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Abstract: What are essential requirements, formulated in terms of item response theory, for unidimen-
sional unfolding models for dichotomous data, if one does not wish to make specific assumptions con-
cerning the form of the tracelines and of the population distribution of latent trait values? Tracelines
should be unimodal, of course, but this requirement is not sufficient to derive empirically testable con-
sequences. Two basic postulates are formulated concerning population-independent inference about
subjects’ latent trait values on the basis of observed responses to items. These postulates are proven
to be equivalent to total positivity of orders 2 and 3 for the traceline family. Given these postulates,
unimodality of the tracelines leads to some empirically testable results. These are formulated as proper-
ties of the conditional adjacency matrix and of the correlation matrix.
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1. Introduction

Unfolding models for dichotomous data are regarded in this paper as unidimen-
sional latent trait models, where subjects and stimuli are represented on the same
scale, and where the probability of a positive response of a subject to a given stimu-
lus will be higher when the position of the subject on the latent trait is closer to
the position of the stimulus. To express this description without using the term
“closeness,” or “distance,” one can say that as subjects occupy more rightist (or
leftist) positions on the latent dimension, the items to which they tend to answer
positively are more rightist (or leftist, respectively); while all subjects agree about
the scale order (from left to right) of the items. The basic issue confronted in this
paper is the relation between the latent trait and the observable stochastic indicators
of this trait. We shall present a mathematical model (based on unimodal tracelines
in the framework of item response theory; see below) that expresses the conceptual
idea of unfolding, and specify this model further by requiring certain properties
for the inference from the observed indicators to the latent trait. These properties
allow the derivation of certain statistical associations between the item responses
that can be used to check the appropriateness of a dichotomous unfolding model
on the basis of observed dichotomous data.
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The set of stimuli that together constitute the scale is supposed to be given. The
position of a subject on the latent trait can be identified with his or her (hypo-
thetical) ideal stimulus. This paper treats probabilistic models for dichotomous
“pick any”’ data: each subject is confronted with the same set of stimuli, or items,
and the response to each stimulus can be scored as positive (1) or negative (0). For
example, subjects can be asked whether they agree or disagree with each of a
number of statements. The *“pick any’” assumption means that the subject responds
independently to the various stimuli; the number of positive responses is not fixed
in advance.

The founding father of unfolding analysis was Coombs (1950, 1964). His ap-
proach was in terms of preference functions of subjects rather than tracelines of
stimuli. In this paper, we propose a model in terms of item response theory (IRT)
and point items (an early reference about point items in IRT is Torgerson, 1958,
p. 312); we shall indicate below that an important subclass of our class of models
can also be interpreted as being based on preference functions. Coombs proposed
parallelogram analysis, a unidimensional deterministic unfolding model for di-
chotomous data. In parallelogram analysis, it is assumed that all subjects pick those
stimuli that are close to their positions, and no others. This assumption is hardly
ever satisfied in empirical data sets, a common deficiency of deterministic models.
Probabilistic models are more realistic. Several authors have proposed different
versions. Parametric models were presented by Andrich (1988) and Hoijtink
(1990). These authors proposed models based on single-peaked (or unimodal)
functions involving the positions of each subject and stimulus. Cliff et al. (1988)
proposed a nonparametric scaling method, implicitly based on the assumption that
there are equal distances between the stimuli positions. Formann (1988) used a
latent class approach for modeling non-monotone dichotomous items. Unfolding
models have also been proposed for other types of data (rankings, paired compari-
sons, etc.) and other data collection designs (e.g., pick k/n designs, where the
number of choices is fixed at k). There exists a large collection of literature on
probabilistic unfolding models for paired comparisons data, initiated by Coombs,
Greenberg, and Zinnes (1961), and followed up by, e.g., Bechtel (1968), Sixtl
(1973), and Zinnes and Griggs (1974). Bossuyt (1990} studied several probabilistic
unfolding theories for paired comparisons data.

