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Maximum value and null moments of the degree variance.

C. <‘wirodurtior

This is companion paper to Snijders (1981), which will henceforth
be indicated by DV. It contains proofs of some statements and
formulas which were left unproven in DV.

Section 1 introduces the concept of a monotone graph, which is
used in Section 2. In Section 2, the maximum value of the degree
variance is computed for undirected graphs with a given number of
points and a given density. In Section 3, this maximum is computed
without restricticns on the density.

Section 4 is independent of the other sections. In this section,
the mean and variance of the degree variance are computed under
some simple stochastic null models.

All notation and terminology of DV is used without introducing

it again.
1. lonctone yraphs
The concept of a monotone graph plays an essential role in Section 2.

1.1 Monccone graphs: introduction

Consider an undirected graph G with incidence matrix (xij). Suppose

that there exists points i,j,k with i # X and
(1.1.1) xj < xk, xij =1, xik = 0.

Construct the graph G' from G by switching the line i-j to i-k (i.e.,

x!. = 0 and x' = 1, while x' = x for all other (s,t)). Then
ij ik st st
xJ = xj-l xk = xk+1
1] = f B
%, X, or t # i, k

X =%, , d' =4 ’
and hence for every convex function ¢ : B%) - IR we have

th(xé) - th(xt) =

= w(xj—l) 0% +1) - (D(xj) -O(x. ) >0,

k
with strict inequality if ¢ is Strictly convex. It follows that



Vw(G) < Vw(G'). The set of graphs which do not have three points
i,j,k satisfying (1.1.1) will be defined as the set of monotone

graphs.

Definition. A monotone graph is an undirected graph which satisfies

(x,. =1, X

i3 3 e i#k)y= x,_ =1.

ik

The discussion above implies that in order to find the maximum of
VW(G) for undirected graphs G with fixed g and d, one may restrict

attention to monotone graphs.

Let G be a monotone graph; in the sequel it will always be assumed

that x1 > x2 > ... > x _. Then
1 <3 <x if x, < i-1
xi, =1 for{
J 1 <3 < x. if (x,>i and j#i)
. -7 — i+l i—
(1.1.2)
xij = 0 for all other (1,3).

It follows that every monotone graph is determined by its vector of

degrees (xl,xz,...,xg). Define

I= min{i!xi < i-1}.

Then a monotone graph is already determined by the degrees X for

I<i < g. To see this, note that

X.. =1 for 1 < j <i < 1-1
ij - -
(1.1.3) xij =1 for 1 < j < X5 i>1
xij =0 for xi <j<g, i >1I
and that the whole incidence matrix (x..) is determined by (1.1.3)

1]
together with the restrictions

Xij xji' X < 0.

A graphical representation of monotone graphs can be given in the
following way. A grid of gx g squares, both dimensions having coordinate
values 1,2,...,q, will be called the (i,j) grid. In square (i,3) put

the number Xi5° Then the highest 1 in column i is situated at j = x; where

x.+1 1 <i<i1-1
{ l . .



The borderline between the regions {xij = 1} and {xij = 0}, not taking
into account the main diagonal, is called the "incidence borderline".

Figure 1 gives the incidence borderline for the monotone graph with
3 =11 and

x1 = X, = 8, x3 =17, x4 = x5 = 4
x6 = x7 = x8 = 3, x9 = 2, x10 = x11 =0
g
2
i

Figure 1.

The incidence borderline completely characterizes the monotone graph.
A less redundant characterization is given by the "half incidence
borderline", which is the part of the incidence borderline below

the main diagonal, i.e. for i > I only; see Figure 2.

o

s

Figure 2.

1.2, Monolone graphs cnd majorisalion

(This section will not be used in the sequel and may be skipped) .-
For twou vectors x = (xl""'xg) and y = (yl""'yg)' x is said to
majorize y if



g - 59

Zi=1xi Zi=1yi

z X > Zk f k = 1 .
i=1 [l] - l=1y[1] or = Peear 1

where x[l]""'x[g] are the xi's arranged in descending order. See

Marshall and Olkin (1979). This is equivalent to

g g
Zi=1w(xi) Z-Zi=1w(yi) for all convex ¢,

and it is denoted by x % y. In the discussions at the start of Section 1.1
we have

(xllleo--rxg) > (Xlr---lxg)-

The ordering of majorization is a partial ordering, which reflects the
dispersion of the components of the vectors.

