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Abstract

Degrees (the number of links attached to a given node) play a particular
and important role in empirical network analysis because of their obvious
importance for expressing the position of nodes. It is argued here that there
is no general straightforward relation between the degree distribution on one
hand and structural aspects on the other hand, as this relation depends on
further characteristics of the presumed model for the network. Therefore
empirical inference from observed network characteristics to the processes
that could be responsible for network genesis and dynamics cannot be based
only, or mainly, on the observed degree distribution.

As an elaboration and practical implementation of this point, a statistical
model for the dynamics of networks, expressed as digraphs with a fixed vertex
set, is proposed in which the outdegree distribution is governed by parameters
that are not connected to the parameters for the structural dynamics. The
use of such an approach in statistical modeling minimizes the influence of
the observed degrees on the conclusions about the structural aspects of the
network dynamics.

The model is a stochastic actor-oriented model, and deals with the de-
grees in a manner resembling Tversky’s Elimination by Aspects approach. A
statistical procedure for parameter estimation in this model is proposed, and
an example is given.
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I. Introduction

Consider a social network with the focus on one relation represented by a
directed graph (digraph), referring to the nodes as actors (which could be
individual humans or other primates but also, e.g., companies or websites).
In such a network, the degrees represent an important aspect of network
structure. The outdegree of an actor, defined as the number of ties from this
actor to other actors, reflects the total amount of activity of the actor in this
network, which could be dependent on the importance of the network for
this actor, the average costs and benefits for this actor of having outgoing
ties, and, if the outgoing ties are based on self-reports, the actor’s response
tendencies or constraints of the data collection methods. The indegree of an
actor, defined as the number of ties from others to this actor, will reflect the
importance and easiness for the others of extending a tie to this particular
actor, etc. The importance of the degrees as an aspect of network structure is
generally recognized (e.g., Wasserman and Faust, 1994; Albert and Barabási,
2002). Degrees refer directly to the individual actors, which gives them an
interesting position combining structural and individual relevance. Degrees
often are constraints in, but also consequences of, the processes that generate
networks and determine network dynamics.

This has led to various proposals to control for degrees in the statistical
evaluation of networks. One possibility for doing this is to test observed
network characteristics for the null hypothesis defined as the uniform dis-
tribution given the outdegrees, the U |Xi+ distribution, or the uniform dis-
tribution given the in- as well as the outdegrees, denoted the U |Xi+, X+i

distribution (Wasserman, 1977; Wasserman & Faust, 1994; Snijders, 1991,
2002b). How to generate such graphs was studied by Snijders (1991) with a
focus on Monte Carlo simulation methods for the directed case, and by Mol-
loy and Reed (1995) who proposed a simulation method for the undirected
case which also can be fruitfully used to obtain asymptotic results for sparse
undirected graphs with a given degree sequence. Various ways to take ac-
count of the degree distribution in the context of the p∗ model of Wasserman
& Pattison (1996) were discussed in Snijders & van Duijn (2002). Stimu-
lated by observations of the long-tailed nature of the degree distributions of
links in the worldwide web, Barabási and Albert (1999) proposed models for
network dynamics (modeled as undirected graphs with a growing number of
vertices) in which the creation of new links depends strongly on the current
degrees, and is random conditional on the current degree vector. Newman,
Strogatz, and Watts (2001) and Newman, Watts and Strogatz (2002) derived
various asymptotic properties of random undirected graphs with given degree
sequences. They followed the mentioned literature in underlining the impor-
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tance of studying for empirical networks whether observed network structure
can be accounted for by the degree sequence plus randomness; if the answer
is negative, there is evidence for structural mechanisms in addition to the
degrees.

It is argued here that the degree distribution is a primary characteris-
tic for the structure of digraphs but many other features, such as transi-
tivity, occurrence of cycles, segmentation into subgroups, etc., are also of
great importance. Although the degree distribution may pose constraints
to the values of these other structural features (Snijders, 1991; Newman,
Strogatz, and Watts, 2001; Newman, Watts and Strogatz, 2002), it does not
determine them and an empirical focus on degrees exclusively would close
our eyes to much that network analysis can tell us. This paper presents
a two-step model for network dynamics, in which the determination of the
outdegrees is separated from the further determination of network structure.
This gives a greater flexibility in modeling, and allows to model structural
network dynamics without contamination by unfortunate assumptions about
the dynamics of the outdegrees.

