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Abstract

Longitudinal social network studies can easily suffer from insufficient statis-
tical power. Studies that simultaneously investigate change of network ties
and change of nodal attributes (selection and influence studies) are partic-
ularly at risk because the number of nodal observations is typically much
lower than the number of observed tie variables. This article presents a
simulation-based procedure to evaluate statistical power of longitudinal
social network studies in which stochastic actor-oriented models are to be
applied. Two detailed case studies illustrate how statistical power is strongly
affected by network size, number of data collection waves, effect sizes,
missing data, and participant turnover. These issues should thus be explored
in the design phase of longitudinal social network studies.
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Longitudinal social network studies are costly and time-consuming both for

researchers and participants. A lack of statistical evidence for a hypothesis

should thus not originate from a study design that was “just too small” and,

therefore, has insufficient statistical power (Cohen 1977).

The introduction of stochastic actor-oriented models (SAOMs) for the

simultaneous investigation of network and behavior changes (SAOMs, Snij-

ders, van de Bunt, and Steglich 2010; Steglich, Snijders, and Pearson 2010)

enabled a large number of publications that empirically study selection pro-

cesses (changes in social relations in response to individual attributes) and

influence processes (changes in individual attributes in response to social

relations). SAOMs are typically applied to network panel data (a set of

interconnected individuals surveyed in multiple data collection waves) and

evaluate dynamic tendencies of individuals to change (add or drop) network

ties and to change (increase or decrease) some type of behavior or individual

attribute. Veenstra et al. (2013) review a number of selection and influence

studies on adolescent peer relations1 and report mixed evidence regarding the

prevalence of selection and influence mechanisms in adolescent behaviors,

by finding significant effects in some and nonsignificant effects in other

studies. It is possible that some of the studies were underpowered, however,

until now there has been no method to perform power analyses for study

designs in longitudinal network research.

Indeed, statistical power might be particularly hard to achieve in social

networks studies that do not only consider network change (e.g., friendship

relations) but also change in individual attributes (e.g., the level of delin-

quency). At each data wave, N nodes are connected through multiple network

ties. When �k is the average degree (it is typically larger than 1 in meaningful

network studies), this results in N � �k tie observations and a high number of

observations of nonexisting ties (N � ðN � 1Þ tie variables in total). In com-

parison, only N nodal attributes are observed per data wave.2 This implies

generally less information available in the estimation of behavior change

mechanisms and in consequence also lower power to detect these

mechanisms.

This article introduces a procedure for power analyses of longitudinal

network studies that make use of SAOMs in the empirical analysis. It further

aims at providing some guidelines for researchers who are designing new

studies and raising awareness about critical issues such as missing data and

participant turnover.

In classic power studies (see, e.g., Cohen 1977), power depends on three

parameters: the significance level, sample size, and effect size. Recall that the

significance level a is known as type I error, the probability to (incorrectly)
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reject the null hypothesis when it is true. Power is defined as the probability

to (correctly) reject the null hypothesis when the alternative hypothesis is

true, also known as 1� b or 1� type II error, where type II error is defined as

the probability to (incorrectly) not reject the null hypothesis when it is not

true. To compute the power, the alternative hypothesis needs to be specified.

The effect size is a measure for the difference or distance between the null

and the alternative hypotheses.

Although power analyses have been developed for study designs with

simple random or clustered data, social network data are characterized by

a more complex dependence structure requiring a more involved method to

estimate power. While in SAOMs parameter estimates can be tested at the

customary 0.05 significance level (using approximate t tests), the definition

of sample size and the effect size requires some more elaboration.

The “sample size” in dynamic social network studies is affected by a

number of aspects that we refer to as the study design. Larger studies with

many individuals, joint analysis of multiple networks, and several data col-

lection waves will exhibit more statistical power than small-scale studies.

But also design decisions about the granularity of a behavioral scale or a

maximum number of nominations in a questionnaire may affect the statistical

power. “Sample size” is a concept originating from statistical models con-

structed of independent observations and is not directly applicable to net-

work studies. Krivitsky and Kolaczyk (2015) discuss the question what

sample size could mean for network studies and limit their interpretation

of effective sample size to “the scaling of the asymptotic variances of max-

imum likelihood estimates in a network model” (p. 186). A summary of their

main conclusion is that this will be of the order of N for sparse and of N2 for

nonsparse network data. This is not directly helpful for SAOMs because of

the dynamic nature of the data under study. However, the authors’ experience

suggests that the scaling of the amount of information, or the inverse of

variances of parameter estimates, for SAOMs for sparse network data will

very approximately be proportional to N � �k � ðM � 1Þ, where N is the

number of nodes, �k is the average degree, and M is the number of waves.

This approximation applies only to the network parameters, not to the

behavior parameters. The presumed dependence on the average degree �k
is tentative and should be further investigated; there will be a quite

strong dependence on whether �k is invariant with respect to network size

(e.g., as in case of resource constrained networks like friendship net-

works), on other features of the network structure and the distribution

of the behavior, which may in some cases be stronger than the depen-

dence on the average degree.
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The “effect size” (usually, a difference in means or a strength of associ-

ation) is also somewhat more involved in dynamic network studies where a

high number of social mechanisms simultaneously operate that confound,

interact with, or amplify one another. For SAOMs, standardized effect sizes

have not yet been developed, and therefore the values of the model para-

meters must be used as effect size measures. The parameters should be

informed by empirical SAOM results. It should be taken into account that

parameter estimates are (as in any statistical model) depending on the scaling

of variables or the size and distribution of opportunity sets, thus a similar

empirical setting should be chosen. The chosen parameters will matter for the

power of a social mechanism. For example, strong social influence mechan-

isms that operate almost deterministically will be easier to discover than

subtle mechanisms. Social mechanisms that interact with the behavioral out-

comes of theoretical interest (e.g., homophily on a correlated variable) or

mechanisms that amplify the level of observed similarity of connected nodes

(e.g., transitivity, see Stadtfeld and Pentland 2015) will potentially reduce the

statistical power of the mechanism within the proposed model and should

thus also be considered. The statistical power is further affected by interfer-

ing mechanisms such as participant turnover rates and nonresponse.