Dencte

D = {(xl,...,xg)[ there is an undirected graph with

degrees xl,xz,...,xg}.

Then the result of the previous section can be formulated by saying
that the class of maximal elements of D with respect to majorization
is a subset of the class of vectors of degrees of monotone graphs.

Corollary 6.18 of Chen (1971) states that if x (x

1,...,xg) is a vector

of integers with g-1 > X, Z_xz > Xq >0 > xg > 0, then x€D if and only if
Zz_lx is even

(1.2.1)
X > x

where ; = (;1,...,;;) is defined by

;i=|{j#i|xjii}| if 1<i<i

'>‘<'i= I{jgio|xj+131}l if 141 <i<g,
where

i = max{i|xi > i} = 1-1.

For monntone graphs (with degrees arranged in non-decreasing order)
we procisely have X = #Z. On the other hand it is not hard to see that if
; = x, then 4 (symmetric) incidence matrix of a monotone graph can be
constructed with vector of degrees x (compare the construction mentioned
by Chen (1971) on page 411). So x is the vector of degrees of a monotone
graph if and only if X = x.

It can be proved that



(1.2.2) x <y = x> y.

(Compare 7.B.5 in Marshall and Olkin (1979), where the analogous
result is proved for directed graphs.) With (1.2.1) this implies
that if # is the vector of degrees of a monotone graph, then x is
a maximal element of ID with respect to majorization. Summarizing,

we have obtained the following result.

Theorem. The maximal elements of ID with respect to majorization are

exactly the vectors of degrees of monotone graphs.
“v  The maximum value of the degree variance for a given density

2.1. tatement of the result

In this section, the maximum value of V for undirected graphs with g

points and degree sum

s = Zg X,
i=1"1

will be obtained. The condition of a given degree sum is of course

equivalent to the condition of a given density.

The monotone graph with

I 1 <i <k
I-1 k+1 < i <I
(2.1.1) X, =
k i=1+1
0 I+251_§g
or, equivalently,
xij =1 1<i,j<1 i#3
xI+1,i = xi,I+1 =1 1 <12k
xij =0 all other (i,3j)
where 0 < k < I-1 and 1 <1 < 9-1 or (I,k) = (9,0), is denoted by

G(I,k). The incidence borderline of this graph is represented in

Fiqgure 3. The degree sum of G(I,k) is

“(I,k) = k1 + (I-k)(I-1) + k

I(I-1) + 2k.
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Figure 3.

For the mentioned values of (I,k), s(I,k) assumes all even integers from
0 to 9(4-1), which are all possible values for s for undirected graphs
with  points. The definition of G(I,k) can also be used for k = I,

in which case one gets G(I,I) = G(I+1,0). The degree sum of squares

of G(I,k) is

kIz + (I-k)(I-l)2 + k2 = I(I—l)2 + k(2I+k~-1).
whence the degree variance of G(I,k) is
(2.1.2) V(LK) = HI1(1-1)2 + k(214k-1)) - (REZ1) + 2k;2

g
It will be proved that

- _ c c
(2.1.3 Vmax(g,d) max V(Id,kd), V(Id, kd)
_ .C . C . .
where (Id,kd) and (Id,kd) are the unique solutions of
d( a -1) + 2k = g(g-1)a
(2.1.4) c
Id( d -1) + 2kd = g(g-1) (1-4)
when \I ,k ) and (Id d) are restricted to
(2.1.5) J={Ik|0<k<I-1, 1 <1<g-1}U{(q,0)}.

It may be noted that the complement of G(Id, k ) is a graph with degree sum

s and variance equal to V(Id,k ).

This result will be proved in the following way. Denote by G(d) the

set of all monotone graphs with g points and density d, and define

G, (d) = {GEL(1)|G has ne isolated points)

Go(d) (GEG (1) |G has at least cne isolated point}.



For every GEGO(d), its complement is an element of Gl(l—d) and has the
same degree variance as G, and vice versa. It well be demonstrated that
for every G€Go(d), either the variance of G is equal to V(Id,kd), or
there exists a graph in G(d) with a greater degree variance than G. This

implies (2.1.3).