II. A two-step model for network dynamics:
first outdegrees, then network structure

This paper is concerned with the statistical modeling of network evolution
for data consisting of two or more repeated observations of a social network
for a given fixed set of actors, represented by a directed graph with a given
vertex set. When proposing statistical models for network evolution, theo-
retical credibility of the model has to be combined with empirical applicabil-
ity. The stochastic actor-oriented model of Snijders (2001, 2003), extended
to networks of changing composition by Huisman & Snijders (2003), tried
to do just this, embedding the discrete-time observations in an unobserved
continuous-time network evolution process in which the network changes in
small steps where just one arc is added or deleted at any given moment. The
network changes are determined stochastically in steps modeled by random
utility models for the actors.

The present paper adapts this model to have more freedom in fitting
observed distributions of outdegrees. The following features of the earlier
model are retained. The model is a stochastic process in continuous time, in
which the arcs in the network can change only one at the time. It is actor-
oriented in the sense that the model is described in such a way that network
changes take place because actors create a new outgoing tie, or withdraw an
existing outgoing tie. The actor who changes an outgoing tie is designated
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randomly, with probabilities that may depend on the actors’ characteristics
as reflected by covariates and by network positions. Given that an actor
changes some tie, (s)he selects the tie to be changed according to a random
utility model, which is based on effects reflecting network structure (e.g.,
transitivity).

The precise way in which it is determined stochastically which actor will
make a change, and what is the change to be made, is defined differently
than in the earlier papers, so as to allow modeling a diversity of degree
distributions in a more natural way. The focus here is on the distribution of
the outdegrees; of course, by reversing direction, this can be applied equally
well to modeling the distribution of the indegrees. The model proposed here
is composed of two substeps in a manner comparable to Tversky’s (1972)
Elimination by Aspects approach. In the first substep, the actor is chosen,
and the actor decides whether to create a new outgoing tie, or to delete
an existing tie. In the second step, if the result of the first substep was to
add a tie, the actor chooses to which of the other actors the new tie will be
created; and if the first substep led to the decision to delete a tie, the actor
chooses which existing tie will be withdrawn. Thus, the first aspect that the
actor takes into consideration is his or her outdegree; the second aspect is
the further position of the actor in the network structure.

Notation

The network is represented by a directed graph on n vertices with adjacency
matrix x = (xij), where xij indicates whether there is a tie directed from
actor i to actor j (i, j = 1, ..., n) (in which case xij = 1) or not (xij = 0).
The diagonal is formally defined by xii = 0. It is supposed that a time-
series x(t), t ∈ {t1, ..., tM} of social networks is available where the tm are
strictly increasing and M ≥ 2. These observed networks are regarded as
M discrete observations on a stochastic process X(t) on the space of all
digraphs on n vertices, evolving in continuous time. This process is taken to
be left-continuous, i.e.,

X(t) = lim
t′↑t

X(t′) for all t.

The state of the network immediately after time t is denoted

X(t+) = lim
t′↓t

X(t′) .

No assumption of stationarity is made for the marginal distributions of
X(t), and therefore the first observation x(t1) is not used to give direct
information on the distribution of this stochastic process, but the statistical
analysis conditions on this first observed network.

4



Summation is denoted by replacing the summation index by a + sign:
e.g., xi+ is the outdegree and x+i the indegree of actor i.

Model definition: rates of change

At random moments, one of the actors i is ‘permitted’ to change one of his
or her outgoing tie variables Xij. For the different actors, these random
moments are independent conditionally given the present network. The rate,
in the time interval tm ≤ t < tm+1 , at which actor i adds a tie is denoted
ρm λi+(α, x); the rate at which this actor deletes a tie is ρm λi−(α, x). Here x
is the current network and α is a parameter indicating how the rate function
depends on the position of i in the current network (e.g., as a function of
the outdegree or indegree of i) and/or on covariates, if these are available.
The multiplicative parameters ρm depend on m (the index number of the
observation interval) to be able to obtain a good fit to the observed amounts
of change between consecutive observations. Together, these two change rates
imply that for actor i, during the time interval tm ≤ t < tm+1 , these random
moments of change follow a non-homogeneous Poisson process with intensity
function

λi(x) = ρm
(
λi+(α, x) + λi−(x, α)

)
, (1)

conditional on X(t) = x. Given that actor i makes a change at moment t,
the probability that the changes amounts to creating a new tie is

P{Xi+(t+) = Xi+(t) + 1 | change by actor i at time t,X(t) = x}

=
λi+(α, x)

λi+(α, x) + λi−(x, α)
. (2)

This separation between the rates of adding and deleting ties allows to focus
specifically on the distribution of the degrees.