Researchers typically have various options on how to define a study

design (conditional on their theories and research questions), while facing

uncertainty about the social mechanisms that operate in their sample. The

distinction between the two dimensions is not necessarily sharp. For exam-

ple, researchers may be able to reduce nonresponse (an interfering data

collection mechanism that reduces the “sample size”) through changes in

their study design by, for example, facilitating participation through online

access, simplifying questionnaires, or incentivizing participation. Yet we

think that the distinction between study design decisions and uncertainty

about social mechanisms is conceptually helpful as it is in line with the

traditional notion of power studies that are concerned with sample size (a

study design decision) and effect sizes (which refer to assumptions about the

strength of social mechanisms of interest).

The proposed procedure for the evaluation of statistical power in long-

itudinal network studies consists of six steps and is introduced in the second

section. The procedure makes use of the R package NetSim (version 0.9)

(Stadtfeld 2015) to simulate social network data and of the R package RSiena

(version 4.0) (Ripley et al. 2016) to simulate and estimate SAOMs. To

illustrate the six-step procedure, we discuss two empirically inspired research

settings in the third and fourth sections that are in line with what we perceive

as “typical” empirical selection and influence studies. The first research
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setting in the third section examines how the number of data collection waves

and the delineation of a network affect the statistical power. This research

setting relates to exploring alternative research designs (the “sample size”).

The second research setting in the fourth section discusses statistical power

of selection and influence effects in an empirical setting with social networks

collected in multiple schools. In particular, we investigate to what extent

statistical power is influenced by homophily and social influence effect sizes,

by respondent data that are missing completely at random (de la Haye et al.

2017; Huisman and Steglich 2008), and by turnover of students between data

collection waves (Huisman and Snijders 2003). This research setting relates to

exploring a space of varying social mechanisms (the “effect sizes”). The two

exemplary research settings illustrate how power analyses can be applied in

practice and address specific issues that researchers should be concerned about.

However, they do not aim at exploring the relationship between assumptions

about social mechanisms and possible research designs in full depth as those will

be highly context dependent. Our findings indicate that considering issues like

network size, number of data collection waves, participant turnover, missing

data, and effect sizes are of critical importance in the design phase of long-

itudinal network studies. The fifth section discusses the potential impact of this

article on the design of future longitudinal social network studies.

A Procedure for the Estimation of Statistical Power

The proposed procedure evaluates a range of alternative scenarios that vary

in research designs and express uncertainty about the prevalence and mag-

nitude of various social mechanisms. The procedure is sketched in Figure 1

and consists of six major steps.

1. Each longitudinal social network study starts with the formulation of

hypotheses on social mechanisms. Typical hypotheses relate to

homophily processes in the network formation (McPherson, Smith-

Lovin, and Cook 2001) and social influence processes on the attribute

level (Friedkin 1998). However, many other research questions in the

domain of social networks can be considered. Those can relate to

network change processes, such as reciprocity, transitivity, or popu-

larity mechanisms (Kadushin 2012), or to attribute change processes.

The following two steps span a space of alternative scenarios for

which statistical power analyses can be performed.

2. The social mechanisms identified in step 1 are translated into formal

mathematical models. The class of SAOMs is a good starting point as
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it allows the combination of several network- and attribute-related

social mechanisms (Snijders and Steglich 2015; Snijders, van de

Bunt, et al. 2010). But also other mathematical frameworks could

be applied, for example, tie-based Markov models that generate expo-

nential random graph distributions (Block, Stadtfeld, and Snijders

2016; Lusher, Koskinen, and Robins 2013:chapter 12), micromodels

proposed for network event models (Butts 2008; Stadtfeld, Hollway,

and Block 2017) or hierarchical latent space models (Sweet and

Junker 2016; Sweet, Thomas, and Junker 2013). It is possible that

some aspects of the theoretical model cannot be expressed with

SAOMs, for example, processes that lead to specific types of missing

data or cause individuals to join and leave the population. Processes

of that kind can be formalized outside of the SAOM framework as

illustrated in the fourth section. Good a priori expectations about

social mechanisms and their effect sizes are difficult, especially in

view of the high interdependence between model parameters. As a

pragmatic starting point, ranges of parameters found in prior empiri-

cal studies may be chosen as effect sizes whereby research on SAOM

parameter interpretation (as discussed in Snijders, van de Bunt, et al.

[2010:section 3.4] and Ripley et al. [2016:chapter 13]) should be

taken into account. The research setting in the fourth section focuses

on this step 2.

3. Potential study designs are defined to address the hypotheses formu-

lated in step 1. A first ad hoc attempt may build on designs of pre-

vious research studies. Typical decisions in this step are defining the

number of individuals in the study (i.e., number of networks or net-

work boundaries), prolonging the study by increasing the number of

waves of data collection, intensifying the study by reducing the time

spans between subsequent waves, changing the granularity of a beha-

vioral scale, or deciding whether the number of nominations in a

network questionnaire should be restricted. Research design deci-

sions are naturally constrained by the theoretical framework and the

empirical setting of a study. The research setting in the third section

focuses on this step 3.

4. Simulation models are defined for a reasonable subset of the alterna-

tive scenarios described by steps 2 and 3. Additional assumptions

may be necessary. These may relate to starting distributions of indi-

vidual attributes or network structures at the beginning of a data

collection (such decisions could be based on theoretical expectations

or prior empirical work). For each simulation model, a number of
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simulations is run (e.g., 200). Descriptives of the simulated networks

and individual attributes should be checked at the end of the simulations

to determine if the simulations generate unexpected or unrealistic out-

comes. One could, for example, check whether clustering or degree

distributions are in a range that is found in comparable studies and is

in line with theoretical expectations. This can be done in RSiena using

the sienaGoodness of fit (GOF) function, which gives the distribution of

statistics; the comparison with a true observed value is not relevant for

this use of sienaGOF. If descriptives of the simulated networks are

unreasonable, the mathematical models from step 2 should be improved.