2.2, Changing a monotone graph.
Let G be a monotone graph.
Define zy0 22,..., z; as the different values assumed by the degrees

x. for i > I, ordered so that z, > z_ >...> z. > 0.
i - 1 2 f =

Defirne ih as the largest i with X, = Z, Then I 5_i1<...< if = g, and
(ih,zh) are the coordinates of the right-upper angles in the half incidence

borderline. Now change G into G' by disconnecting the points i. angd z '

h h

while connecting the points ie + 1 and z 1. Then G' is again a monotone

+
e+l
graph with the same density as G; the degree sum of sguares of G' minus

that of G is (see Figure 4)

[ - 2]
Y 3
2 e
Q?l LL
Fiqure 4.
2 .2 2 . 2
(ze+1+1) * le - {ze+1 * (le_l) }

2 . 2 2 ) 2
* oz =T (4 -2)" - {zh + -0

(2.2.1) = 2(ze+1+1 + 1e+1) - 2(lh+zh).

In the graphical representation, (2.2.1) is the sum of the coordinates
of the squares in the (i,j) grid where 0O is replaced by 1, minus the
coordinate sum of the squares where 1 is replaced by 0. Because of the
symmetry with respect to the main diagonal we only need to consider

the part of the (i,j) grid below the main diagonal.



In the following subsections, we
graphs consisting of a succession of

In the (i,j) grid, disconnected pairs

consider changes of monotone
changes of the type above.

are marked by x and connected

pairs by e. It can be easily verified graphically, that the proposed

change of G leaves the degree variance unaffected or increases it.
If the e and x signs can be so paired that in each pair (consisting

of an e and an x), both Squares have the same coordinate sum i+j,

then the degree variance is unaffected. If in each pair the coordinate

sum of o ie not less than the coordinate sum of x, while it is greater

in some pairs, then the degree variance is increased. For example, in

Figure 4 the degree variance is decreased.

Tre cases f >4, £ =3, f=2and f = 1 will be studied successively.
We denote the subclass of Go(d) with a given value of f
by Go(d,f) and
yh = lh+1 - lh 1 <h < f-1
yo= 11 =I
dh =z - zh+1 1 <h < f-1
Then yh >1, dh > 1 for 1 <h < f-1 and yo > 0. For G with at least one
isolated point, we have xg = zp = 0.

2.3. Ihe case f > 4

It will be proved in this subsection that for every graph in G (4, f)
with f > 4, there exists a graph in G(d) with a larger degree variance.
Consider a graph in Go(d,f) with f > 4. For h = 1,2, consider the

following set of changes.

A. Suppose dh+1 < dh < Yy - Disconnect j——-lh for
z, - dh+1 +1 <3 5'zh and connect J——'(lh+1+1) for
zh+2 + 1_5 j < Zh+1' (Figure 5). This increases the degree variance.
I
¢
Vil
ix] b
b D
YA ot
4
®y
dln 0!
L
l’l\ “\H

Figure 5.



B. Suppose dh S-dh+

1 S-Yh' Disconnect j — lh for

< +1) for

zh+1+ 1 <3 E-Zh and connect j — (1h+1

zh+2+ 1 <3 5_zh+2+ dh' (Figure 6). This increases the degree
variance.

S
1 X
L
1 x
low
Y -
o)
Ui [0
L.
LL ‘kf)
Figure ©.

C. Suppose dh+1 > 2 and 2 < Yy < dh. Disconnect

. P 4 , . )
%y i for i, +t2<i< i, .1+ disconnect
- . 3 ; "i . .
{z, ;-1 lp4q And counect § — (i +1) for
Zh+1‘1 < J< Zh+1+yk' (iiqure 7). This increases the degree variance.
bowy
ol
d fo
hed
C}
[}
o4
]
Ix x x
is Ay
(
LL he
Fiqure 7.

D. Suppose dh > 2 and 2 f~yh <d Disconnect j — i

h+1° h+1
for zh+1 - yh + 1 <3Jj < Zh+1' connect (zh+1+1)——— i
. . . - ~ . + — ]
for 1h+ 1 <1< lh+1 1 and connect (zh+1 2) (1h+1).

(Figure 8). This increases the degree variance.
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Figure 4.

