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1 Stochastic Actor-Oriented Models: Network

Panel Data and Co-evolution

This chapter, about Stochastic Actor-Oriented Models (‘SAOMs’), highlights and

explicates a statistical model for analyzing network panel data: the data are

structured as repeated observations of a network between a given set of nodes that

represent political actors of some kind. The set of nodes may be changing now and

then, as new actors come in and existing ones drop out, or as actors may combine

or split up. At the minimum there are two waves of data, but there might be many

more.

The basic idea of stochastic actor-oriented models (Snijders, 2001) is that the

panel data are regarded as repeated snapshots of a process that is evolving in

continuous time, and this process is a Markov process: probabilities of tie changes

are determined by the current state; further, the change is represented as a

sequence of changes of single ties. Since each tie change modifies the state of the

network, and the later changes will build on this new state, because of path

dependence it will change the entire future. The assumption that between the

panel observations many tie changes can sequentially take place, each acting on

the state that is the result of earlier tie changes, leads to a rich dependence

structure for the ties in the observed networks. The name ‘actor-oriented’ reflects

that the tie changes are modeled as being determined by the actors. For the case

of directed networks there is no assumption of coordination of tie changes by

different actors, so that group-wise changes cannot be represented. The Markov

chain assumption can be mitigated in two ways: by including covariates from

earlier times; or by extending the outcome space from a single network to multiple

networks —thus leading to the analysis of a multivariate network, as in Snijders

et al. (2013)—, or with actor-level (i.e., nodal) variables (Steglich et al., 2010).

Such an extended outcome space leads to co-evolution models, representing the

interdependent dynamics of several dependent variables. The co-evolving network

may be a two-mode network, i.e., affiliations between the actors who constitute the
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first mode with some other node set. This offers the possibility of modeling the

interdependence of relations between actors and their memberships in

organisations, such as the relations between countries through common

memberships in NGOs or between individuals through common memberships in

civic organizations.

This chapter has four main parts. First, we give a brief overview of

applications of this model in political science published until now. Subsequently

we present the model for analyzing dynamics of directed network with a brief

sketch of the associated estimation methods, implemented in the software package

RSiena (‘Simulation Investigation for Empirical Network Analysis’; Ripley et al.,

2016) of the R statistical system (R Core Team, 2016). A tie change in a directed

network requires only the decision of one actor in a dyad, such as the decision of

one country to direct hostility at another. Third, this model is extended to

non-directed networks, i.e., networks in which the ties are by their nature

non-directional (such as trade agreements), which is a type of network often

encountered in political science. For non-directed networks it is necessary to take

into account the joint decision making by both actors involved in a given tie.

Several models are considered for how these actors coordinate. The definition of

this model has not been published before (although some published applications

do exist.) Fourth, the approach to co-evolution is sketched. The paper finishes

with a discussion of some aspects of this model. For the positioning of this model

in the further array of statistical network models, see Snijders (2011) and

Desmarais and Cranmer (2016).

2 Applications

The stochastic actor-oriented model (SAOM) for network dynamics has been

applied in a variety of social science disciplines, including various studies in the

political sciences. Other approaches common in political science for the analysis of

longitudinal network data include temporal exponential random graph models

3



(Almquist and Butts, 2013) and dynamic latent space models (Cao and Ward,

2014; Dorff and Ward, 2016).

The use of SAOMs in political science is currently largely limited to the

subfields of policy (Berardo and Scholz, 2010; Ingold and Fischer, 2014; Giuliani,

2013), international relations (Kinne, 2013; Rhue and Sundararajan, 2014), and

international political economy (Manger and Pickup, 2016; Manger et al., 2012).

At least one study has applied SAOMS to political behaviour (Liang, 2014). As

more and more network data is collected at the level of the individual voter, we

might expect an increase in the application of SAOMs to studying political

behaviour. After all, the social network has been of central importance to the

study of political behaviour since the subfield’s inception (Berelson et al., 1954;

Campbell et al., 1960). Further, the application of SAOMs to online networks

(well-established outside political science) can be expected to grow within political

science, as researchers become increasingly interested in the effects of online social

networks on political behaviour.

With respect to formal characteristics of the applications, SAOMs in political

science have been applied to directed (Rhue and Sundararajan, 2014; Ingold and

Fischer, 2014; Liang, 2014; Giuliani, 2013; Fischer et al., 2012; Berardo and Scholz,

2010) as well as non-directed (Manger and Pickup, 2016; Manger et al., 2012;

Kinne, 2013) networks. Applications have included networks with anywhere

between 2 and 11 waves, and between 23 and 1178 nodes. A few have included

co-evolution models with behavioural dependent variables (Manger and Pickup,

2016; Rhue and Sundararajan, 2014; Berardo and Scholz, 2010), and even fewer

have studied co-evolution with multiple networks, two-mode networks (Liang,

2014), or multiple behavioural dependent variables (Rhue and Sundararajan, 2014).

Across all subfields within political science, there are methodological

innovations that we might increasingly expect researchers to incorporate in their

analysis. We can expect an increase in the use of SAOMs to analyse multiple

networks as interdependent structures, investigating how changes in one network

relate to other networks. This will become increasingly viable as more and more
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network data is collected. We might expect a greater application of SAOMs to

two-mode networks as political scientists apply network analysis to the ties

individuals and countries have through organizations. Examples are the ties

countries have through treaties, the ties that individuals have through shared

media consumption (traditional or online), or shared concept networks (Liang,

2014). SAOMs as they are evaluated in RSiena allows for arbitrary time lags

between observations, facilitating the analysis of longitudinal data that does not

have evenly-spaced observations in time. RSiena also allows for different rate

functions across nodes in the network. This would allow the researcher to account

for the differing relevance of the network for the individual or organization. For

example, if the network represents social activities or groups, these groups may be

more or less salient to different individuals, and those for whom the group is more

salient may also change their ties more frequently.