In this article, we simulate data with the R package NetSim (Stadtfeld

2015) and the RSiena package (Ripley et al. 2016). RSiena can be used

to simulate SAOM processes. In case other social mechanisms are to be

simulated (e.g., processes that explain composition change or missing

data), more general packages such as NetSim can be applied. Previous

papers in which RSiena was applied in simulation studies are Snijders

and Steglich (2015) and Prell and Lo (2016). Example simulation scripts

with RSiena and NetSim are published online.3

5. The simulated data sets (say, 200 per simulation model) are used as

data input for an estimation with the RSiena software. SAOMs are

specified according to the theoretical models in step 1. This step of

reestimating models may take a considerable amount of computation

time as the number of simulation models is relatively large and the

simulation-based estimation of parameters of the RSiena software is

time-consuming. However, by using parallel computing, the effective

computing time can be largely reduced.

6. For each SAOM fit to the simulated data sets, the percentage of cases is

calculated in which significant parameters were estimated in the rees-

timation step 5. The statistical power evaluation will firstly focus on

social mechanisms about which hypotheses have been formulated,

even though the procedure can be valuable to explore how a study

design is likely to impact the interpretation of other effects in the

model. The significance can, for example, be tested at an a ¼ :05

significance level. A more efficient estimator could be given by esti-

mating the mean and standard deviation of the parameter estimate or

the mean of the t ratios (with assumed variance 1) and estimate power

from there.4 The percentage of (correctly) rejected null hypotheses (of

no effect) is an estimate of the statistical power of the study design. If

several study designs seem to provide satisfactory power, then the least

costly can be chosen and the longitudinal study can be conducted. If the

1110 Sociological Methods & Research 49(4)



power in all study designs is too low, then changes should be consid-

ered. This corresponds to updating the study designs in step 3.

Research Setting 1: Opinion Dynamics in Four Local
Communities

The first research setting discusses a (fictitious) study design in which the

dynamics of friendship and opinion formation (negative—neutral—positive)

in four local communities are observed. The communities are geospatially

close to one another so that interpersonal ties may occur between them,

however, ties within communities are more likely. We sketch a research

study in which the friendship network and opinion dynamics of 120 individ-

uals are of interest. The key hypotheses are that both homophily and influ-

ence processes with regard to opinions are prevalent. The design decisions

take the network boundaries and the number of waves of data collection into

account. To investigate the statistical power of different study designs, we

follow the six-step procedure introduced in the second section.

Hypotheses and Assumptions

In this study, we are interested in two hypotheses, namely, whether changes in

opinions are explained by the opinions of friends (social influence) and

whether individuals choose their friends based on opinion similarity (homo-

phily). Several additional dynamic assumptions are made. These are chosen

with the purpose to demonstrate how specific processes of social influence can

be tested within a SAOM framework. First, we assume that individuals have a

slight tendency for polarization. In the absence of social influence effects (e.g.,

when individuals are not connected to others), individuals are expected to have

a slightly higher propensity to develop extreme opinions (negative or positive

instead of neutral). Second, we assume a friendship network formation that is

partly driven by preferences for reciprocity, geospatial proximity (propinquity)

and by preference for transitive structures. Third, personal networks of indi-

viduals are assumed to change faster than their opinions. Furthermore, we start

with some straightforward assumptions about how the friendship network and

the distribution of opinions look like at the beginning of the study.

Mathematical Formulation

The hypotheses and the additional assumptions are formalized as a SAOM.

Based on the parameters of “typical” empirical SIENA models,5 we

Stadtfeld et al. 1111



formalize the exemplary model with the specification shown in Table 1.

Parameters were further adjusted so that when simulated, the model would

not be “degenerate” in a sense that it is unlikely to generate networks that

have a density close to 1 or 0. The question how to translate hypotheses into

SAOM parameters is nontrivial—empirical findings of studies in related

empirical and theoretical contexts can provide reasonable starting values (for

an overview, we refer to the SIENA website; Snijders 2017). The opinion

variable is assumed to be measured on a three-point scale from one to three.

Research Designs

We explore two types of design decisions. The first design decision is about the

friendship network delineation: Should data be collected in one, two, or all four

local communities (N¼ 30, 60, or 120)? We assume that the social mechanisms

sketched in the previous section govern the social processes in the whole sample

of 120 individuals (four communities) but discuss study designs that collect data

just within one or two subcommunities (30 or 60 individuals). The second

design decision is concerned with the number of data collection waves. In this

example, we consider collecting two waves, three waves, or five waves of data.

By adding more data collection waves, the duration of the study is extended:

Data collection waves are not added in-between two waves but increase the

duration of the data collection period by factor 2 or 4. The time between two

subsequent data collections is the same across all study designs.

Table 1. Specification of a Stochastic Actor-oriented Model That Expresses Assump-
tions About the Social Mechanisms at Play (Step 2) in the First Research Setting.a

Dependent Variable Mechanism SIENA Effect Name Parameter

Friendship Change rate 3.0
Density density �2.0
Reciprocity recip 2.0
Transitivity transTrip 0.2
Cyclic closure cycle3 �0.1
Propinquity (distance) X �2.5
Homophily (opinion) simX 1.5

Opinion Change rate 0.6
Center linear �0.8
Dispersion quad 0.2
Influence totSim 0.8

aThe focal mechanisms are italicized.
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Simulation Models

We generate five simulation models based on the mathematical formulation

and a subset of the space of potential study designs. The five simulation

models relate to five study designs and are sketched in Table 2. From each

simulation model, 200 data sets are generated with the software package

NetSim (Stadtfeld 2015).6 The simulation is always run on the complete data

set of 120 nodes and only then subsamples (regarding number of waves and

network delineation) are drawn.

Each simulation is based on an initial equal distribution of opinions and an

initial friendship network. The starting network is simulated from an empty

network with the SAOM shown in Table 1, except for the homophily and

influence effects. After this initial process that is run until the network has a

stable density, individual attributes are randomly assigned to actors in order

to achieve an initial observation in which network position and individual

attributes are uncorrelated. This relates to an assumption made in this study

that social effects on opinion formation only start playing out after the initial

data collection. Figure 2 shows four networks that were extracted from one

simulation run. Actors are positioned in a two-dimensional space; the dis-

tance between actors affects the propensity to form network ties. Locations

are randomly drawn from four two-dimensional normal distributions with

different means and variances. Checks of network densities and degree dis-

tributions reveal that the simulated networks are reasonable from a descrip-

tive point of view. In particular, the simulation model is not degenerative in a

sense that it would produce graphs with a density close to 1 in the long run.