A nonparametric method for unidimensional unfolding for dichotomous data was
developed by Van Schuur (1984, 1988). The associated computer program is
called MUDFOLD, for Multiple UniDimensional unFOLDing (Van Schuur &
Wierstra, 1987; Van Schuur & Post, 1990). This method constructs a scale of
items which minimizes, in a certain sense, the deviations (‘‘errors’’) from the
deterministic model; the scale is (in first instance) considered acceptable if the
number of errors is less than expected under the null model of statistically indepen-
dent items. Many of the ideas on which MUDFOLD is based were derived from
Mokken’s nonparametric item-response model for cumulative items (Mokken,
1971; Mokken & Lewis, 1982), which may be considered to lie between two
“extreme models” defined by the deterministic Guttman scale on one hand and the
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null model of independent responses on the other hand. Mokken (1971) formulates
his nonparametric probabilistic item-response model by imposing some order re-
quirements on the family of tracelines. In this paper we formulate a nonparametric
unfolding model for dichotomous data. The aim of this unfolding model is that it
should embody the concept of unfolding in an item-response model with a minimal
set of assumptions (hence the nonparametric approach), while allowing the deriva-
tion of statistical associations between the item responses on which diagnostic
checks for the model assumption can be based.

This approach along the lines of item response theory deviates from Coombs’
approach which is based on single-peaked preference functions. However, if the
preference is a monotone function of the distance between the position of the sub-
ject and the position of the stimulus, and if this function is the same for all subjects,
models formulated in terms of single-peaked preference functions can be translated
into models formulated in terms of unimodal tracelines.

In section 2 some basic requirements of unidimensional unfolding models are
formulated in an IRT framework. In addition to the assumptions of local indepen-
dence and unimodal tracelines, these assumptions include two properties con-
cerning the measurement model. These express a form of population-independent
inference with respect to subjects’ latent trait values. The first measurement-
related assumption expresses that for a randomly drawn subject from any popula-
tion, a positive answer to a given item i should indicate higher latent trait values
accordingly as item i has itself a higher position. The second is analogous but more
complicated, and specifically related to unimodality. In section 3, it is proven that
these properties can be reformulated in terms of the mathematical properties of
total positivity of order 2 or 3, respectively, for the family of tracelines. These
requirements make it possible to deduce, in section 4, intuitively appealing proper-
ties for the probabilities of joint choices of pairs of items, which hold irrespective
of the population distribution of the latent trait. These properties can be used for
empirically checking the unfolding model. Under some special conditions, the
assumptions imply that the choice probabilities of the items are also unimodal, as
is demonstrated in section 5. In section 6 an empirical dataset of Andrich (1988)
is analyzed, in which the properties of the diagnostic statistics are utilized. The
paper ends with a discussion in section 7.

2. A latent trait and measurement model for unfolding

Our unfolding model is along the lines of item response theory. As to the data
structure, it is assumed that there are n items, indicated by the numbers 1 through
n; these numbers also give the scale order of the items. The response of a subject
on item i is considered to be a random variable X;; X; = 1 if the subject responds
positively to item i, and O otherwise. The vector of responses of a subject is the
realization of the random vector X = (X}, . . . , X). We make the usual assump-
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tions of the existence of a latent trait and local stochastic independence, reflecting
the “pick any” data collection design and the unidimensionality of the set of
stimuli:

Al. There exists a unidimensional latent trait, 6, such that every subject has a
position on this latent trait; the probability that a subject with trait value 9
responds positively to item i is denoted p;(8). This probability, regarded as
a function of 6, is the traceline of item i.

A2. The responses of a subject on the various stimuli, given the latent trait value,
are independent:

—X,

n X. 1
P(X = xl60 = 6) :'I—I1pi(90) Y(—p;6p))

The further assumptions, A3 to A5, are assumptions regarding the family of
tracelines p;(8) to p,(8). For cumulative models, the tracelines would be required
to be non-decreasing in 8, sec Mokken and Lewis (1982). For unfolding models,
in contrast, the tracelines are required to be weakly unimodal. This property is
defined as follows; note that if in the definition x equals —oo (+ o0), the function
f(.) must be non-increasing (non-decreasing).

Definition. A function f: X — R, where X C R, is weakly unimodal if there exists
an X € [—oo, + o] such that f(y) is non-decreasing for y < x and non-increasing
fory > x.