If ncune of the conditionsfor changes A, B, C or D is satisfied, then

necessarily

(2.3.1) Yy = 1 or (dh = 1 and Yy < dh+1) or (dh+1 = 1 and yh < dh).

By applying this for h = 1, it is seen that a necessary condition for

a graph in Go(d,f) to have the maximum degree variance is

y1 =1 or (d1 = 1 and y, < d2) or (d2 = 1 and Yy < dl)'

If d1 = 1 and Yy < d2, then disconnecting j — i, for Z, "y, t2<3j<z

2

and connecting z, — i for i1 +1 < 5'12 - 1 yields a graph in

Go(d,f) with the same degree variance and Y, = 1. (Figure 9).

IOOO

' X
]
:t
x|
S
C, Ly
Fioure 3.
If d2 =1 and Y, < dl' then disconnecting z, — i for i1 +2<i < 12
and connecting j — (i]+l) for »

D) t1 <) < zy * Yy -1 yields a graph
in Go(d,f) Wwith the samc deqrec variance and Y, = 1. (Figure 10).
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Figure 10.

This implies that in order to achieve the aim of this subsection it

is sufficient to show that for every graph in Go(d,f) with £ > 4 and

y1 = 1, there exists a graph in (¢(d) with a greater degree variance.

By considering the changes A, B, C and D for h = 2, it is seen that all

these graphs which cannot be changed (with increasing degree variance)

in one of these ways satisfy (cf. 2.3.1) Yy, = 1 and

y2 =1 or (d2 = 1 and Y, < d3) or (d3 = 1 and y2 < d2),

which implies

(2.3.2) y1 = 1 and (y2 §.d2 or (d2 = 1 and y2 < d3)).
If vy, = 1 and Y, < d2, then disconnecting 2y — i3 and connecting
(22+1) __ i2 increases the degree variance. (Figure 11).

I'Zigure 11.



If y, = d2 = 1 and Y, §.d3, then disconnecting j —_— i3 for

z2y - Y, +1<j 5.23, connecting 2, — i for i, + 1 <i 5.13—1 and

connecting (22+1) —_— 12 increases the degree variance. (Figure 12).

Figure 12.

This completes the demonstration that if f > 4, then the degree variance

cannot be maximal.

Z.4. The case f = 3.

It will be demonstrated in this subsection that if 1 5-kd < I-2, then
G(Id,kd) has in Go(d,3) the maximal degree variance; while if kd =0 or
I-1, then for every graph 1in Go(d,3) there is another graoh in Go(d) with
a greater degree variance.

All changes mentioned in Subsection 2.3, until ang including the change
represented by Figure 10, can also be applied if f = 3. This implies

that the maximum degree variance for graphs in Go(d) with £ = 3 isg

assumed by a graph satisfying Yy = 1. (Figure 13).

Figure 13
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Consider a graph in Go(d) with £ = 3 and v, = 1. If 1 f_yo < d2,

then disconnecting j — i2 for zZ, -~ Y, * 1 <3< z, and connecting

(21+1) — i for 1 + 1 <icx< 11 increases the degree variance. (Figure 14).

I ¢4

Figure 14,
If dZ < Y, < d1 + d2 -1, then disconnecting j — i, for 1 < j < z,
and ccnnecting (zl+1) — i for I + 1 <i<I*+ 22 increases the
degree variance (Figure 15).
6o ol

Y, +!

nll N

¥ X

°
.

I G G

Figure 15.

+ . . . — _ . ,
1t Yo > d1 d2, then disconnecting z, i for i, d1 d2 +2<i<i

1'

connecting j — i2 for z, + 1 <3< z, - 1 and connecting j — (i2+1) for

1 <3 < zé increases the deqree variance. (Figure 16).

Figure 16.
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The only case remaining of f

3 is Y, = 0, Yy, = 1. This is just

the graph G(Id, kd), if 1 £k, <I-2; if k, = 0 or I-1, then there

da — d
: : o 3 = =
is no graph in uo(d) with Yo = o, Yy 1.

2.5. The case f = 2.

It will be demonstrated in this subsection that for every graph in
Go(d,2), either there is a graph in G(d) with a greater degree variance,

or the degree variance is equal to V(Id, kd) or V(I;, k§)°

For z, =g - 2, we encounter G(g-1,0); for z, = g-3 and f = 2, we encounter
G(g-2,0) or 5(g9-2,9-3). Now consider a graph in Go(d,2) with z, < g-4.