Therefore, we proceed with step 5 of the procedure. A visualization of a

related dynamic four-community simulation can be found in the Online

Appendix. It demonstrates the nondegeneracy of the specified model.

Estimation With RSiena

After the simulations, the generated data are fitted to an SAOM using the

RSiena software. This model is specified with exactly the same parameters

Table 2. Five of the Nine Possible Simulation Models Are Chosen.

Four Communities Two Communities One Community
Dependent Variable (N ¼ 120) (N ¼ 60) (N ¼ 30)

Five waves X X
Three waves X
Two waves X X

Stadtfeld et al. 1113



that were used in the mathematical model (see Table 1). The simulation phase

generated 1,000 result sets (5� 200) that include parameter estimates and

standard errors. This process takes a significant amount of time (about one

day on a standard personal computer) but can be accelerated by making use of

parallel computing. All 1,000 simulations and subsequent estimations with

RSiena are independent and can thus be processed in parallel. This means that

step 5 can be processed in much less than one hour in this case study.

Figure 2. Four waves of data generated by the simulation process in one simulation run.
Both the friendship network and the attributes (indicated by color codes) change over
time following the model specified in Table 1. All four local communities are shown. The
network layout corresponds to the geospatial distribution of individuals in the study.
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Evaluating the Power

For each simulation model, the power of the parameters is evaluated. As an

example, the results of the scenario with two local communities (N¼ 60) and

three waves of data collection are shown in Table 3. It includes the effect

names, the simulation model parameters (see Table 1), the mean estimated

parameters of 200 simulated data sets, their standard deviation, and the

power of the effects in this particular study design. The power column

indicates the percentage of simulated data sets for which a parameter was

reestimated significantly with a p value smaller than .05.

The key parameters (homophily and influence) are highlighted gray.

Homophily has a power of 99.5 percent, the influence effect a power of

34.5 percent. Assuming that the simulated mathematical models are indeed

a good representation of the real social processes, we could expect to find a

significant influence effect in one of the three studies. This is not likely to be

a sufficiently good expectation. Note that some mean parameter estimates

differ from the simulated values in Table 3 even though estimates of SAOMs

in general are consistent with simulated values (Block et al. 2018). These

deviations are explained by the fact that the simulation model was specified

and run on a complete friendship network of 120 actors. Only after the

simulation, a subdata set of 60 actors was extracted. This affects the

estimates of all parameters that correlate with density-, clustering-, and

distance-related statistics. For example, propinquity matters less in this

Table 3. Results of the Power Test for the Simulation Model With the Data Set
Reduced to N ¼ 60 Actors and Three Waves of Data Collection.a

Dependent
Variable Effects

Simulation
Parameter

Average
Estimate

Standard
Deviation

Power
(Percent)

Friendship Change 3.0 2.49 .32
Density �2.0 �3.17 .19 100.0
Reciprocity 2.0 2.08 .18 100.0
Transitivity 0.2 0.27 .09 85.0
Cyclic closure �0.1 �0.19 .16 17.5
Propinquity (distance) �2.5 �1.18 .16 100.0
Homophily (opinion) 1.5 1.55 .40 99.5

Opinion Change 0.6 0.58 .21
Center (linear) �0.8 �0.17 .33 3.0
Dispersion (quad) 0.2 0.04 .54 3.0
Influence 0.8 0.87 .59 34.5

aThe two parameters that relate to the hypotheses are highlighted gray.
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reestimation that is based on just two communities. The density parameter,

however, is more pronounced as it balances out the higher levels of network

clustering and the smaller effect of the propinquity parameter. The para-

meter estimates are thus not unbiased in this example. Still the power of

most of these network-related effects is high. The power of the attribute

shape effects (linear and quadratic) is very low, which is in line with our

initial discussion that attribute-related effects are particularly prone to have

a low statistical power.

A comparison of the power of the five study designs is given in Table 4. The

table now only focuses on the power estimates of the two key parameters

homophily and influence that are related to the initial hypotheses. The columns

express the study design decision about the network delineation which ranges

from 120 actors (four communities) to 30 actors (one community). The rows

show the varying number of data collection waves. The value in the table are

again the percentages of models with significant results (at 5 percent level) of

the homophily (first value) and the social influence parameter (second value).

These estimates of statistical power correspond to the right column in Table 3.

In the minimal design with two waves and 30 actors, the power of the

influence effect is only 10 percent and also the power of the homophily effect

is low (34.5 percent). The statistical power estimates of the three intermedi-

ate designs (120 actors and two waves, 60 actors and three waves, and 30

actors and five waves) are similar to one another: The power of the homo-

phily effect is high and ranges between 97.5 percent and 99.5 percent,

whereas the power of the influence effect is again low and ranges between

28.5 percent and 34.5 percent. It is noteworthy that the information available

Table 4. Percentage of Significant Findings (in a 95 Percent Confidence Interval) of
the Homophily (First Value) and the Social Influence Parameter (Second Value) in Five
Different Cases in Which Sample Size (Number of Local Communities) and Number
of Data Collection Waves Vary.a

Number of
Waves

Community Size

N ¼ 120 N ¼ 60 N ¼ 30

Homophily Influence Homophily Influence Homophily Influence

Five waves 100 97.5 97.5 28.5
Three waves 99.5 34.5
Two waves 99.5 34.5 34.5 10.0

aThese power estimates are based on 200 simulations and reestimations per parameter
combination.
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for the estimation of nodal variables is similar in the three intermediate cases:

One can loosely say that the information about nodal attributes doubles when

the network size doubles (from 30 to 60 to 120) and also doubles when the

number of periods doubles (from one period—two waves—to two periods to

four periods). Thereby, the three intermediate designs exhibit the same infor-

mation regarding nodal attributes. This equivalence cannot be upheld for the

case of network variables because each additional actor in the network con-

tributes multiple tie variables. Doubling the number of actors in a network will

more than double the number of observed tie variables while doubling the

number of waves will only double the tie variables. The study design with two

waves and N¼ 120 will thus be likely to have more power for network effects

than the design with N ¼ 30 and five waves. Only the large study design with

120 actors and five waves of data collection has an excellent power of 100

percent for the homophily and 97.5 percent for the influence parameter.