Model definition: objective function

Given that actor i makes a change at some moment t for which the current
network is given by X(t) = x, the particular change made is assumed to be
determined by the so-called objective function – which gives the numerical
evaluation by the actor of the possible states of the network – together with
a random element – accounting for ‘unexplained changes’, in other words,
for the limitations of the model. This objective function could be different
between the creation of new ties and the deletion of existing ties. Denote
these two objective functions by fi+(β, x) and fi−(β, x), respectively. These
functions indicate what the actor strives to maximize when adding or deleting
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ties, respectively; they depend on a parameter vector β. In a simple model
specification, it can be assumed that fi+ ≡ fi− . (This corresponds to a zero
gratification function in the model of Snijders, 2001).

The way in which the objective functions and a random element together
define the changes in the outgoing relation of actor i is defined as follows.
Suppose that at some moment t, actor i changes one of his outgoing relations.
The current state of the network is x(t). At this moment, actor i determines
the other actor j to whom he will change his tie variable xij. Denote by
x(i ; j) the adjacency matrix that results from x when the single element
xij is changed into 1− xij (i.e., from 0 to 1 or from 1 to 0). If at moment t
actor i adds a tie, then he chooses the other actor j, among those for which
xij = 0, for which

fi+(β, x(i ; j)) + Ui(t, x, j)

is maximal; where Ui(t, x, j) is a random variable, indicating the part of the
actor’s preference not represented by the objective function, and assumed to
be distributed according to the type 1 extreme value distribution with mean
0 and scale parameter 1 (Maddala, 1983). Similarly, if at moment t actor
i deletes a tie, then he chooses the other actor j, among those for which
xij = 1, for which

fi−(β, x(i ; j)) + Ui(t, x, j)

is maximal. The type 1 extreme value distribution is conventionally used in
random utility modeling (cf. Maddala, 1983); it yields the choice probabilities
for j given by the multinomial logit (or potential function) expressions

pij+(β, x) =
(1− xij) exp

(
fi+(β, x(i ; j))

)∑n
h=1,h 6=i (1− xih) exp

(
fi+(β, x(i ; h))

) (j 6= i) (3)

for adding a tie, and

pij−(β, x) =
xij exp

(
fi−(β, x(i ; j))

)∑n
h=1,h 6=i xih exp

(
fi−(β, x(i ; h))

) (j 6= i) (4)

for deleting a tie.

The specification of the objective function is discussed extensively in Snij-
ders (2001). It is proposed there to use objective functions fi+ and fi− of
the form

fi(β, x) =
∑
k

βk sik(x) , (5)
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where the βk are statistical parameters and the sik are network statistics. A
basic network statistic is the number of reciprocated relations

sik(x) =
∑
j

xij xji . (6)

Network closure, or transitivity, can be expressed by various terms in the
objective function, e.g., by the number of transitive patterns in i’s relations
(ordered pairs of actors (j, h) to both of whom i is related, while also j is
related to h),

sik(x) =
∑
j,h

xij xih xjh ; (7)

or by a negative effect for the number of other actors at geodesic distance
equal to 2,

sik(x) = ]{j | dx(i, j) = 2} , (8)

where dx(i, j) is the oriented geodesic distance, i.e., the length of the shortest
directed path from i to j. Many other examples of possibly relevant functions
sik are proposed in Snijders (2001).

Intensity matrix

The intensity matrix q(x, y), for x 6= y, of the continuous-time Markov chain
defined by this model, indicates the rate at which the current value x changes
into the new value y. Since relations here are allowed to change only one at
a time, the intensity matrix can be represented by the change rates qij(x),
from x to x(i ; j) for j 6= i, defined by

qij(x) = lim
dt ↓ 0

P{X(t+ dt) = x(i ; j) |X(t) = x}
dt

.