3 Stochastic Actor-Based Models for Network

Dynamics

The Stochastic Actor-Based Model is a statistical model for longitudinal data

collected in a network panel design, where network observations are available for a

given set of nodes, for two or more consecutive waves. Some turnover of the nodes

is allowed, which is helpful for representing the creation and disappearance of

organizations or countries. It represents a network process in which, as time goes

by, ties can be added as well as deleted. The model aims to obtain a statistical

representation of the influences determining creation and termination of ties;

turnover of nodes, if any, is considered as an exogenous influence. First the

fundamental description of the probability model is given, followed by possible

ingredients for its detailed specification. Finally, procedures for estimation are

briefly described.
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3.1 Notation

The dependent variable in this section is a sequence of directed networks on a

given node set {1, . . . , n}. Nodes represent political or other social actors

(countries, NGOs, political leaders, voters, etc.). The existence of a tie from node i

to node j is indicated by the tie indicator variable Xij, having the value 1 or 0

depending on whether there is a tie i→ j. For the tie i→ j, actor i is called the

sender and j the receiver. Self-ties are not considered, so that always Xii = 0, for

all i. The matrix with elements Xij is the adjacency matrix of a directed graph, or

digraph; the adjacency matrix as well as the digraph will be denoted by X.

Outcomes (i.e., particular realizations) of digraphs will be denoted by lower case x.

Replacing an index by a plus sign denotes summation over that index: thus, the

number of outgoing ties of actor i (the out-degree of i) is denoted Xi+ =
∑

j Xij,

while the in-degree, the number of incoming ties, is X+i =
∑

j Xji. For the data

structure, it is assumed that there are two or more repeated observations of the

network. Observation moments are indicated by t1, t2, . . . , tM with M ≥ 2. Beside

the dependent network, there may be explanatory variables measured at the level

of the actors (monadic or actor covariates or on pairs of actors (dyadic covariates).

3.2 Actor-based Models

One of the issues for network analysis in the social sciences is the fact that

networks by their nature are dyadic, i.e., refer to pairs of actors, whereas the

natural theoretical unit is the actor. This issue is discussed more generally by

Emirbayer and Goodwin (1994). For modeling network dynamics, a natural

combination of network structure and individual agency is possible by basing the

model on the postulate that creation and termination of ties are initiated by the

actors. In this section the model is presented for binary directed networks, and we

postulate that it is meaningful to regard ties as resulting from choices made by the

actor sending the tie; in Section 4, we consider non-directed networks, assumed to

be based on choices made by both involved actors. The model is explained more
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fully in Snijders (2001) and Snijders et al. (2010b).

The probability model for network dynamics is based, like other statistical

models, on a number of simplifying assumptions.

1. Between observation moments t1, t2, etc., time runs on, and changes in the

network can and will take place without being directly observed. Thus, while

the observation schedule is in discrete time, an unobserved underlying

process of network evolution is assumed to take place with a continuous time

parameter t ∈ [t1, tM ].

2. At any given time point t ∈ [t1, tM ] when the network changes, not more

than one tie variable Xij can change. In other words, either one tie is

created, or one tie is dissolved. The observed change is the net result of all

these unobserved changes of single ties.

3. The probability that a time t a particular variable Xij changes depends on

the current state X(t) of the network, and not on earlier preceding states.

Assumptions 1 and 3 are expressed mathematically by saying that the network

model is a continuous-time Markov process. Assumption 2 simplifies the elements

of change to the smallest possible constituent: the creation or termination of a

single tie. These assumptions rule out instantaneous coordination or negotiation

between actors. They were proposed as basic simplifying postulates by Holland

and Leinhardt (1977). In future model developments it may be interesting to allow

coordination between actors, but the postulates used here can be regarded as a

natural first step to modeling network dynamics.

These three assumptions imply that actors make changes in reaction to each

others’ changes in between observations. This has strong intuitive validity for

many panel observations of networks. Exceptions are situation where collections of

ties are created groupwise, e.g., in multilateral alliances. The model is described

totally by probabilities of single tie changes, depending on the state of the

network. The probability model says nothing about the timing of the observations,
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and therefore the parameter values are not affected by the frequency of the

observations, or the time delays between them. It is assumed that the probability

function of tie changes, conditional on the current state of the network and

covariates, is constant in time; the probability function that a tie exists at any

given time may, however, be changing.

The model is actor-based in the sense that tie changes are modeled as the

result of choices made by the actor sending the tie. The tie change model is split

into two components: timing and choice. The timing component is defined in

terms of opportunities for change, not in terms of actual change. This is to allow

the possibility that an actor leaves the current situation unchanged, e.g., because

s/he is satisfied with it.

4. Consider a given current time point t, tm ≤ t < tm+1, and denote the current

state of the network by x = X(t). Each actor i has a rate of change, denoted

λi(x; ρ), where ρ is a statistical parameter, which may depend on m. The

rate of change can depend on actor covariates and on their degrees.

5. The waiting time until the next opportunity for change by any actor has the

exponential distribution,

P{Next opportunity for change is before t+ ∆t | current time is t}

= 1− exp(−λ∆t) , (1)

with parameter λ = λ+(x; ρ).

6. The probability that the next opportunity for change is for actor i is given by

P{Next opportunity for change is by actor i} =
λi(x; ρ)

λ+(x; ρ)
. (2)

This formula is consistent with a ‘first past the post’ model, where all actors

have stochastic waiting times as in (5.), the first one gets the opportunity to

make a change, and then everything starts all over again but in a new state.

7. For the choice component, each actor i has an objective function fi(x
(0), x; β)

defined on the set of all pair of networks x(0) and x such that x(0) and x differ
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in no more than one tie variable. The current network is x(0) and the

objective function determines the probability of the next tie change by this

actor, brings state x(0) into x; β is a statistical parameter. In a utility

interpretation, the objective function may be regarded as the net utility that

the actor gains from moving from x(0) to x. Since this is the short-term

utility from one tie change, it should be regarded as a proximate, not

ultimate utility; e.g., expressing the advantageous network position that the

actor is striving after as a means to obtain further goals.

8. To define this probability, the following notation is used. For a digraph x and

i 6= j, by x(±ij) we define the graph which is identical to x in all tie variables

except those for the ordered pair (i, j), and for which the tie variable i→ j is

toggled, x
(±ij)
ij = 1− xij. Further, we define x(±ii) = x (just as a convenient

formal definition).