A3. For every item i, the traceline p;() is a weakly unimodal function of 6. Let
o; be a value where p;(0) is maximal. (It is possible that there is an interval
of values where py(0) is maximal, in which case o; is not unique; it is also
possible that o; is &= oo.) It is possible to choose the 6; so that they are non-
decreasing as a function of i: 61 < 0, < ... < o,

The value o; is regarded as the scale position of item i. Since in A3, the trace-
lines are not required to be strictly unimodal, this value is not necessarily unique.
Usually, however, tracelines will be strictly unimodal in the sense that the maxi-
mum is assumed in exactly one value o; and that p; () is increasing left of o; and
decreasing right of ;. When some of the 6; are —oo and + oo, the traceline fami-
ly consists of one or more non-decreasing functions, followed by some unimodal
functions, followed again by some non-decreasing functions.

The basic characteristic of unfolding models in an item-response context is uni-
modality of tracelines. In Coombs’ preference function model for unfolding, the
subject picks the stimuli closest to his or her position. If the critical distance is the
same for all subjects, say, 8, this preference function model can also be formulated
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as a traceline model: the tracelines are p;(8) = f(6—o;) where f(d) = 1 for |d|
< 8 and f(d) = 0 for |dl > 8. Just as in the Coombsian model subjects may have
different critical distances within which they find the stimuli acceptable, so items
may in our IRT model have different widths &;; if the additional requirement is
made that items are deterministic (i.e., p;(8) is either O or 1), this leads to trace-
lines

)] p;i(®) = 1 if [6—c;| < §; and 0 otherwise.

For tracelines (1), however, an additional requirement is necessary in order that
subjects at all possible values of 6 agree on the order (from 1 to n) of the stimuli
on the latent dimension: both the left boundaries 6,—8; and the right boundaries
6, + 6; should be non-decreasing functions of i. If this does not hold, then there are
subject positions @ where the set of items picked by the subject is not a series of
adjacent items. It can be concluded that the Coombsian model can be accom-
modated as a deterministic model in the framework of assumptions Al—A3,
except that not all differences in the “width™ of a subject’s preferences can be
modeled. The model with tracelines (1) where 6;—38; as well as 6;+8; are non-
decreasing functions of i, will be indicated in this paper as the dererministic un-
Jolding model.

Assumption A3 is a statement about the conditional distributions of the X;,
given values of 8. To have testable properties for the unfolding model, however,
we need statements about the joint distribution of the observable data X =
Xy, . .., X)) without conditioning on the nonobservable value of 8, but under
the assumption that 8 has been drawn at random from a population of 9-values.
In IRT terms, this is a ‘‘marginal” approach. It turns out that assumptions Al
through A3 do not suffice to derive testable properties of the joint distribution of
the vector X. In the discussion following the definition of A3 we already saw that
additional assumptions are needed to derive some intuitively acceptable properties;
at least, in the deterministic version of the model. The additional assumptions pro-
posed below are measurement related and refer to the relation between the order
of stimuli and the order of subjects.

It is assumed in this paper that subjects are drawn at random from a population
of subjects; the cumulative distribution function (cdf) of latent scale values in this
population is denoted G(8). This subject distribution is arbitrary, it may be con-
tinuous or discrete. By g(8) shall be denoted the probability density function or,
in the discrete case, the probability function corresponding to G. Expectations of
functions f(8) will be written as integrals f f(0)g(0)de (with assumed integration
limits —oo and oo); for discrete distributions, this can be regarded as a sum, while
in the general case it may be regarded as an abstract integral [f(8)dG(8). The
marginal popularity of item i, i.e., the probability that a random subject from a
population with cdf G picks item i, is denoted by

@) Pg() = /[p;(0)g(6)de.
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An important role will be played by the conditional distribution of 8, given that
the subject has responded positively to a given item. The conditional cdf of 0,
given that a subject responds positively to item i, is denoted G{.| X;=1} and given
by

3) GloglX;=1} = Pglo < 6p1X;=1} =_, [0 p,(8)2(8)d6/P(i).

The corresponding conditional probability density function (for continuous 6) or
probability function (for discrete ) is

“4) g®IX;=1) = p;(®)g(0)/Pg(i).

Note that (3) and (4) are undefined if the popularities are zero.