If 2 < Yo < dl’ then disconnecting j — ilfor z, - yO +1 <3 5.21,
connecting (zl+1) — i for I + 1 <ix< i1 - 1| and connecting

(Zl+2’ — 'I+2) increases the degree variance. (Figure 17).

VD T -

X X X X
&

¢

Figure 17.

If Yy 2 2, d1 E»YO' then disconnecting z, — i for i1 - d1+1 <i<i,
connecting j —— (il+1) for 1 <3 < z, - 1 and connecting 1 — (il+2)

increases the degree ‘variance (Figure 18)

;KK&X

ted e ® e avafune

(2™

Figure 18.



If Y, =

1, dl < Yoo then disconnecting z

- 15 -

1

1 — i for i, - d1 +2<1i<i
and connecting (il+1) — jfor1<j<z

1

1 1 (note that i1 = g-1)

yields a graph with the same degree variance. This graph is just the

complement of G(Ig, kg), and hence its degree variance is V(Ig, kg).
(Figure 19).

(4

o= o oo o

1x x

po w0 o

Figure 19.

If Y, = 2, then disconnecting z, — i1 and connecting (z1+1)

(il+1)

does not affect the degree variance and yields the graph V(Id, kd).
(Figure 20).

For y =

G(Id, 0).

2.6. The case f = 1,

If

*1

is

1,.we encounter G(Id, Id—l). For Y,

L}

Fiqure 20.

= 0, we encounter

f =1 for a graph with at lcast one isolated point, we have
= xg = 0, which implies that the graph is completely disconnected and
equal to G(0,0).
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8. The maximum value of the degree variance.
It follows from Section 2 (c£.(2.1.3)) that

Vmax(g) = max V(I

rky)
0<s<g(g-1)

d

with (Id,kd) determined by (2.1.4), (2.1.5). Formula (2.1.2) shows that,

for fixed I, V(I,k) is a quadratic function of k with a nonnegative

coefficient of k2 whenever g > 4. As G(I,I) = G(I+1,0), this implies
that
max  V(I,k) < max{V(I,0), V(I+1,0)}

0<k<I-1
and hence

\Y (g) = max V(I1,0)

max 0<I<g-1
Define

2 2

v(I) = ¢g"V(1,0) = I(I-1) (g-1).

Then

V(I-1) = v(I) = (I-1)(4I°-(3g+8)I+4q).

This expression is 0 for I = 1 and

I = 3g + 8 iJggz - 16g + 64
8

For g > 5 we have 3g - 8 < /ggz - 16g + 64 < 3g, so there is a
y€(0,1) with

2 <Ic<

Sl

gty = v(I-1) < v(I)

%g+y_<_1_<_g = v(I-1) > v(I).

This shows that for integer I, v(I) is maximal for 1 = I* with
%g- 1 < 1* < -i-g+ 1. Considerir;g each of the cases g = 4h + t for
integers hand t with 0 £ t < 3 shows that in all these cases, I* can

be represented by
(3.1) I* =[%q+5].

For g = 3,4 the number of possibilities is very small and it is easily
seen that here, too, Vmax(g) = V(I*0) with I* as in (3.1). So we

have obtained the result
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2
I*(g-—I*) (I*—l)
= * =
(3.2) Vnax (9 = V(I*,0) .

2
g

It is straightforward to see that g-zvmax(g) is an increasing

function of g which converges to

. 27
lim Vmax(g) =
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4. Ezxpectation and variarce of the degree variance nder some

simple stochastic models.

This section contains the computations for EV and var V under the null
models of DV (Section 3).

4.1. A eimple general formula.

In all models considered, the restriction

x9 X, = s
i=1"41
is made, while Xy X2 ceay Xg are permutation invariant. This yields
_ ~1lg s,2 _ -lgg 2 52
V=g Zi=1(xi g) =g Zi=1xi (g)
(4.1.1) EV = var X1

var V = g_1 var Xf + g-l(g-l) cov (Xf,Xg).