The model definition given above corresponds to an intensity matrix given
by

qij(x) =

{
ρm λi+(α, x) pij+(β, x) for xij = 0

ρm λi−(α, x) pij−(β, x) for xij = 1.
(9)

III. Rate functions and stationary distributions

In a simple model definition, the rates λi+ and λi− depend only on the
outdegree of actor i. This will be assumed henceforth, and it implies that the
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outdegree processes Xi+(t) are independent continuous-time random walks
on the set {0, . . . , n − 1}. For the sake of brevity, and with a slight abuse
of notation, denote the rates of adding and withdrawing ties by λ+(s) and
λ−(s), where s = xi+ is the outdegree of actor i. Thus, λ+(xi+) is shorthand
for λi+(α, x) and similarly for λ−(xi+). It is assumed that these rates are
strictly positive except for the boundary conditions λ−(0) = λ+(n− 1) = 0.

The network evolution model is not necessarily assumed to be stationary,
and indeed it is likely that in empirical observations, networks often will be far
from the stationary distributions of the corresponding evolution processes.
It is interesting nevertheless to consider the stationary distribution of the
process, as this indicates the direction into which the evolution is going.
The probability distribution p(s) on the set {0, . . . , n− 1} is the stationary
distribution for the random walk process of the outdegrees if and only if

p(s)λ+(s) = p(s+ 1)λ−(s+ 1) for 0 ≤ s ≤ n− 2. (10)

(This follows directly from the fact that this is the condition for detailed
balance, cf. Norris, 1997.)

As a benchmark situation, it is instructive to consider the stationary dis-
tribution of the outdegrees in the actor-oriented model of Snijders (2001) with
the very simple objective function fi(x) = β1 xi+ . In this model, the choice
of which actor changes an outgoing tie variable is made strictly randomly.
In this model also, the outdegrees of the different vertices are independent
stochastic processes. This model can be obtained in the formulation of the
present paper by defining

λi+(s) =
(n− s− 1) exp(β1)

(n− s− 1) exp(β1) + s exp(−β1)

λi−(s) =
s exp(−β1)

(n− s− 1) exp(β1) + s exp(−β1)
,

as can be checked from the intensity matrices (see (5) and (8) in Snijders,
2001, and (9), (3), (4) above). This implies

λi+(s)

λi−(s+ 1)

=
(n− s− 1) exp(β1)

(s+ 1) exp(−β1)

(n− s− 2) exp(β1) + (s+ 1) exp(−β1)

(n− s− 1) exp(β1) + s exp(−β1)

which is close to p(s+1)/p(s) for the binomial distribution with denominator
n− 1 and succes probability exp(2β1)/(1 + exp(2 β1)). Thus, for this model,
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the outdegrees are for t → ∞ close to binomially distributed with these
parameters.

The change rates λi+ and λi− together reflect two aspects of the evolution
process of the outdegrees: the distributional tendency, i.e., the equilibrium
distribution towards which the outdegree distribution tends; and the volatil-
ity, i.e., how quickly the ties are changing. It follows from (10) that the
distributional tendency depends on ξ(s), defined by

ξ(s) =
λi+(s)

λi−(s+ 1)
. (11)

It is mathematically convenient to express the volatility by

ν(s) = λi+(s) + λi−(s+ 1) . (12)

These definitions imply that the rates are given by

λi+(s) =
ν(s) ξ(s)

1 + ξ(s)
, (13)

λi−(s) =
ν(s− 1)

1 + ξ(s− 1)
.

With these definitions, p is the stationary distribution if and only if

ξ(s) =
p(s+ 1)

p(s)
s = 0, . . . , n− 2. (14)

For the purpose of statistical modeling, it is necessary to consider parametric
families of distributions p. If p(s) is a member of an exponential family

p(s) = p0(s) exp (α′t(s)− ψ(α))

where t(s) is a vector of sufficient statistics, α is a parameter vector, and
ψ(α) is a normalizing constant, then this yields

ξ(s) =
p0(s+ 1)

p0(s)
exp

(
α(t(s+ 1)− t(s))

)
. (15)

E.g., for a truncated Poisson distribution (p0(s) = 1/s!, t(s) = s), this be-
comes

ξ(s) =
1

s+ 1
eα = exp (α − log(s+ 1)) . (16)
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For a truncated power distribution (p0(s) = 1, t(s) = log(s+ 1), α < 0), the
rate functions are

ξ(s) =

(
s+ 2

s+ 1

)α
≈ exp

(
α

s+ 1

)
. (17)

The Poisson distribution is short-tailed, corresponding to ξ(s) becoming
small as s gets large, in contrast to the long-tailed power distribution, for
which ξ(s) becomes close to 1.