Since we intend to propose a nonparametric model with a minimal set of assump-
tions concerning the latent distribution in the population, the measurement proper-
ties expressed below in A4 and A5 are required to hold for any cdf G(8) for the
latent trait. This implies that A4 and A5 are assumptions only on the family of
tracelines. For a given unordered set of tracelines, there is at most one order in
which they satisfy A4 and AS; this order is not specific for a given subject distribu-
tion. The motivation for requiring assumptions A4 and A5 is twofold: they are
appealing as measurement properties in their own right; and they are regularity
conditions that enable us to prove, in Section 4, properties of the joint distribution
of (X, ..., X)) that can be used as diagnostic checks for the unfolding model
defined by A1—A3.

The first basic relation between the given order of the items and the latent trait,
expressed formally in assumption A4, is the following: when i<j, then the in-
formation {Xj = 1} should lead to a higher estimate of the subject’s latent trait
value than the information {X; = 1}. This is a desirable property of item response
models in a wide variety of situations: e.g., in ability testing, knowing that a sub-
ject has correctly answered a difficult item points more towards a high ability value
than knowing that the subject has correctly answered an easy item; for attitude
items on a political left-right scale, knowing that a subject endorses a rightist item
points more towards a rightist scale value than knowing that the subject endorses
a more leftist item. This property is formulated here without reference to any
particular estimator of the subject’s scale value. Instead, we use the conditional
distribution of the subject’s latent trait value 6 given that the item has been an-
swered positively. This conditional distribution is more fundamental than a partic-
ular estimator of 8 as a function of X;.

A4. For any probability distribution, G(8), of latent trait values, and any value 6
on the latent trait, the following holds. When a subject is chosen at random
from a population with distribution G(8), then the conditional probability

is a non-decreasing function of i for Pg(i) > 0.
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A4 can be formulated in terms of stochastic ordering of probability distributions
(see, e.g., Lehmann, 1986), which is defined as follows: distribution P is stochas-
tically larger than distribution Q if

P{6 > 6,1 > Qf6 > 8} for every 6.

Thus, A4 states that for any subject distribution, the conditional distribution of the
subject’s latent trait value 6, given that X; = 1, is a stochastically increasing func-
tion of the item number i. The stochastic order of latent trait values was also con-
sidered by Rosenbaum (1985); he, however, studied the order between two given
subpopulations, whereas we study the order between conditional distributions of
latent trait values given {X; = 1}, for different items i. Note that we are not com-
paring the information {Xi =0, Xj = 1} with {Xi =1, XJ- = 0}, but {Xj = 1}
with {Xi = 1}; the former comparison is treated in Rosenbaum (1987), but is less
relevant to unfolding theory.

Assumption A4 is a relevant condition for cumulative (monotone) as well as un-
folding (unimodal) models. It can be proven that the Guttman deterministic cumu-
lative scaling model as well as the deterministic unfolding model defined above
satisfy A4 (hint: for these models the joint distribution of (0, X;) has the property
{X; = 1if and only if 6,; < 8 < 6_;} for certain 6, and 0, ;, where 8, ; = oo
for Guttman while 6, ; is,usually finite for unfoldingi. ’ ’

We shall also need a somewhat more complicated analogue of A4, which is re-
levant for unfolding models and not for cumulative models. Assumption A4 is
concerned with conditional probabilities of events of the form {6 > 6,}. What
should one expect with respect to events of the form {8, < 6 < 8,}? Consider,
e.g., a scale for a left-right dimension, containing extreme leftist (low i) through
centrist to extreme rightist (high i) statements; subjects are asked whether they
endorse the statements. A subject is chosen at random from a population with
cdf G. The event {91 <6< 92} corresponds to a “‘central’’ subject’s position on
the scale. The conditional probability

(5) P, <6 < 6,IX, = 1}

indicates the probability that the subject occupies such a central position, given that
he or she endorses statement i. The following property for (5) seems intuitively
appealing: for the very leftist statement i=1 this probability will be low; as i
becomes higher, (5) will increase as a function of i up to a certain maximum,
assumed for a ““‘centrally scaled” item; as i becomes higher still, which means that
the item becomes more and more rightist, (5) will decrease again. In other words,
(5) is a weakly unimodal function of the item number i.

Assumption A5 expresses the unimodality of the conditional probability (5).
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A5. For any cumulative probability function, G(8), of latent trait values, and for
all 8, < 8,, the conditional probability (5) is a weakly unimodal function
of i.