4.2. A gemeral formula for directed and undirected graphs.

For directed and undirected graphs, we have

g
X, = 37 .
17 %5=1 Xy
j#L
Define
m o= P{x12 =1}
(4.2.1) m, = P{x12 =X, = 1}
my o= p{x12 = X3 =X, =1}
m, = P{x12 = X3 =X, =X, =1L
The permutation invariance of x12' XP,...,X],j yields
var x1 = (g-1) var x12 + (g-1) (g=2) cov (X12,X13)
. 2
(4.2.2) = (g-l)ﬂl(l-ﬂl) + (g-l)(g-Z)(TT2 "1)
2 2
EX1 = var xl + (Exl) = (g-l)ﬂ1 + (g—l)(g-Z)n2
4 g 4 2 3
= = - - - +
EX1 E(Zj=2X1j) (g 1)EX12 + 4(g-1) (g 2)EX12X13

+ 6(g-1)(g-—2)(g—3)Ex2 X, . X o+

2,2
* 3(g-1) (g-2)EX] X 12713714

13
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+ (9-1)(g-2)(g-3)(g-4)EX12x13x14x15

(g-1)n1 + 7(g-1)(g-2)n2 + 6(g—1)(g—2)(g-3)ﬂ3

+ (9-1)(9-2)(9-3)(9-4)n4.

With
by = P{x12 =X, = 1}
Py = PIXyy = Xy = X5 = 1}
Py = Py =Xy = X3 =Xy = 1},
the permutation invariance of X13, X14, ey Xlg' X23, X24, ey ng yields
2,2 g 2 g 2
X =
EXy 2 E(x12+zj=3x1j) (x21+zj=3x2j)
2 2 2
= Exlzx21 + 4(g—2)Ex12X21X23
2 g 2 2
+ 2EX12(Zj=3X2j) + 4(g-2) EX12X13X21X23
_ g 2 g 2, ,v9 2
+ 4(g 2)EX12X13(Zj=3X2j) + E(zj=3xij) )(Zj=3x2j)

2
Py ¥ 4(q—2)o3 + 4(g-2) Pyt g(g—2)n2
2 2
+ 2(g-2) (g —2g—1)n3 + (g+1) (g-2) (g—3)n4.

Hence, with (4.1.1),

g tex? 4 g lig-1)Ex

var V 1

2.2 2.2
1%y — (EX))

"

-1 2
g (g—l){02+4(g-2)p3 + 4(g-2) 04}

-1
(4.2.3) + g (q-l){ﬂ1+(g+7)(g—2)n2 + 2(g-2)(g2+g-10)n3

+ (4=2) (9-3) (g%-6)m, )}

2
- {(q-l)n1 + (g-l)(q-Z)nz} .

4.3. A general formula for bipartite graphs.

For bipartite graphs, we have
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, h
Xi = zj=1xij.

A comparison with Section 4.2 shows that

2
(4.3.1) var x1 = hnl(l—nl) + h(h-l)(nz-nl)
2
EX1 = hﬂl + h(h-l)ﬂz
EX? = U+ Th(h=DW) + 6h(h-1) (h-2)y + h(h-1) (h-2) (h-3)T,
2.2 2 2 2 2
Exlx2 =h n2 + 2h (h—l)n3 + h (h-1) n4,

where n1 to ﬂ4 are as in (4.2.1). Hence, with (4.1.1) again,

var V g'lsx? + g_l(g—l)EXfxz - (Exf)2

g_l{hnl + h(gh+6h-7)m, + 2h(h-1) (gh+2h-6)T

3
4.3.2
(¢ ) + h(h-l)(gh(h-l)—4h+6)n4}
2
- {hn1 + h(h-l)nz} .
4.4. Undirected graph.
For undirected graphs we have X,. = X.., and hence p, = n, .. Further,
ij ji i i-1
s
n, = ———
1 g(g-1)
_ s(s-2)
2 (g+1)g(g-1) (g-2)
s(s-2) (s-4)
My = 2
(g+1)a(g-1) (g-2) (g“-g-4)
s(s-2) (s-4) (s-6)
n4 =

(g+1)g(g-1) (g-2) (g-3) (g+2) (g2-g-4)