Assume that, at the moment of time t+ ∆t (see point 5.) with current

network X(t) = x, actor i has the opportunity for change. Then the

probability that the tie variable changed is Xij, so that the network x

changes into x(±ij), is given by

exp
(
fi(x, x

(±ij); β)
)∑n

h=1 exp
(
fi(x, x(±ih); β)

) =
exp

(
fi(x, x

(±ij); β)− fi(x, x; β)
)∑n

h=1 exp
(
fi(x, x(±ih); β)− fi(x, x; β)

) . (3)

Expression (3) is a multinomial logit form. This can be obtained when it is

assumed that i chooses the best j in the set {1, . . . , n} (where j = i formally

means ’no change’, see above) where the aim is to toggle the variable Xij that

maximizes the objective function of the resulting state plus a random residual,

fi(x, x
(±ij); β) +Rj ,

where the variables Rj are independent and have a standard Gumbel distribution

(for a proof, see Maddala, 1983). Thus, this model can be regarded as being

obtainable as the result of myopic stochastic optimization. Game-theoretical

models of network formation often use myopic optimization, e.g., Bala and Goyal

(2000). It should be noted, however, that what we assume is the vector of choice
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probabilities (3), and not the myopic optimization – the latter being merely one of

the ways in which this expression can be obtained; and for the optimization

interpretation it should be kept in mind, as suggested above, that the objective

functions represents proximate rather than ultimate goals.

For extensions of this model where different mechanisms or different

parameter values may apply for creating new ties and maintaining existing ties, see

the treatment in Snijders et al. (2010b) and Ripley et al. (2016) of the endowment

function.

3.2.1 Transition rates

The two model components, rate function and objective function, can be put

together by considering the so-called transition rates. These give the basic

definitions of the continuous-time Markov process resulting from the assumptions

formulated above (cf. Norris, 1997, or other textbooks on continuous-time Markov

processes), and may be helpful to some for a further understanding. Given that

the only permitted transitions between networks are toggles of a single tie variable,

the transition rates can be defined as

qij(x) = lim
∆t↓0

P{X(t+ ∆t) = x(±ij) | X(t) = x}
∆t

(4)

for i 6= j. Note that this definition implies that the probabilities of toggling a

particular tie variable Xij in a short time interval are approximated by

P{X(t+ ∆t) = x(±ij) | X(t) = x} ≈ qij(x) ∆t .

The transition rate can be computed from the assumptions using the basic rules of

probability, and is given by

qij(x) = λi(x; ρ) pij(x, β) . (5)

10



3.3 Specification of the Actor-based Model

The specification of the actor-based model amounts to the choice of the rate

function λi(x; ρ) and the objective function fi(x; β). This choice will be based on

theoretical considerations, knowledge of the subject matter, and the hypotheses to

be investigated. The focus of modeling normally is on the objective function,

reflecting the choice part of the model.

In many cases, a simple specification of the rate function suffices:

λi(x; ρ) = ρm , (6)

where m is the index of the observation tm such that the current time point t is

between tm and tm+1. Including the parameter ρm allows to fit exactly the observed

number of changes between tm and tm+1. In other cases, the rate of change may

also depend on actor covariates or on positional characteristics such as degrees.

The more important part of the model specification is the objective function.

Like in generalized linear modeling, a linear combination is used,

fi(x
(0), x; β) =

K∑
k=1

βk ski(x
(0), x) , (7)

where the ski(x
(0), x) are functions of the network, as seen from the point of view

of actor i. These functions are called effects. When parameter βk is positive, tie

changes will have a higher probability when they lead to x for which ski(x
(0), x) is

higher – and conversely for negative βk.

The R package RSiena (Ripley et al., 2016) offers a large variety of effects,

some of which are the following. First we present some effects depending on the

network only, which are important for modeling the dependence between network

ties. In most cases the effect ski(x
(0), x) depends only on the new state x, not on

the old state x(0). This means that the old state plays a role in determining the

option set (i.e., which new states are possible), but not the relative evaluation of

the various possible new states. To keep notation simple, we shall write ski(x)

meaning ski(x
(0), x).
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1. A basic component is the outdegree, s1i(x) =
∑

j xij. This effect is analogous

to a constant term in regression models, and will practically always be

included. It balances between creation and termination of ties, which can be

understood as follows. Equation (3) shows that it is the change in the

objective function that determines the probability. Given the preceding state

x(0), the next state x either has one tie more, or one tie less, than x(0); or the

two are identical. If s1i(x) has coefficient β1, for creating a tie the

contribution to (7) is β1; for dissolving a tie the contribution is −β1.

Therefore the role of the outdegree effect in the model is the contribution of

2β1 in favor of tie creation vs. tie termination. Usually, networks are sparse,

so that there are many more opportunities for creating than for terminating

ties. Accordingly, in a more or less stable situation, the parameter β1 will be

negative to keep the network sparse (unless this is already determined by

other model components).

2. Reciprocation of choice is a fundamental aspect of almost all directed social

networks, because there is almost always some kind of exchange or other

reciprocal dependence. This is reflected by the reciprocated degree,

s2i(x) =
∑

j xij xji, the number of reciprocal ties in which actor i is involved.

3. The local structure of networks is determined by triads, i.e., subgraphs on

three nodes (Holland and Leinhardt, 1976). A first type of triadic

dependency is transitivity, in which the indirect connection of the pattern

i→ j → h tends to imply the direct tie i→ h. This tendency is captured by

s3i(x) =
∑

j,h xij xjh xih, the number of transitive triplets originating from

actor i.

Theoretical arguments for this effect were formulated by Simmel (1950), who

discussed the consequences of triadic embeddedness on bargaining power of

the social actors and on the possibilities of conflicts. Coleman (1988) stressed

the importance of triadic closure for social control, where actor i, who has

access to j as well as h, has the potential to sanction them in case j behaves

opportunistically with respect to h. There is also empirical confirmation of
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this effect for networks of alliances between firms, e.g., by Gulati and

Gargiulo (1999).

Instead of using triad counts, one may represent tendencies toward transitive

closure by weighted counts of structures such as those employed in

Exponential Random Graph Models, e.g., the Geometrically Weighted

Shared Partner (‘GWESP’) statistic (Snijders et al., 2006; Handcock and

Hunter, 2006).

In- and out-degrees are fundamental aspects of individual network centrality

(Freeman, 1979). They reflect access to other actors and often are linked quite

directly to opportunities as well as costs of the network position of the actors.

Degrees may be indicators for influence potential, success (de Solla Price, 1976),

prestige (Hafner-Burton and Montgomery, 2006), search potential (Scholz et al.,

2008), etc., depending on the context. Accordingly, probabilities of tie creation

and dissolution may depend on the degrees of the actors involved. This is

expressed by degree-related effects, such as the following.