Conclusions of the First Power Study

Based on the five study design evaluations, researchers could now decide on how

to conduct the longitudinal study on opinion and friendship network formation in

the four local communities. The small-scale study design (i.e., with a smaller N,

and fewer waves) seems to be inadequately powered. If the influence hypothesis

was of less interest, the most feasible of the three intermediate study designs

could be chosen. Only the large study design promises good statistical power for

the estimation of both homophily and influence effects. To elaborate on the

power of the influence effect, researchers might want to run further power studies

with, for example, 120 actors and three waves, 60 actors and four waves, or 90

actors and three waves. This would mean going back to step 3 (define a set of

potential study designs) of the six-step procedure. These findings cannot be

straightforwardly generalized to other contexts as they are sensitive to the char-

acteristics of a specific research setting. However, they indicate that the statistical

power of selection and influence processes can be strongly related to study design

parameters such as network size and number of data collection waves.

Research Setting 2: Coevolution of Friendship
and Delinquency in 21 Schools

In the second research setting, we investigate how varying effect sizes,

missing data, and change in the composition of study participants may affect

the power of selection and influence effects. We choose a setting that resem-

bles a typical longitudinal network study in a population of schools and is
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inspired by the study of Baerveldt, Völker, and van Rossem (2008) on friend-

ship selection and delinquency. We conduct a power study based on empiri-

cally observed friendship networks and delinquency attributes (measured on

a five-point scale). The data preparation, simulation, and estimation process

are illustrated in Figure 3. First, we estimate a model that is similar to the one

in the original study (using 10 networks and delinquency scores in a SAOM

meta-analysis). Second, we construct an artificial data set of 21 friendship

networks that is based on three empirically observed networks. We use these

21 networks and the corresponding delinquency scores as the initial obser-

vation (wave 1). Third, we simulate a second wave of data taking into

account varying effect sizes, participant turnover (at halftime between first

and second wave), and missing data (applied after the simulation process

and before the reestimation). In total, 6,000 data sets are simulated. We use

30 combinations of effect sizes, participant turnover rates, and missing data

rates. For each of these combinations, the set of 21-second wave networks

and delinquency scores is simulated 200 times each (200 � 30 ¼ 6,000).

Finally, SAOMs are estimated from the simulated data (using the SIENA

multigroup option) and the power of the homophily and the influence

effects is evaluated.

Compared to the first research setting, the number of participants is very

high (N¼ 742 students, distributed over 21 schools). Data from three schools

are replicated 7 times each in order to construct the artificial sample. Within

the selected schools, 33, 36, and 37 students are observed—these are typical

sizes of networks of age cohorts within the schools that Baerveldt et al.

(2008) studied. This study focuses on how effect sizes, participant turnover

(participants leaving and participants joining the population between waves),

and missing data (participants not answering the questionnaire completely at

random) affect the statistical power of the study design. We again follow the

six-step procedure proposed in the second section.

Hypotheses and Assumptions

The key hypotheses are that both homophily and social influence processes

regarding delinquency are prevalent within schools. In particular, we are

interested in the effect of individuals selecting friends who are similar

regarding the level of delinquency (homophily) as well as friendship network

influence effects on student delinquency. As in research setting 1, we further

assume the presence of a number of social network mechanisms (e.g., reci-

procity, transitivity, and gender homophily). Besides those, we expect pro-

cesses that result in participant turnover between data collection waves and

1118 Sociological Methods & Research 49(4)



Sc
ho

ol
 1

, N
 =

 3
3

Sc
ho

ol
 2

, N
 =

 3
6

Sc
ho

ol
 3

, N
 =

 3
7

W
av

e 
1 

of
 B

ae
rv

el
dt

's
 s

tu
dy

A
rt

if
ic

ia
l w

av
e 

1 
w

ith
 2

1 
ne

tw
or

ks
, N

 =
 7

42

... ... ...

... ... ...

A
pp

ly
 tu

rn
ov

er
A

rt
if

ic
ia

l w
av

e 
2,

 N
 =

 7
42

Si
m

ul
at

e
C

re
at

e
Si

m
ul

at
e

A
pp

ly
 

m
is

si
ng

 d
at

a
A

pp
ly

 
m

is
si

ng
 d

at
a

E
st

im
at

e 
SA

O
M

s 
fo

r 
20

0
si

m
ul

at
ed

 s
et

s 
of

 2
1

ne
tw

or
ks

 (
tw

o 
w

av
es

)
fo

r 
ea

ch
 c

om
bi

na
tio

n 
of

- 
ef

fe
ct

 s
iz

es
- 

tu
rn

ov
er

 r
at

es
- 

m
is

si
ng

 d
at

a 
ra

te
s

E
st

im
at

e 
SA

O
M

s 
on

 
or

ig
in

al
 d

at
a 

to
 d

et
er

m
in

e
si

m
ul

at
io

n 
pa

ra
m

et
er

s
us

in
g 

tw
o 

w
av

es
.

... ... ...

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

}20
0 

si
m

ul
at

io
ns

F
ig

u
re

3
.

T
h
e

ar
ti
fic

ia
l
sc

h
o
o
l
d
at

a
se

t
is

b
as

ed
o
n

th
re

e
fr

ie
n
d
sh

ip
n
et

w
o
rk

s
(b

o
x
es

w
it
h

p
at

te
rn

s;
n
et

w
o
rk

s
w

it
h

si
ze

s
3
3
,
3
6
,
an

d
3
7

st
u
d
en

ts
)

ta
ke

n
fr

o
m

th
e

B
ae

rv
el

d
t

d
at

a.
Se

ve
n

ad
d
it
io

n
al

n
et

w
o
rk

s
w

er
e

u
se

d
fo

r
an

es
ti
m

at
io

n
o
f
p
ar

am
et

er
s

u
se

d
in

th
e

si
m

u
la

ti
o
n

(i
n
d
ic

at
ed

b
y

em
p
ty

b
o
x
es

o
n

th
e

le
ft

).
A

se
co

n
d

w
av

e
is

si
m

u
la

te
d

ta
ki

n
g

in
to

ac
co

u
n
t

va
ry

in
g

ef
fe

ct
si

ze
s,

tu
rn

o
ve

r
ra

te
s,

an
d

m
is

si
n
g

d
at

a
ra

te
s.