With (4.2.2) and (4.2.3), lengthy computations yield

2
E(v|s} = 219 79==)
g° (g+1)
25 (5-2) (g°~g-5) (g°-g-s-2)
var{v|s} = - 3 -9°5)19 -9 .

g2(q+1)2(g+2)(92‘9‘4)

4.5. Directed yraph: 1 |mun diciribution

For directed graphs with the U inxan distribution, we have
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n1=§%3%1—?-‘

no= dm(m-1) + 4ma + a(a-1)

2 (g+1)g(g-1) (g-2)

ﬁ3 - Sm(m-1) (m-2) + 12m(m-1)a + Gga(a—l) + a(a-1) (a-2)

(g+1)g(g-2) (g°-g-4)
lém(m-1) (m-2) (m-3) + 32m(m-1) (m-2)a + 24m(m-1)a(a-1) +
n4 - + 8ma(a-1) (a-2) + aéa—l)(a-2)(a-3)
(g+2) (g+1)g(g-1) (g-2) (g-3) (g“-g-4)

o = __2m__

2 gl(g-1)
o. = dm(m-1) + 2ma

3 (9+1)g(g-1) (g-2)
- 8m(m-1) (m-2) + 8m(m-1)a + 2ma(a-1)

(g+1)g(9-1)(g-2)(92-g-4)

With (4.2.2) and (4.2.3), lengthy computations yield
E{ Vlnlan}= (2m+a;(2n+a) + ga
2g~ (g+1)

numerator

g (g+1)2(g+2)(92—g—4)

var{V|man}=

numerator = 2{4m(m-1) + 4am + a(a-1) }{4n(n-1) + 4an + a(a-1)}

+ 8(g+1) a{4mn-a(a-1)}
2
+ 2a(a-1) (g+1) (3g°-4g-2).

It may be noted that the symmetry considerations for complementary graphs
(DV, beginning of Section 2) imply that the formulas for E{V]naan} and
var{V| man} must be symmetric in m and n.

It can be easily verified that for m = 4s, a = 0, n = &g(g-1)-m, the
formulas above are identical to those for undirected graphs with the Uls
distribution.

The identity
m+ a+n= %(g-1)

implies that the formulas above can be given many different expressions.

I doubt whether other expressions are possible which are considerably simpler

than those given here.
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4.6. Bipartite graph and directed graph with Uls distribution.

For bipartite graphs and directed graphs with the U|s distribution, we have
pi = ni; taking h = g-1 in (4.3.1) and (4.3.2) yields, in this case, formulas
(4.2.2) and (4.2.3). Hence it is sufficient to consider only the case of
bipartite graphs. We have

no= =
1 gh
n s(s-1)

2 ~ gh(gh-1)

- s(s-1) (s-2)
3 gh(gh-1) (gh-2)

- s(s-1) (s=2) (s-3)
4  gh(gh-1) (gh~-2) (gh-3)

(]

With (4.3.1) and (4.3.2), lengthy computations yield

e(vs) - Slahs) (o)
g (gh-1)

2(g-1)h(h-1)s(s-1) (gh-s) (gh-s-1)
gz(gh~1)2(9h~2)(gh-3)

var{v|s} =

4.7. Come general comments.

In the formulas for the means and variances of V, all factors in the
numerator can be easily interpreted: if one of them is equal to zero,
it is (by direct arguments, not from the formula) easy to see that the
distribution of V is degenerated (in 0 if EV = 0, in one point if

var V = 0).

* In the U[s distribution, the marginal distribution of xi is hypergeometric;
for the bipartite and directed cases, the simultaneous distribution of
(xl,...,xg) is then even multivariate hypergeometric. The formulas for
E{V|s} are equal tc the well-known formula for the variance of the
hysergeometric distribution (with thc correct parameter values).

&

Several approaches are possible to compute the formulas obtained here.
Those of Section 4.5 can be obtained from the theorems in Holland and
Leinhhard (1975), but with at least as much computational effort as was
needed in our approach. Those from Section 4.6 can be obtained from the
moments of the (multivariate) hypergeometric distribution, but, again, wit
no less computational effort than was needed here. The approach followed
was chosen because it admits a unified treatment for all cases considered

in DV. I wonder whether, for the U|s case, the simple (after all the
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intermediate results) formulas for var {V[s} can be obtained by simpler
methods than those used here.
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