4. In-degree popularity, indicating the extent to which those with currently high

in-degrees are more popular as receivers of new ties. This can be expressed

by s5i(x) =
∑

j xij x+j, the sum of the in-degrees of those to whom i has a

tie. When in-degrees are seen as success indicators, this can model the

Matthew effect of Merton (1968), which was used by de Solla Price (1976) in

his network model of cumulative advantage, rediscovered by Barabási and

Albert (1999) in their ‘scalefree model’. This is an example of an effect with

emergent (micro-macro) consequences: if individual actors have a preference

for being linked to popular (high-indegree) actors, the result is a network

with a high dispersion of in-degrees.

Since degrees may often have diminishing returns, as argued by Hicklin et al.

(2008), alternative specification of this effect could be considered, e.g.

s′5i(x) =
∑

j xij
√
x+j.

5. Similarly for out-degrees and for combinations of in- and out-degrees (e.g.,
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‘assortativity’: are the outgoing ties of actors with high degrees directed

disproportionately toward other actors with high degrees), effects can be

defined, linear and non-linear; see Snijders et al. (2010b).

Depending on the research questions and the type of network under study a lot of

other effects may be considered and many are available in the software, see Ripley

et al. (2016).

In addition to these effects based on the network structure itself, research

questions will naturally lead to effects depending on attributes of the actors –

indicators of goals, constraints, and resources, etc., defined externally to the

network. Since network ties involve two actors, a monadic actor variable vi will

lead to potentially several effects for the network dynamics, such as the following.

Here the word ‘ego’ is used for the focal actor, or sender of the tie; while ‘alter’ is

used for the potential candidate for receiving the tie.

6. The ego effect s10i(x) =
∑

j xij vi = xi+vi, reflecting the effect of this variable

on the propensity to send ties, and leading to a correlation between vi and

out-degrees.

7. The alter effect s11i(x) =
∑

j xij vj, reflecting the effect of this variable on

the popularity of the actor for receiving ties, and leading to a correlation

between vi and in-degrees.

8. The similarity (homophily) effect, which implies that actors who are similar

on salient characteristics have a larger probability to become and stay

connected, as reviewed in general terms by McPherson, Smith-Lovin, and

Cook (2001). An example is the finding by Huckfeldt (2001) that people tend

to select political discussion partners who are perceived to have expertise and

who are perceived to have similar views; this would be reflected by an alter

and a similarity effect with respect to (perceived) expertise. Another

example is the finding (Manger and Pickup, 2016) that democracies are more

likely to form trade agreements with other democracies. Similarity can be
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represented by the effect

s12i(x) =
∑
j

xij

(
1− |vi − vj|

Range(v)

)
,

where Range(v) = maxi(vi)−mini(vi).

9. The ego-alter interaction effect, represented like a product interaction,

s13i(x) =
∑

j xij vivj, which is a different way to represent how the

combination of the values on the covariate of the sender and the receiver of

the potential tie may influence tie creation and maintenance.

Further, it is possible to include attributes of pairs of actors – of which one

example is how they are related in a different network. Such dyadic covariates can

express, e.g., meeting opportunities (e.g., Huckfeldt, 2009), spatial propinquity

(e.g., Baybeck and Huckfeldt, 2002), military alliances, institutional relatedness,

competing for the same resources or scarce outcomes, etc.

10. The dyadic covariate effect of a covariate wij is defined as

s14i(x) =
∑

j xij wij.

Many other effects that may be used for model specification are mentioned in the

RSiena manual (Ripley et al., 2016). Further differences between actors in their

objective functions may be represented by interaction effects. Time heterogeneity

in the formation probabilities can be incorporated by using time-changing

covariates.

3.4 Parameter Estimation

If a continuous time record is available from the network evolution process as

described above, so that for each tie the exact starting and ending times within the

observation period are known, and these starting and ending times are all distinct,

then the model can be framed as a generalized linear model and maximum

likelihood estimation is possible, in principle, in a straightforward way. It is more
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usual, however, that only panel data (‘snapshots’) are available. Sometimes this is

at given intervals (e.g., yearly), sometimes at irregular times depending on what is

convenient for data collection. The definition of the model implies that irregular

observation times present no problem at all; these will be absorbed in the panel

wave-specific parameters ρm (see (6)) without affecting the other parameters. For

panel data this is a generalized linear model with a lot of missing data (viz., the

unobserved timings of the tie changes). Estimation in this case is possible by a

variety of simulation-based methods.

A method of moments estimator was proposed by Snijders (2001). The

principle of the method of moments operates by selecting a vector of statistics, one

for each parameter coordinate to be estimated, and determining the parameter

estimate as the parameter value for which the expected value of this vector of

statistics equals the observed value at each observation (wave). For the Stochastic

Actor-Oriented Model, the required expected values cannot be calculated

analytically but they can be approximated by Monte Carlo simulations. These are

used in the stochastic approximation developed by Snijders (2001) and

implemented in the RSiena package (Ripley et al., 2016). The method simulates

the network dynamics many times with trial parameter values, updating them,

until the averages of a suitable set of network descriptives, reflecting the estimated

parameters, are close enough to the observed values. This method can be called an

MCMC method but it is frequentist in nature, not Bayesian, and accordingly does

not require the specification of a prior distribution. It is important to check

convergence of the algorithm, as discussed in the RSiena manual; sometimes it is

necessary to repeat the estimation, using earlier obtained parameters as the new

initial values.

The Method of Moments estimator has proven to be quite reliable and

efficient. More recently, other and potentially more efficient estimators were

developed: a Bayesian estimator by Koskinen and Snijders (2007), a Maximum

Likelihood estimator by Snijders et al. (2010a), and a Generalized Method of

Moments estimator by Amati et al. (2015).
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3.5 Changing actor sets

In networks of organizations, voters, countries, or other political actors, changes in

composition of the node set are not an exception. Actors may be created or

disappear, they may enter or be dropped from the delineation of the data set, and

organizations or countries may also merge or split. Often it is reasonable to regard

these changes as exogenous. There are several ways in which they can be

accommodated. One is to include actors as nodes in the data set for all time

points, but for the panel waves where they are absent specify their incoming and

outgoing ties as structural zeros, signifying that these ties are impossible and their

absence has no information content. A second way is to use the implementation as

a simulation model, and specify for some actors one or more time intervals —which

may begin and end at or anywhere between the moments determined by the panel

waves— where there cannot be any ties to or from these actors; see Huisman and

Snijders (2003). This permits, e.g., that simulations for new actors start at some

specific time point between the panel waves, if such information is available.

