.range <- m$model <- m$x <-
m$y <- m$contrasts <- m$... <- NULL
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
Terms <- attr(m, "terms")
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)
n <- nrow(X)
if (any(dim(H) != c(n, n))) stop("dim(H) is not correct")
eH <- eigen(H)
d <- eH$values
ad <- 1/max(abs(d))
res <- optimize(SAR.fit, lower=max(-ad, beta.range[1]) + 1le-6,
upper=min(ad, beta.range[2]) - 1le-6,
n=n, X=X, Y=Y, H=H, d=d)
beta <- res$minimum
if (res$message != "normal termination")
warning(paste("Optimize gave", res$message,
"as reason for termination"))
A <- diag(n) - beta * H
fit <- 1m.fit(A %*% X, A %*% Y, ...)
fit$terms <- Terms
fit$call <- call
if (model) fit$model <- m
if(x) fit$x <- X
if(y) fit$y <- Y
fit$betahat <- beta
attr(fit, "na.message") <- attr(m, "na.message")
class(fit) <- c("lm.gls", class(fit))
fit

We can apply this to the beaver data by

H <- matrix(0, 100, 100)
Hlcbind(1:99, 2:100)] <- 1
SARfit(temp ~ activ, data=beav2, H)
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