1119



missing data through nonparticipation. Unlike the first case study, which

simulated data based on model parameters derived from the literature,

research setting 2 uses results from an existing empirical data set to inform

parameter estimates. This relates to our advice to base initial assumptions on

findings in related studies.7 The rate of missing data, participant turnover,

and homophily and influence effect sizes are assumed to be uncertain in the

design phase of the study and so different values are compared to assess the

sensitivity of the study design to these assumptions.

Mathematical Formulation

We use the SAOM to describe changes in the network structure and the

individual delinquency variables. In the mathematical formulation, we fol-

low the empirical model of Baerveldt et al. (2008:574, Table 5) with some

adaptations. For reasons of simplicity, some potentially relevant social

mechanisms are omitted, for example, ethnic homophily. An effect capturing

an interaction between reciprocity and transitivity (reciprocity in triads, see

Block 2015) is added to the friendship model and a quadratic shape effect is

included in the behavior change part of the model. Thereby, the model is

closer to state-of-the-art SAOM specifications.8 The complete specification

of the SAOM is shown in Table 5. The parameters used for the simulation

model were estimated on an empirical sample of 10 empirically observed

school classes using a meta-analysis (Snijders and Baerveldt 2003). The

Table 5. Formal Specification of the Mathematical Model in the Second Research
Settings.a

Dependent
Variable Mechanism

SIENA
Effect Name Parameter

Friendship Change rate 4.3
Density density �3.1
Reciprocity recip 2.4
Transitivity transTrip 1.2
Reciprocity in triads transRecTrip �0.8
Homophily sex sameX 0.6
Homophily delinquency simX Smaller: 0.4/larger: 0.6

Delinquency Change rate 1.3
Center linear �0.2
Dispersion quad �0.2
Influence avAlt Smaller: 0.3/larger: 0.4

aThe focal mechanisms are highlighted gray.
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focal parameters are highlighted gray. We test the power of parameters in

two models: One in which we simulate effects that stem from a reanalysis of

Baerveldt’s data (“smaller” effect sizes), and one in which we use slightly

higher parameters (“larger” effect sizes).

This basic model is extended by two straightforward mechanisms. The

first mechanism describes turnover of students after half of the data collec-

tion period, the second mechanism generates missing data that stems from

completely random nonparticipation of some students in the two data waves

(one empirical, one simulated).

The turnover mechanism explains how students leave and join the sample.

At halftime between the two data collection waves, a fixed number of stu-

dents drops out of each school cohort (0, 1, or 3). At the same time, the same

number of students joins the school so that the school size (ranging from 33

to 37 individuals) remains constant. The new students are network isolates in

the moment they join the school and only then start forming friendship

relations. The attributes of a new student are randomly chosen based on a

frequency table of the attributes of all students (Gender � Delinquency) in

the population at the time when the participant turnover occurs.

The missing data mechanism relates to random nonparticipation in a

survey wave. In both data collection waves, a fixed number of students is

selected from each of the seven school cohorts (0, 1, 3, 5, and 7). Their

network nominations and delinquency levels are treated as missing. The

number of missing entries is the same in both data collection waves. The

two random draws of missing individuals in the two waves are independent.

In this research setting, we thus assume uncertainty about the levels of

participant turnover (0, 1, 3 ¼b 0 percent, 2.8 percent, 8.5 percent), missing

data (0, 1, 3, 5, 7 ¼b 0 percent, 2.8 percent, 8.5 percent, 14.2 percent, 19.8

percent), and the effect size of homophily (simX in f0.4, 0.6g) and influence

mechanisms (avAlt in f0.3, 0.4g). In total, there are 30 combinations of these

three variables.

Potential Study Designs

We do not consider different study designs. The statistical power of the

mechanisms is tested for a study design that includes all 21 schools

(N ¼ 742 students), two waves of data collection, binary friendship nomina-

tions, and a five-point delinquency scale. The space of alternative scenarios

is therefore only defined by the rates of missing data, participant turnover

rates, and the strength of selection and influence mechanisms.
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Simulation Models

The simulation models are based on the parameters in Table 5 (one model

with smaller and one with larger homophily and influence effect sizes) and

all 15 combinations of participant turnover rates and missing rates (30

simulation models). Each simulation model is simulated 200 times with

the RSiena software (Ripley et al. 2016). An R function was developed for

the simulations that we conduct in this study. It combines RSiena-based

simulations with the interfering processes of participant turnover and miss-

ing data. The first wave of data is taken from the empirical data of

Baerveldt et al. (2008). A second data wave is simulated for each school

separately. In total, 6,000 data sets are thereby generated (30 simulation

models � 200 simulations) that include 21 networks and corresponding

delinquency scores.

The data have certain particularities. The average degree is very low (1.4

ties, the maximum in-degree is 5), even though the school networks are

relatively big (33, 36, and 37 individuals). The average level of delinquency

is 1.8 on a scale that ranges from 0 to 4. The dispersion of delinquency values

is low. Of 742 individuals, only 56 (7.5 percent) have a minimum score of 0,

and 21 (2.8 percent) have a maximum score of 4.

After conducting the simulations, we check the GOF (Ripley et al. 2016)

of a small number of the simulated networks regarding degree distributions

and triad census and compare those to the empirically observed second data

wave. The simulated networks are found to be similar to the empirical

networks by which we conclude that the simulation models are

appropriate.9

Estimation With RSiena

Parameters are estimated for sets of 21 networks simultaneously with the

RSiena software using the “multigroup” option (Ripley et al. 2016:section

11.1) for the analysis of multiple networks. The reestimation of one alterna-

tive scenario (consisting of 200 multigroup data sets) takes between one and

eight hours on a computer with 24 cpus. A computer cluster has been used for

this step so that multiple SIENA reestimations could be run in parallel. The

overall computation time was therefore also about eight hours.