Third, one can construct the pairs (tm, tm+1) of consecutive panel waves each as a

separate transition; if the data set is large enough these may be analyzed

separately, but if the data set is not so large, in order to obtain an adequate

amount of data, several or all of these pairs can be analyzed simultaneously under

the assumption of constant parameter values. This is the ‘multiple group’ option

of the package (Ripley et al., 2016). If the assumption of constant parameters is

doubtful, interactions with time trends (e.g., linear, polynomial, or with dummy

variables) may be added. In cases of reconfiguration of the actor set, the third

option may be especially useful.

4 Dynamics of Non-directed Networks

The Stochastic Actor-Oriented Model as explained above is defined for directed

networks, assuming that the actor sending the tie determines its existence. In this
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section we extend the model to non-directed networks. Such networks occur often

in political and organizational studies. There the two actors at either side of the

tie have a priori a say in its existence, and assumptions must be made about the

negotiation or coordination between the two actors involved in tie creation and

termination.

In game-theoretic models of networks, it is usually assumed that for a tie to

exist, the consent of both actors is involved. This is the basis of the definition of

pairwise stability proposed by Jackson and Wolinsky (1996): a network is pairwise

stable if no pair of actors can both gain from creation of a new tie between them,

and if no single actor can gain from termination of one of the ties in which this

actor is involved. In our statistical approach such a stability concept has no place,

but the basic idea that both actors should benefit from the tie is translated to our

probabilistic framework. Several models are presented here, all based on a two-step

process of opportunity and choice, and making different assumptions concerning

the combination of choices between the two actors involved in a tie.

4.1 Two-sided Choices

It now is assumed that the network is non-directed, i.e., ties have no directionality:

Xij = Xji holds by necessity, and the tie variables Xij and Xji are treated as being

one and the same variable. Ties now are indicated by i↔ j.

For the opportunity, or timing, process, two options are considered.

1. One-sided initiative: One actor i is selected and gets the opportunity to

make a change. This is a multinomial choice about changing one of the ties

from i to another actor.

2. Two-sided opportunity : An ordered pair of actors (i, j) (with i 6= j) is

selected and gets the opportunity to make a new decision about the existence

of a tie between them. This is a binary choice about the existence of the tie

i↔ j.
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The choice process is modeled as one of three options.

D. Dictatorial : One actor can impose a decision about a tie on the other.

M. Mutual : Both actors have to agree for a tie between them to exist, in line

with Jackson and Wolinsky (1996).

C. Compensatory : The two actors decide on the basis of their combined

objective function, which can represent coming to a joint agreement. The

combination with one-sided initiative seems somewhat artificial here, and we

only elaborate this option for the two-sided initiative.

Model M.1, one-sided initiative with reciprocal confirmation, is in most cases

the most appealing simple representation of the coordination required to create

and maintain non-directed ties. An example about preferential trade agreements is

given by Manger and Pickup (2016); an example about trade markets in cultural

goods by Shore (2015). Models D.1 and D.2 have potential for the modelling of

military conflicts, and model C.2 may be of value in a joint bargaining situation.

4.2 Mathematical elaboration

We give a brief elaboration of the formulae involved in these five options, treating

first the opportunity element and then the choice process.

1. One-sided initiative:

For the opportunity to make a change, assumptions (1.-6.) mentioned above

for the directional case still are in place.

2. Two-sided opportunity :

For the selection of an ordered pair of actors (i, j) (i 6= j) assumptions (1.-3.)

above are maintained, but (4.-6.) are replaced (in abbreviated description) as

follows.

4.2. Each ordered pair of actors (i, j) has a rate of change, denoted λij(x; ρ).
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5.2. The waiting time until the next opportunity for change by any pair of

actors has the exponential distribution with parameter

λtot(x; ρ) =
∑

i 6=j λij(x; ρ).

6.2. The probability that the next opportunity for change is for pair (i, j) is

given by

P{Next opportunity for change is for pair (i, j)} =
λij(x; ρ)

λtot(x; ρ)
. (8)

The choice process has the three options D(ictatorial), M(utual) and

C(ompensatory). In all cases assumption (7.) as defined for the directed case is

retained, and assumption (8.) is replaced as follows.

Dictatorial.

Like in the directed case, actor i selects the change of the single tie variable Xij

given the objective function fi(x
(0), x; β) using (3), and actor j just has to accept.

Combined with the two opportunity options, this yields the following cases.

8.D.1. For one-sided initiative, the probability that the tie variable changed is Xij,

so that the network x changes into x(±ij), is given by

pij(x, β) =
exp

(
fi(x, x

(±ij); β)
)∑n

h=1 exp
(
fi(x, x(±ih); β)

) , (9)

just like in the model for directed relations.

8.D.2. For two-sided initiative, actor i makes the binary choice about whether or

not tie i↔ j should exist. The probability that network x changes into

x(±ij), is given by

pij(x, β) =
exp

(
fi(x, x

(±ij); β)
)

exp
(
fi(x, x; β)

)
+ exp

(
fi(x, x(±ij); β)

) . (10)

Mutual.

8.M.1. In the case of one-sided initiative, actor i selects the tie variable to be

changed with probabilities (9) according to i’s objective function. If

currently xij = 0 so that the change would mean creation of a new tie i↔ j,
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this is proposed to actor j, who then accepts according to a binary choice

based on j’s objective function, with acceptance probability

P{j accepts tie proposal} =
exp

(
fj(x, x

(±ij); β)
)

exp
(
fj(x, x; β)

)
+ exp

(
fj(x, x(±ij); β)

) .
If the choice by i means termination of an existing tie, the proposal is always

put into effect. Jointly these rules lead to the following probability that the

current network x changes into x(±ij):

pij(x, β) =
exp

(
fi(x, x

(±ij); β)
)∑n

h=1 exp
(
fi(x, x(±ih); β)

) ( exp
(
fj(x, x

(±ij); β)
)

exp
(
fj(x, x; β)

)
+ exp

(
fj(x, x(±ij); β)

))1−xij

.