Assumptions A4 and A5 can be regarded as regularity conditions concerning the
measurement properties of the unfolding model that allow to translate the uni-
modality of the non-observable tracelines into similar but probabilistic properties
for observable quantities, properties holding irrespective of the (equally non-
observable) population distribution of the latent trait.

3. Equivalent conditions in terms of total positivity

Conditions A4 and A5 have been formulated in Section 2 as measurement proper-
ties. In this section it will be demonstrated that they are equivalent to mathematical
properties of the traceline family {p;(®)li = 1, . . ., n}, namely, total positivity
of order 2 and 3, respectively. This makes available the mathematical machinery
concerning totally positive functions, developed by Karlin (1968) and others.
However, the properties of totally positive functions of order 3 used in this paper
are deduced from principles in the appendix. With the aid of these properties it
will be possible to derive testable properties of the joint distribution of (X, . . . ,
X,). The available theory for totally positive functions also provides a number of
examples of traceline families satisfying A4 and A5. The present section is an in-
terlude presenting the connection between assumptions A4 and A5 and the theory
of total positivity, and presenting the unimodality preserving property which is
used in the proofs in Sections 4 and 5. Readers who are not interested in the mathe-
matical proofs may skip sections 3.1 and 3.3.

Karlin (1968) provides an extensive treatment of the theory of total positivity;
Marshall and Olkin (1977) give an introduction. Lehmann (1986) presents applica-
tions of total positivity of order 2 to one-sided statistical testing problems, and of
order 3 to two-sided testing problems, while Brown, Johnstone, and MacGibbon
(1981) give a review of statistical applications. The definitions and properties that
play a role in this paper are discussed in the following subsection.

3.1 Total positivity

Definition

Let K(x,y) be a function defined for x € A, y € B, where A and B are sets of real
numbers. The function K is totally positive of order r (TP,) if, for every natural
number m = 1, ..., r and for all ordered sets x; < x, < ... < xp, and
y1 <y, <...<ypwith x; € A, yj€ B, we have the inequality
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K(xl’ yl) K(xls YQ) 000 K(xls ym)
Ky, yp) K(x3, y9) .. K%y, ¥pp)

(6) det (K(x;, y)i=1, ...m = =0

j=1, ....m

K(Xm5 y]) K(Xm> Y2) 000 K(Xm’ Ym) |

The function K is totally positive (TP) if it is TP, for all positive integers r.

This property is symmetric in x and y. Note that total positivity of order r (also
abbreviated to TP,) implies non-negativity of K (take m = 1). For m=2, one
obtains

(7)  det (K(x;; yi)i=12 = Kxy, yPK(xy, ¥7) — K(xy, y2)K(xy, yp) 2 0.
j=1,2

This shows that TP, can be reformulated as follows: K(x,y) > 0, and for all x,
< Xy, the ratio K(x,,y)/K(x;,y) is a non-decreasing function of y. For a family
of probability density functions f(x;p) parametered by a real parameter p, the TP,
property (where p plays the role of y) is known as monotone likelihood ratio
(MLR) (e.g., Lehmann, 1986). The TP, property can be applied to traceline
families, where 0 and i will then play the role of x and y: the traceline family
{pi(e)li =1, ..., n}is TP, if and only if for all j > i the ratio pj(e)/pi(e) is
a nondecreasing function of 6. We shall call TP, of tracelines monotone traceline
ratio (MTR).

A basic property which follows immediately from the definition, and which is
used in some proofs, is the following:

Property 1.

If K(x,y) is TP,, and g(x) and h(y) are non-negative functions, then the function
geoh(y)K(x,y) is TP,.

According to the so-called basic composition formula (Karlin, 1968, p. 17) we
have the following property for integrals (and, for discrete variables z, for sums):

Property 2.

Suppose that K;(x,z) and K,(z,y) both are TP, functions for xe A, ye B, z¢ C.
Then the integral

Kxy) = [c K (x,2)K,(z,y)dz

is also TP,.
We only use this property for r=2. For this case, a proof is given in the ap-
pendix.
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3.2 Examples

It will be demonstrated in Section 3.3 that the TP; property is appealing in prin-
ciple for unfolding models, but are there any examples of traceline families that
satisfy it? In this section, we discuss some examples. Checking TP; usually is not
too hard, but there seem to be no straightforward rules for checking the TP, prop-
erty. For the examples of TP traceline families given below, we rely on Karlin
(1968), who provides a host of examples, using various methods for proving total
positivity. These methods are not specific for TP; but prove total positivity of all
orders (TP).