A model containing the tendencies toward either of these distributions as
submodels is obtained by defining

ξ(s) = exp

(
α1 − α2 log(s+ 1)− α3

s+ 1

)
. (18)

For the volatility function ν(s), the dependence on s could be linear, anal-
ogous to what was proposed in Snijders (2001). This is unattractive, however,
if one considers digraphs with arbitrarily large numbers n of vertices. A hy-
perbolic function, tending to a finite constant as s grows indefinitely, seems
more attractive: e.g.,

ν(s) =

(
1 + α4

1

s+ 1

)
, (19)

where the restriction must be made that α4 > −1. The functions ξ and ν
can also be made to depend on covariates, e.g., through an exponential link
function.

IV. Parameter estimation

For the estimation of parameters of this type of network evolution models for
observations made at discrete moments t1 , . . . , tM , Snijders (2001) proposed
an implementation of the method of moments based on stochastic approxi-
mation, using a version of the Robbins-Monro (1951) algorithm. The method
of moments is carried out by specifying a suitable vector of statistics of the
network and determining (in this case, approximating) the parameters so
that the expected values of these statistics equal the observed values. To
apply this approach, statistics must be found that are especially informative
about these parameters.

First consider the parameters of ξ. For a model of the general exponen-
tial form (15), e.g., (18), the statistic t(S) is a sufficient statistic for the
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limiting distribution, and therefore it seems advisable to use the statistic∑
i t(Xi+(tm+1)), or for multiple observation periods

M−1∑
m=1

n∑
i=1

t(Xi+(tm+1)) . (20)

For model (18), some simplifying approximations may be used; e.g., for pa-
rameter α2 , this can be based on Stirling’s formula. This leads for the three
parameters in this model to the fitting statistics

M−1∑
m=1

n∑
i=1

Xi+(tm+1)

M−1∑
m=1

n∑
i=1

(Xi+(tm+1) + 1
2
)
(

log(Xi+(tm+1) + 1)− 1
)

(21)

M−1∑
m=1

n∑
i=1

log(Xi+(tm+1)) .

For the parameters in the volatility function ν, the same approach can
be taken as in Section 7.4 of Snijders (2001). This leads for parameter ρm to
the statistic

n∑
i,j=1

|Xij(tm+1) − Xij(tm) | (22)

and for parameter α4 in (19) to the statistic

M−1∑
m=1

n∑
i,j=1

|Xij(tm+1) − Xij(tm) |
Xi+(tm) + 1

. (23)

V. Example

As a numerical example of the analysis, the dynamics of a network of political
actors is considered, based on a study by Johnson and Orbach (2002). The
data used here are from a second and third wave of data collection between 46
actors, most of whom the same individuals as those in the first wave of which
results are presented in Johnson and Orbach (2002). They are self-reported
dyadic interaction data, rated on a 0-10 scale which here was dichotomized
as 0-6 vs. 7-10. Space limitations prohibit doing justice to the richness of the
original data and the social processes involved in the network dynamics.
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Preliminary analyses indicated that there is evidence for a network closure
effect, expressed better by the number of geodesic distances equal to two, cf.
(8), than by the number of transitive triplets, see (7); and that there is
evidence for a gender popularity effect. Sets of estimates are presented here
for two corresponding models, differing as to how the degrees are modeled.
The first model is according to the specification in Snijders (2001), with a
constant rate function and without the differentiation between adding and
withdrawing ties proposed in the present paper. The objective function is
specified as

fi(β, x) = β1 xi+ + β2

∑
j

xij xji + β3 #{j | dx(i, j) = 2}

+ β4

∑
j

xij zj

where zj indicates the gender of actor j. The second model follows the
specification proposed above. Preliminary analyses showed that a good fit is
obtained by using model (18) with α2 = α3 = 0. The volatility function is
held constant, ν ≡ 1. The objective function here is defined as

fi+(β, x) = fi−(β, x) = β2

∑
j

xij xji + β3 #{j | dx(i, j) = 2}

+ β4

∑
j

xij zj

(note that in this model, it is meaningless to include a term β1 xi+ in the
objective function; the role that this term has in the earlier model is here
taken over by the rate function). The parameter estimates, obtained from the
SIENA program (version 1.98; see Snijders & Huisman, 2002) are presented
in Table 1. Gender is coded 1 (female) vs. 0 (male), and centered in the
program by subtracting the average value of 0.17.