(11)

8.M.2. In the case of two-sided opportunity, actors i and j both reconsider the value

of the tie variable Xij. Actor i proposes a change (toggle) with probability

(10) and actor j similarly. If currently there is no tie, i.e., xij = 0, then the

tie is created if this is proposed by both actors, which has probability

pij(x, β) =
exp

(
fi(x, x

(±ij); β)
)(

exp
(
fi(x, x; β)

)
+ exp

(
fi(x, x(±ij); β)

)) (12a)

×
exp

(
fj(x, x

(±ij); β)
)(

exp
(
fj(x, x; β)

)
+ exp

(
fj(x, x(±ij); β)

)) .

If currently there is a tie, i.e., xij = 1, then the tie is terminated if one or

both actors wish to do this, which has probability

pij(x, β) = 1 −

{
exp

(
fi(x, x; β)

)(
exp

(
fi(x, x; β)

)
+ exp

(
fi(x, x(±ij); β)

)) (12b)

×
exp

(
fj(x, x; β)

)(
exp

(
fj(x, x; β)

)
+ exp

(
fj(x, x(±ij); β)

))
}
.

Compensatory.

The two actors decide on the basis of their combined objective function, which can

represent coming to a joint agreement. The combination with one-sided initiative

is somewhat artificial here, and we only elaborate this option for the two-sided

initiative.
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8.C.2. The binary decision about the existence of the tie i↔ j is based on the sum

of the objective functions of actors i and j. The probability that network x

changes into x(±ij), now is given by

pij(x, β) =
exp

(
fi(x, x

(±ij); β) + fj(x, x
(±ij); β)

)
exp

(
fi(x, x; β) + fj(x, x; β)

)
+ exp

(
fi(x, x(±ij); β) + fj(x, x(±ij); β)

) .
(13)

Putting this together in the transition rates, defined above, gives the following

results. Account must be taken of the fact that toggling variable Xij is the same as

toggling Xji, and that the rules described above give different roles for the first

and the second actor in the pair (i, j). For the models with one-sided initiative,

the transition rate is

qij(x) = λi(x; ρ) pij(x, β) + λj(x; ρ) pji(x, β) , (14)

and for the models with two-sided opportunity

qij(x) = λij(x; ρ) pij(x, β) + λji(x; ρ) pji(x, β) , (15)

where the functions λi, λij, and pij are as defined above.

4.3 Model specification for undirected networks

Again a convenient and flexible class of objective functions can be represented by

the linear combination (7). The same effects can be used as for directed networks,

but some are redundant, because the ties i→ j and j → i now are equivalent. For

example, the reciprocity effect s2i is the same as the degree effect s1i, for monadic

covariates the ego effect s10i is the same as the alter effect s11i, etc.

The choice between the five options has to be made primarily on theoretical

knowledge of how the two actors on both sides of a potential tie act together in

deciding about the tie. One-sided initiative with reciprocal confirmation (M.1)

often may be the most plausible option, in accordance with Jackson and Wolinsky

(1996). Studying the correspondence between the five options mentioned above
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may give some insight into which differences to expect when the same data set is

subjected to the different model options. Perhaps the clearest example is the

following. If all effects ski included in a model (7) are such that the contributions

of ties are the same for both actors involved (which is the case, for example, for

the degree effect s1i and the similarity effect s12i), then the compensatory dyadic

model C.2 is identical to the dictatorial dyadic model D.2, except that the

parameters βk are twice as small for C.2 compared to D.2., because of the addition

of the two objective functions in (13). For general models this identity will not

hold, but in a first-order approximation it still may be expected that the βk

parameters in model C.2 are about twice as small as those in D.2, and the ρm

parameters are quite similar.

4.4 Estimation and Examples

Method of moment estimators can be obtained for these models in exactly the

same way as described in the previous section for models for directed networks.

This is because the algorithm for these estimators is based directly on simulation

of the network evolution, and the assumptions in this section can be used

straightforwardly for simulating the evolution of a non-directed network.

5 Models for Co-evolution of Networks and

Nodal Attributes

A major reason for the fruitfulness of a network-oriented research perspective is the

entwinement of networks and individual behavior, performance, attitudes, etc., of

political actors. The effect of peers on individual political behavior is a well-studied

issue, starting from Lazarsfeld et al. (1948); see, e.g., Klofstad (2007). Huckfeldt

(2009) argues that, since social interaction leads to influence with respect to

political behaviors, the composition of the social context of individuals influences

their own attitudes and behaviors, and he draws attention to the endogeneity of
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the network of interaction partners. Inter-organizational studies have also drawn

attention to the importance of networks for organization-level outcomes. Scholz

et al. (2008) show that the position of organizations in general contact networks

influences their propensity to collaborate and to perceive agreement between

stakeholders. Berardo (2009) shows that cooperation between governmental and

nongovernmental organizations enhances organizational performance.

Studying the entwinement of networks and actor-level outcomes is difficult

because of the endogeneity of both: the network affects the outcomes while the

outcomes affect the network. One way to get a handle on this is to model these

dynamic dependencies both ways in studies of the co-evolution of networks and

nodal attributes. The combination of network and attributes then is viewed as an

evolving system, in which the changes in the network are determined

probabilistically by the network itself and also by the attributes, while the same

holds for the changes in the attributes. A method for modeling this, using panel

data of the network and the attributes, was proposed by Steglich et al. (2010),

using an elaboration of the Stochastic Actor-Oriented Model. This methodology

does not pretend to yield causal conclusions by virtue of the statistical analysis;

Shalizi and Thomas (2011) argued cogently that this is impossible in panel studies.

What is offered by the method, if applied with a well-specified model, is insight in

time sequentiality : to what extent is there evidence that changes in attributes

depend on the state of the network (‘first the network, then changes in the

attributes’); and to what extent is there evidence that changes in the network

depend on the state of the attributes (‘first the attributes, then changes in the

network’). The idea is similar to Granger causality, but a mathematical

elaboration of this similarity has not been made yet. A more elaborate discussion

of the severe difficulties in attempts to establish causality in social networks

research is presented in Robins (2015, Chapter 10).