Distance models

An important class of families of tracelines is the class of location families, where
p(6) = pO—o)

for a certain function p(8) and item parameters o;. For location families all trace-
lines have the same form, but they are shifted with respect to one another. If the
function p() is even, i.c., p(8) = p(—H0) for all 6, then the IRT model is a distance
model, for probabilities are functions of the distance |60—o;|. Distance models
are of special interest, because in most parametric unfolding models in the litera-
ture it is assumed that the preference is a monotone non-increasing function of the
distance between subject and stimuli.

For location families, TP, or MTR is equivalent to log-concavity of the trace-
lines (Karlin, 1968, p. 32; Lehmann, 1986, p. 509), i.e., nonpositivity of the
second order derivative of log(p(0)) if p(9) is twice differentiable. A log-concave
function is necessarily monotone or unimodal, so that distance models with the
MTR property must be either cumulative models or unfolding models in the sense
of Assumption A3.

Some examples of symmetric location families which are TP are the following
three (these tracelines are not probability densities, since they are normed to have
a maximum equal to 1 instead of to integrate to 1; nevertheless, we indicate them
by the name of the corresponding probability densities).

The normal traceline (Karlin, 1968, p. 19):

p(®) = exp(—62).

The logistic density traceline (Karlin, 1968, p. 19):

pe) = _ 4exp(=6)
(1 + exp(—8))?
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Molenaar and Miinnich (1993) used the hyperbolic secant traceline (Karlin, 1968,
p. 349; alinear transformation of the argument has been applied to obtain a simpler
formula):

“

pl) = :
exp(0) + exp(—8)

In contrast to the mentioned families, the PARELLA traceline proposed by Hoij-
tink (1990), which is the location family with the Cauchy form

p(6) = ——:
1 + B-

is not TP3; this function is not log-concave, so it cannot even have MTR. (Hoij-
tink also considers this function with 62 raised to a positive power g; this function
also is not log-concave). An example of the counter-intuitive consequences is given
in Section 3.3.

The tracelines of the deterministic unfolding model mentioned in Section 2 are
not TPy; see Post (1992).

Several TP families of functions that are not location families can be found in
Karlin (1968). For example, the family of gamma densities with a fixed scale
parameter is TP in the shape parameter, and the family of non-central t-densities
with a fixed number of degrees of freedom is TP in the non-centrality parameter.
It should be noted that from a given family of TP; densities, one can construct
other families by using property 1 and also by monotone transformations of the
latent parameter 6 and of the probabilities.

3.3 Total positivity of traceline families

The importance of total positivity in our context is based on the so-called variation-
diminishing property of totally positive functions, which is crucial in the mathe-
matical theory of total positivity and discussed in Karlin (1968, pp. 21 & 233). For
total positivity of order 3, this property amounts to a unimodality-preserving prop-
erty which is equivalent to assumption A5. This equivalence is expressed in the
next theorem. The theorem refers for a latent trait cdf G(B) with density function
2(9) and an arbitrary real-valued' function f(8), to the conditional expectation

[£(®)p;(8)g(8)dd

Balf®Xi=1) = —— & @8

as a function of i.



Nonparametric unfolding 141

Theorem 1.
Assumption A5 is equivalent to the following property: For every cdf G(6) and
every weakly unimodal function f(8) for which this conditional expectation exists,
Eglf(8)IX;=1} is a weakly unimodal function of i.

The proof is given in the appendix. Theorem 1 is crucial for the derivation of
testable properties in Section 4.

We now formulate the theorem on the equivalence of assumption A4 to mono-
tone traceline ratio.

Theorem 2.

Assume Al and A2. The following properties are equivalent: a) Assumption Ad;
b) the traceline family p;(8) has MTR; and c) for all G(8), the conditional density
functions g(8/x;=1) have MLR as a function of i, for those i for which the popu-
larities Pg(i) defined in (2) are positive.

Note that A4 is concerned with stochastic ordering, which is by itself a weaker
property than MLR (Lehmann, 1986, p. 86). This might seem to imply that MTR
(the same as MLR but in another context) is stronger than A4. However, the equiv-
alence between (a) and (b) in Theorem 2 is valid because of the additional speci-
fication in A4 that the stochastic ordering holds for all latent trait distributions G.
The proof of Theorem 2 is given in the appendix.