Parameters can be tested by approximate z-tests based on the t-ratios
(parameter estimate divided by standard error). Using this procedure, all
effects mentioned in Table 1 are significant (p < .001). The fit of the two
models can be compared by considering the fitted distributions of the degree
sequences. A rather subtle way of doing at this is to look at the observed
ordered outdegrees and their fitted distributions. Figures 1 and 2 show, for
these two models, the observed outdegrees combined with simulated 90-%
intervals for the distributions of the ordered outdegrees. Figure 1 indicates
a poor fit: the distributions of the 9 highest ordered outdegrees in the fitted
model are concentrated on too low values compared to the observed ordered
outdegrees; in the middle low range, the fitted distribution of the ordered
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Table 1. Parameter estimates for two model fits

for the Johnson-Orbach political actor data (waves 2-3).

Model 1 Model 2
Effect par. (s.e.) par. (s.e.)

Rate factor (ρ1) 23.09 22.78

Rate function: ξ
Outdegrees (α1) -0.57 (0.07)

Objective function
Outdegrees −1.14 (0.19)
Reciprocated ties 1.37 (0.11) 1.77 (0.23)
Indirect relations −0.50 (0.21) −0.62 (0.30)
Gender (F) popularity 0.28 (0.10) 0.39 (0.11)

outdegrees is too low compared to the observations. Combined, this im-
plies that the fitted outdegree distribution is too closely peaked about its
mean value. On the other hand, Figure 2 indicates a good fit for the second
model, all observed outdegrees being situated within the 90-% interval of the
distribution of the corresponding ordered outdegree.
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Fig. 1. Observed (∗) and 90% intervals for k’th ordered outdegrees, Model 1.

The parameter estimates and standard errors in Table 1 for both models
point to the same conclusions. In the network dynamics there is clear evi-
dence for reciprocity of choices, for a network closure effect, and for a greater
popularity of female actors. (A gender similarity effect also was tested, but
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Fig. 2. Observed (∗) and 90% intervals for k’th ordered outdegrees, Model 2

this was not significant.) If there would have been important differences be-
tween the results of the two models, then model 2 would have been the more
trustworthy, given that it shows a better fit for the outdegree distribution.

VI. Discussion

The degree distribution is an important characteristic of networks and has
received much attention in recent work. However, attention for the degrees
should be combined with sufficient attention paid to other aspects of network
structure. The current paper proposes a modification of the model presented
in Snijders (2001), addressing the following points of criticism that could
be addressed to the earlier model. First, it may be hard to specify the
earlier model in a way that gives a satisfactory fit for the very skewed degree
distributions that are sometimes empirically observed (cf. the many examples
mentioned in Newman, Strogatz, and Watts, 2001). The model proposed here
gives almost unlimited possibilities with respect to the outdegree distribution
that is generated. Second, the extrapolation properties of the earlier model
may be unrealistic in the sense that, depending on the parameters of the
model, letting the model run on for a long hypothetical time period may
lead to unrealistic phase transitions. More specifically, similarly to what is
explained in Snijders (2002a), the earlier model can be specified so that quite
a good fit is obtained for the evolution over a limited time period of a network
with, say, a rather low density and a relatively high amount of transitivity,
but that the graph evolution process so defined will with probability one lead
to an ‘explosion’ in the sense that at some moment, the graph density very

14



rapidly increases to a value of 1 and remains 1, or almost 1, for a waiting time
that is infinite for all practical purposes. (A closely related property, but for
the case of a graph evolution process where the number of vertices tends
to infinity, was noticed by Strauss, 1986. This phenomenon also resembles
the phase transitions known for the Ising model and other spatial models
in statistical physics discussed, e.g., in Newman and Barkema, 1999.) Such
phase transitions can be avoided in the model proposed below because the
outdegree distribution is determined independently of the further structural
network properties.

A third reason, of a more theoretical nature, for proposing this model, is
to demonstrate that quite plausible models are possible for digraph evolution
in which the distribution of the outdegrees is dissociated completely from
the other structural network properties such as transitivity and subgroup
formation. This implies that we can learn little about the processes leading
to transitivity and related structural properties of graphs and digraphs by
looking only at degree distributions, or by limiting attention to network
evolution processes that are based only on degrees.
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