An outline of this model is presented here. When the nodal attributes play

the role of dependent variables we use the term ‘behavior’ as a catch-word that

also can represent other outcomes such as performance, attitudes, etc.
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5.1 Dynamics of Networks and Behavior

The modeling framework used above for an evolving network X(t) now is extended

by considering a simultaneously and interdependently evolving vector of H

behavior variables Z(t) =
(
Z1(t), . . . , ZH(t)

)
. The value of the h’th variable for the

i’th actor is denoted Zih(t). We assume that all components of the behavior vector

Z(t) are ordinal discrete variables with values coded as an interval of integers;

binary variables are the simplest case.

For modeling the joint dynamics of the network and behavior
(
X(t), Z(t)

)
, we

follow the same principles as those used to model the development of X(t) alone:

time t is a continuous parameter; changes in network and behavior can take place

at arbitrary moments between observations; at any single time point, only one

variable can change, either a tie variable Xij or a behavior variable Zih; and the

process
(
X(t), Z(t)

)
evolves as a Markov process, i.e., change probabilities depend

on the current state of the process, not on earlier states. The principle of

decomposing the dynamics in the smallest possible steps is carried further by

requiring that a change of a behavior variable at one single moment can only be

one step up or down the ladder of ordered values – i.e., by +1 or −1, as these

variables have integer values.

These principles are elaborated by Snijders, Steglich and Schweinberger (2007)

and Steglich, Snijders and Pearson (2010) in a model that has the following basic

components.

• For the network changes the network rate function λXi (x, z; ρX) indicates the

average frequency with which actor i has the opportunity to make changes in

one outgoing network variable.

• For each behavior variable Zh the behavior rate function λZh
i (x, z; ρZh)

indicates the average frequency with which actor i has the opportunity to

make changes in this behavior variable.

• The network objective function fX
i (x(0), x; z, βX) determines the probability
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of the next tie change by actor i, conditional on i having the opportunity to

make a network change.

• The behavior objective function fZh
i (z(0), z;x, βZh) for behavior variable Zh

determines the probability of the next behavior change by actor i,

conditional on i having the opportunity to make a change in this behavior.

The network dynamics proceeds just as defined above for the network-only case.

The behavior dynamics is analogous. Here the option set for the decision of change

is different, however, in the following way. For notational simplicity, we give the

formulae only for the case of H = 1 dependent behavior variable, dropping index

h. In a process driven by the rate functions λZi (x, z; ρZ), actor i at stochastic

moments gets the opportunity to change the value of her behavior Zi. When this

happens, and the current value is denoted z(0), the actor has three options:

increase by 1, stay constant, or decrease by 1. If the current value is at the

minimum or maximum of the range, one of these options is excluded. The choice

probabilities again have a multinomial logit form, the probability of choosing z

(with permitted values z(0) − 1, z(0), z(0) + 1) being

exp
(
fZ
i (z(0), z;x, βZ)

)∑1
d=−1 exp

(
fZ
i (z(0), z(0) + d;x, βZ)

) , (16)

with obvious modifications in case z is at the boundary of its range. Again, an

interpretation of myopic optimization is possible but not necessary.

This model for the co-evolution of networks and behavior permits the

expression of both selection (e.g., homophilous selection), where the values of Zih

and Zjh influence the probability of creating, or of maintaining, a tie from i to j;

and of influence, or contagion, where for actor i the probability of changes in Zih

depends on the behaviors Zjh of those actors j with whom i is tied. More

generally, changes in the behavior of actor i may depend on i’s network position as

well as on the composition of the network neighborhood of i.
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5.2 Specification of Behavior Dynamics

The main extra component of the model specification regards the objective

function for behavior. Here also we use notation just for one single behavior

variable Z. Again, a linear combination is considered:

fZ
i (z(0), z;x, βZ) =

∑
k

βZ
k s

Z
ki(z

(0), z;x) , (17)

where the effects sZki(z
(0), z;x) depend on the network and the behavior. We

present effects depending only on the new state z, and accordingly write sZki(z;x)

for sZki(z
(0), z;x). A baseline is a quadratic function of the actor’s own behavior as

the expression of short-term goals and restrictions. With a negative coefficient for

the quadratic term this represents a unimodal function that could be regarded as a

preference function (again, with a myopic interpretation).

1. This includes the linear term sZ1i(z;x) = zi, and

2. the quadratic term sZ2i(z;x) = (zi)
2.

Several statistics could be specified to represent social influence (contagion),

such as the following two.

3. The similarity between the behavior of actor i and the actors to whom i is

tied, measured just like the analogous effect s12i for the network dynamics,

sZ3i(z;x) =
∑
j

xij

(
1− |zi − zj|

Range(z)

)
.

4. The product of the own behavior zi with the average behavior of the other

actors to whom i is tied, sZ4i(z;x) = zi
(∑

j xij zj
)
/
(∑

j xij
)

(defined as 0 if

this is 0/0). Together with the two terms sZ1i and sZ2i, this yields a quadratic

function of which (if the coefficient of sZ2i is negative) the location of the

maximum is a linear function of the average behavior in the ‘personal

network’ of i.
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The effects sZ3i and sZ4i both express the concept of influence, albeit in different

mathematical ways. The choice between them can be based on theoretical

grounds, if any theoretical preferences exist – else on empirical grounds.

The behavior dynamics can also depend on network position directly, for

example, on the degrees of the actor.

5. It can depend, e.g., on the ‘popularity’ of actor i as measured by the

indegree, i.e., the number of incoming ties, sZ5i(z;x) = zi x+i, and/or

6. on the ‘activity’ of actor i as measured by the outdegree, i.e., the number of

outgoing ties, sZ6i(z;x) = zi xi+.

In addition, it will often be important to include effects of other actor-level and

contextual variables on zi, in accordance with the political theories explaining this

dependent variable.

The parameter estimation for this model is treated in Snijders et al. (2007).

An application to partner selection in policy networks and its co-evolution with

generalized trust is presented by Berardo and Scholz (2010). Manger and Pickup

(2016) and Rhue and Sundararajan (2014) apply this model to the diffusion of

democracy.

6 Co-evolution of Multiple Networks

The principle of co-evolution can also be applied to the interdependent dynamics

of several networks on the same set of actors; one might call this a multivariate

network. The elaboration is quite analogous to the co-evolution of networks and

behaviour. Each network has its own rate function and objective function, and the

objective function (perhaps also the rate function) for each network will depend on

the network itself and the other network/s. It should be noted that the

dependence is on the current state of the system, not on the last observed state.