Evaluating the Power

The power estimates are given in Figures 4 and 5. Figure 4 shows the power

estimates for the homophily and the influence parameter of model with
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smaller effect sizes (see Table 5), Figure 5 for those of the model with the

larger effect sizes. Three lines indicate power of turnover rates of 0 percent,

2.8 percent, and 8.5 percent. The x-axis covers different missing rates.
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by the three lines. The black dotted line indicates the chosen significance level
(5 percent).
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A dotted line at the 0.05 level indicates the chosen significance level that

would be the expected power of unbiased estimates that have no information

value at all (zero effects). In both models, the power rates with no turnover

and 2.8 percent (low) turnover are somewhat similar and partly overlapping;

a turnover of 2.8 percent thus seems not to matter a lot. For example, the

homophily parameter in the model with larger effect sizes (Figure 5 on the

left) has a power ranging from about 50 percent (no missing data) to about

20 percent (19.8 percent missing data), irrespective of whether the turnover is

0 percent or 2.8 percent (the red and the green line). However, there is a large

drop in power with turnover rates of 8.5 percent (the blue line). One problem

that we encounter is that it is more difficult to achieve convergence of the

estimation routine (Ripley et al. 2016:section 6) in case of models with an

8.5 percent turnover rate and only two data waves. While close to 100 percent

of the models with 0 percent and 2.8 percent turnover converged, conver-

gence could only be achieved in about 80 percent of the high-turnover

models. The coverage rates under the null hypothesis of no effect are almost

all sufficiently close to 0.95 (type I error close to 0.05) to conclude that under the

null hypothesis the distribution of the parameter estimates is very close to a

normal distribution with mean 0 and standard deviations equal to the reported

standard error. The exception is the estimated social influence parameter (avAlt)

in case of high-turnover (8.5 percent) models, where the standard errors are

inflated. With the small remaining sample size and the skewed dependent vari-

able, this may be due to the occurrence of the so-called Donner–Hauck phe-

nomenon (Hauck and Donner 1977; Ripley et al. 2016:section 8.1), where the

standard error is inflated and the Wald test should not be used for hypothesis

testing. The very low rejection rates under the null are associated with lower

power for the Wald test, if it would be used. This explains why the power of the

high-turnover models drops below the 5 percent line in Figures 4 and 5. From a

design point of view, the interpretation of the results is clear: With this amount of

turnover for only two waves of data, it is impossible to have a satisfactory study

of social influence. In the following, we discuss results of the models in which

the turnover rate was 0 percent or 2.8 percent.

In the models with weaker effects (Figure 4), the power of the homo-

phily parameter and the influence parameter are rather low. The maximum

power in a model without turnover and missings is 30 percent (homophily,

simX) and 38 percent (social influence, avAlt). When the missing rates

increase to 19.8 percent, the power of the homophily parameter drops to

the random expectation of a null effect when a significance criterion of

a ¼ .05 is chosen (5 percent power). The power of the influence effect

remains only slightly higher.
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The models with larger homophily and influence effect sizes (Figure 5)

start off from higher power values. In case of no missing and no turnover, the

power of the larger homophily effect is 53 percent and the power of the larger

influence effect is 70 percent. A turnover rate of 2.8 percent seems not to

affect the power estimates a lot. In a model with 19.8 percent missing rates,

the statistical power drops to 19 percent and 22 percent for homophily and

social influence, respectively.

Conclusions of the Second Power Study

The second case study illustrates the potentially crucial effect of turnover

and missing data on the power of a longitudinal study design. In some of the

scenarios, the chances of detecting a real effect is not much larger than the

chances of identifying a significant effect when the true effect is null: This

is clearly nowhere near an acceptable or useful study design. Missing data

of 19.8 percent (the highest simulated value) reduces the power greatly.

The power of the influence parameter in the model with smaller effect

sizes, for example, dropped from 37.5 percent to 7.5 percent. The latter

is close to the type I error. Advanced missing data imputation strategies

might be able to reduce the effect of missing data on power (Krause,

Huisman, and Snijders 2018). Turnover also has a negative effect on power.

We further observed an inflation of standard errors, probably due to the

so-called Donner–Hauck phenomenon. It turned out that with just two

waves of data and a turnover rate of 8.5 percent, the statistical power was

unsatisfying in all simulation models.

A notable observation is further that the power of the homophily para-

meter is generally lower than the power of the influence parameter. This

seems counterintuitive, given our initial discussion that homophily inference

is based on N � �k observations, while influence effects are estimated based on

N observations per wave. In this example, however, we use data with specific

particularities that probably strongly affect the power of the study. First, the

network is very sparse. Initially, only 1.4 friendship nominations exist

( �k ¼ 1:4) which reduced the typical advantage of more information on test-

ing dyadic hypotheses. At the same time, we estimate a higher number of

effects in the network change submodel (seven as compared to four in the

behavior change submodel), which might be related to a lower expected

power. Second, the dispersion of the delinquency variable is very low; only

7.5 percent and 2.1 percent of individuals were in the lowest and highest

category of the five-point scale in the first data wave. The homophily and the

influence parameter are estimated based on cross-lagged statistics (Steglich
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et al. 2010) that do not carry a lot of information when the variable dispersion

is low and only few ties are observed. Researchers facing this problem might,

for example, want to consider using a more fine-grained delinquency scale

that generates a higher dispersion. This might improve the power of the

homophily parameter in particular. As an improved estimation strategy, it

should be considered to use a maximum likelihood routine (Snijders,

Koskinen, Schweinberger 2010) as it uses information more efficiently

which may lead to an increased power. Using maximum likelihood estima-

tions in the reestimation of simulated models (step 5 of the six-step routine) is

possible in general but will take much more time.

Discussion and Conclusions

In this article, we presented a procedure for performing power analyses in long-

itudinal social network studies. In particular, we discussed study designs that aim

at investigating social selection and influence mechanisms with SAOMs. About

130 empirical studies of that type have been published in the recent years (Snij-

ders 2017). Those studies report mixed findings about homophily and social

influence processes which we argued might be related to power issues. The

six-step procedure that we presented in this article can be seen as a tool for the

investigation and comparison of statistical power of longitudinal social network

study designs. We demonstrated its utility in two extensive research settings that

focused on the effect of network size, number of data collection waves, effect

sizes, missing data, and participant turnover on statistical power.