28



The model for co-evolution of multiple networks was first presented by Snijders

et al. (2013). This extension also allows the representation of networks with

ordered tie values (although the number of values must be small).

Liang (2014) applied this method in a study of the co-evolution of the

discussion network and a semantic interpretation network in an internet discussion

forum about the 2012 U.S. presidential election.

7 Discussion

Network-related research questions lead to various issues at the interface between

theory and methodology – in political as well as other sciences. One issue is how to

make the combination of, on the one hand, theories in which individual actors have

primacy and which recognize the embeddedness in the social context (cf. DiPrete

and Forristal, 1994; Udehn, 2002; Huckfeldt, 2009) and, on the other hand,

empirical research with data sets including dyadic as well as monadic variables.

Another issue is the fact that hypotheses about dyadic relations between social

actors almost by necessity will imply dependence between dyadic tie variables, and

also between dyadic and monadic variables, which requires novel statistical

methods. This dependence often can be regarded as a consequence of endogeneity,

i.e., resulting from interdependent choices by multiple actors: for example, in

studies of how actors are influenced by those actors to whom they are tied it is

important to recognize that the network may be endogenous, and in studies of

homophilous choice of interaction partners the behavior that is the dimension for

homophily may be endogenous. Dropping the assumption of independence implies

that the dependence between variables has to be specified in a plausible way in

order for the statistical analysis to be reliable. However, our theories mostly give

only a very incomplete handle on this specification; statistical models representing

dependencies between dyadic variables are recent and still in various stages of

development; and as yet we know little about the sensitivity of conclusions for the

misspecification of such statistical models.
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The three main approaches currently available to statistically analyzing

network dynamics —which next to the SAOM are temporal Exponential Random

Graph Models (’ERGMs’) and latent Euclidean space models (for the overview see

Desmarais and Cranmer, 2016)— employ quite different means to express network

and time dependencies, i.e., the correlation structure between the tie variables

observed at the same and at different moments. In the SAOM the flow of time is

explicitly present, which implies that varying time lags between observations are

easily incorporated. If the model is valid for some data set, dropping an

observation, or inserting an additional one, or changing the timing of observations,

will keep the probability distribution of the rest intact; this is not the case for the

other approaches. The fact that the analysis is simulation-based allows flexible

handling of irregularities in the observation design such as exogenous changes in

the node set. The simulation setup is limited, however, in the sense that observed

changes are considered as the result of a series of changes of single ties, each of

which implies a change —usually small— of the network context for all actors.

Sometimes this is reasonable, but this representation of network dependencies may

be deficient in cases where groups of actors work in concert to form or rupture ties,

especially when the composition of these groups changes endogenously. The

SAOM as well as the various temporal Exponential Random Graph variants, such

as the TERGM (Hanneke et al., 2010) and the StERGM (Krivitsky and Handcock,

2014), are based on explicitly specifying the network dependencies. The latent

space models (Sewell and Chen, 2015; Dorff and Ward, 2016), by contrast, assume

that network dependencies can be represented by positioning the nodes in a

low-dimensional Euclidean space. For some research questions the representation

with latent spatial positions will be more natural, for others the representation by

differentiated types of network dependencies. For example, for directed networks,

the SAOM and ERGM representations include separate parameters for

reciprocation and for transitive closure, permitting to test hypotheses about such

processes, while in latent space models these are represented together by the

spatial configuration. It will be interesting to compare the interpretative value of

the spatial representation in latent space models to the value of the dependence
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aspects represented by the ‘effects’ as explained above for the SAOM and which

are used similarly for the ERGM. The interpretative insights provided by these

representations of dependence have not yet been much explored. It should be

noted that covariates will ‘take out’ part of the dependence, so that the ‘remaining’

representation of dependence may depend strongly on the covariates used.

The SAOM and temporal ERGM approaches tackle issues of dependence for

panel data on ‘complete networks’. This means that the network consists of the

pattern of ties between all actors in a well-delineated group, and ties of these

actors with others outside the group may be ignored: the network boundary

problem (Marsden, 2005) is assumed to have been solved in an earlier phase of the

research. Within these models the wider context outside of this group, to which

every group member is exposed, is therefore kept constant, and its influence is not

considered. This implies, in terms of the statement by Huckfeldt (2009, p. 928)

that ‘(p)olitical communication networks are created as the complex product of

this intersection between human choices and environmentally imposed options’,

that the methods treated here focus on the ‘human choice’ component, while the

determination of the node set is considered to be ‘environmentally imposed’. The

latent space models, on the other hand, are less strict in the assumption of a

complete network having been observed; if the data follow a latent space model,

after randomly dropping some nodes from the data set, what remains still will

follow the latent space model. This is a strength with respect to data sets

permitted; but it also signals a potential weakness in the representation of network

dependencies, because theoretical network ‘mechanisms’ may be sensitive to

arbitrary deletions of parts of the network.

Above we commented on the difficulty of achieving causal interpretations from

statistical analyses where networks figure among the dependent variables; briefly

stated, the endogeneity of the networks is so strong that statistical methods will be

able to establish time sequentiality, but not strict cause-and-effect relationships.

The definition of the SAOM in terms of choices by individual actors means

that changing dyadic and monadic variables can be analyzed in a coherent
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framework according to theories where the analytical primacy is with structurally

embedded individual actors, in line with structural individualism (Udehn, 2002).

The interpretation of the multinomial logistic model in terms of myopic choices

does not exclude strategic considerations, but means that these have to be

represented by the short-term goals through which actors attempt to reach their

long-term objectives. Theoretical arguments given in the literature for the

occurrence of structural effects such as reciprocity and transitivity are, indeed,

mostly based on their importance as intermediate goals serving the purpose of

ulterior objectives; this is the case, e.g., for the argument proposed by Coleman

(1988) that transitivity (triadic closure) gives opportunities for social control and

sanctioning, as well as for the theory (Burt, 1992) that structural holes are a

means for obtaining positional advantage.

The models presented here are implemented in the program SIENA,

‘Simulation Investigation for Empirical Network Analysis’, which is available as

the R package RSiena (Ripley et al., 2016). The associated website

http://www.stats.ox.ac.uk/~snijders/siena/ contains a lot of tutorial and

example material.
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