The two research settings that we presented did not aim at providing

practical rules of thumb because we are not yet at the point where general

conclusions and design recommendations can be formulated. Nevertheless,

they made clear that network delineation, number of data collection waves,

effect sizes, missing data, and participant turnover may strongly affect the

power of longitudinal selection and influence studies. In research setting 1

(third section), we specified a mathematical model of selection and influence

with pronounced effect sizes. A simulated small-scale study design with 30

individuals and two waves of data collection was found to be inappropriate

for empirically testing either of the two effects. A study design with five

waves of data and 120 individuals provided excellent power for both the

homophily and the influence effect. In research setting 2 (fourth section), we

specified a similar mathematical model for selection and influence dynamics

among 742 students distributed over 21 schools. The simulated effect sizes in

this study were smaller, we only simulated two data waves, and the initial

data carried a lot less information. Given those study characteristics, we
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found that a missing data rate of 20 percent would strongly reduce the power

of homophily and influence parameters. In a simulation model with low

effect sizes, the power was not meaningfully larger than the level of signifi-

cance. A turnover rate of 8.5 percent also had a strongly negative effect on

statistical power. A practical issue that arose in models with high participant

turnover is that it is harder to achieve convergence in the estimation routine.

Missing data and participant turnover rates in that magnitude are not uncom-

mon. This underlines the importance of social network data collections that

aim at high participation rates and panel stability over time.

The two empirical settings provide some intuition about issues that

researchers should be concerned about, however, the quantitative results

should not be generalized. We could indeed show that in these cases, the

power estimates are highly affected by variations in a number of study design

and social mechanism parameters. Those parameters jointly affect the power.

For example, we discussed that the distribution of variables and the network

structure affected the power in study designs in which we also modeled high

participant turnover. We also showed that assumptions about parameter val-

ues matter. When researchers face uncertainty, it is advisable not to define

just one simulation model but several models with varying parameters as we

illustrated in the second research setting.

A question that is likely to arise from this work is whether the procedure

may be used to investigate if insignificant effects in an empirical study result

from a lack of statistical power. However, it is common sense among statis-

ticians that post hoc power studies are irrelevant in the interpretation of

empirical results (Cox 1958; Goodman and Berlin 1994; Lenth 2007; Senn

2002). Estimating the power of a study design as a result of not finding

significant evidence for a hypothesis may lead to the dangerous conclusion

that evidence for a (nonsignificant) social mechanism may just not have been

found because of a lack of power. Yet the level of confidence about an estimate

is already captured by the estimated standard errors or confidence intervals.

Post hoc power studies should thus never be used in the interpretation of

parameters. However, they may motivate future research in case they suggest

that certain adaptations may indeed improve the power of a study design.

Gelman and Carlin (2013) propose that post hoc “design analyses” may

generally be useful when assumptions about social mechanisms stem from

prior expectations or prior empirical findings but not from the empirical

estimates. They argue that design analyses that are “based on an effect size

that is determined from literature review or other information external to the

data at hand can be helpful in reflecting on the results” (Gelman and Carlin

2013:2) irrespective of whether the findings are significant or not.

Stadtfeld et al. 1127



The six-step procedure proposed can provide new guidelines for the

design of longitudinal social network studies. We hope that it will inspire

systematic investigation of longitudinal study designs on various dimensions.

In our examples, we showed that network size, duration of a study, effect

sizes, missing data, and participant turnover mattered for statistical power.

Other directions are to be explored in the future: How do, for example,

assumptions about measurement scales, systematic types of missing data,

varying assumptions about interfering social mechanisms, alternative influ-

ence mechanisms, measurement errors, and varying time intervals affect the

power of a study design? Many of these topics are of critical importance for

empirical research and should thus be explored in varying contexts in the

future. The six-step procedure that we presented in this article is an adequate

tool to do develop a deeper understanding of statistical power in longitudinal

network studies.
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Notes

1. A nearly complete list of stochastic actor-oriented models (SAOMs)-related pub-

lications is available at Snijders (2017).

2. This observational asymmetry was discussed by Krivitsky and Kolaczyk (2015).

3. Scripts and Supplemental Material will be made available on the RSiena webpage

(Snijders, 2017).
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4. The tests used for the SAOM are approximate t test based on the ratio

t ¼ b̂=SEðb̂Þ. For such tests, we have the well-known formula (see Snijders and

Bosker 2011:178):

parameter

standard error
� z1�a þ z1�b ¼ z1�a � zb; ð1Þ

where a is the significance level and 1 � b is the power of the test, while

z1�a; z1�b, and zb are the values from the standard normal distribution associated

with the cumulative probability values indicated. This formula can be used for a

more efficient estimator from the simulation results. In equation (1), we insert the

mean parameter estimate as the parameter, and the standard deviation of the

parameter estimates as the standard error, and given the intended a, we can

calculate the power 1 � b.

5. The model is inspired by parameters and model specifications found in empirical

studies. Overviews are provided by Snijders et al. (2010) and Veenstra et al.

(2013). For example, transitivity parameters of about 0.2 and reciprocity para-

meters of about 2 have been reported in a variety of studies. The SIENA webpage

(Snijders 2017) further lists the majority of papers that apply SAOMs.

6. In this example in which the mathematical model is completely in line with the

SAOM framework, the RSiena software could have been used for simulations as well.

7. We do not want to imply here that power studies should be performed using empirical

results of the same study in an attempt to interpret the model parameters. We discuss

the danger of post hoc power studies in the Discussion and Conclusions section.

8. The model of Baerveldt et al. (2008) is flawed because it omits the quadratic shape

parameter that models dispersion of the behavioral variable. What they find as

influence is essentially underdispersion that was not captured and hence appears as

“staying close to friends” for a lack of closer effect in the model.

9. The RSiena Goodness-of-fit function allows a systematic comparison between the

simulated values and the empirically observed values (for each value of the

respective statistic, e.g., degree distribution or triad census) and provides a p value

that relates to the null hypothesis that the real value was drawn from the distri-

bution of simulated networks (Lospinoso 2012). In neither of the tested cases, this

null hypothesis could be rejected.
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