Theorem 3 gives a similar equivalence as Theorem 2, now for TP; traceline
families. This theorem also is proven in the appendix.

Theorem 3.

(a) If the traceline family {p;(8)li = 1, . . ., n} is TP;, then it satisfies assump-
tions A4 and AS. (b) Conversely, if the traceline family satisfies A4 and A5 while
pi(6) > 0 for all i and all 6, then the traceline family is TP5.

The argumentation in Section 2 for assumptions A4 and A5 implies that, because
of these theorems, it is desirable for traceline families in unfolding models to
satisfy TP5.

We noted in section 3.2 that the Cauchy traceline family based on the function
p(®) = 1/(1+62) does not have MTR. According to Theorem 2, MTR is equiv-
alent to A4, which requires the stochastic ordering, for every subject distribution,
of the conditional subject distributions G{8|X;=1} fori = 1, . . . , n. So for the
Cauchy traceline there must exist subject distributions, discrete as well as continu-
ous, for which this stochastic ordering does not hold. We shall give a numerical
example. Consider the two tracelines

p1(8) = 1/{1+62}, py(®) = 1/{1+(0—1)2}.

Let G(0) be a two point distribution with probabilities g(6;)=g(6,)=1/2 for the
values 6;=1.5, 8,=3. Then the conditional probabilities are

8)p(8)
g(0,1X,=1) = eOUPI O, = 40/53

3(91)P1(e1) + g(ez)P1(92)_
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and g(6,1X,=1) = 13/53. Similarly, g(®,1X,=1) = 4/5 and g(8,/X,=1) = 1/5.
Of the two possible values 0; and 8,, the smaller one, 6, has a higher probability
conditional on X,=1 than on X;=1. So G(6|X,=1) is stochastically larger, in-
stead of smaller, than G(81X,=1). This demonstrates the counter-intuitive proper-
ty of the Cauchy traceline family as an example of a non-MTR family: knowing
that the subject has chosen a rightist stimulus does not necessarily imply that we
have more ground to believe he has a rightist latent trait value than knowing that
he has chosen a leftist stimulus.

4. Diagnostic statistics: The conditional adjacency matrix

How should one check in empirical data whether the items form an unfolding
scale? We focus on one intuitively appealing property and refer the reader to Van
Schuur (1984, 1988) and Post (1992) for checks based on other principles, notably
those based on the number of error patterns, which are defined as response triples
(X, Xj, XY =(1,0, 1) where i < j < k. To check the unfolding model, one
would like to check unimodality of tracelines; but these are not directly observable,
as one cannot directly observe the subjects’ latent trait values. A way to get around
this difficulty is the following. The subsample of subjects choosing item j will
have, on the average, smaller 8 values than the (partially overlapping) subsample
of subjects choosing item j+1; this is the verbal expression of the stochastic
ordering of the distributions G(8IX;=1) and G(81X;,;=1). Consider an item i of
which the unimodality of the traceline is to be checked. The probability of choos-
ing item i in the subsample of subjects choosing item j, denoted P(ilj), is an average
of the traceline p;(8) with respect to this conditional distribution G(GIXJ»= 1). Since
these conditional distributions are stochastically increasing as a function of j it
seems likely that, if the traceline p;(6) is unimodal, the conditional probability
P(ilj) is a unimodal function of j for j = i. In this section, it will be proven that
this result is correct provided that the additional requirement of TP; tracelines is
made.

We assume that a random sample of subjects from a population is available, and
by X;;, we denote the indicator variable for the choice of item i by subject h simi-
larly as in Section 2. The marginal probabilities of joint choices of pairs of items
are

(®) P.j) = PiXy, = Xy, = 1 = [p;(®)p;(®)e(®)dd, G = j)

where g(0) is the probability density of the subject distribution. (The fact that these
probabilities depend on g is left implicit in the notation.) The number of subjects
in the sample is denoted by N; the number of subjects in the sample choosing both
item i and item j is denoted by N(i,j). The joint choice probabilities are estimated
& R NG.,j) 1 N

PG,j) = N = — Z X, X, - (i#]))
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The matrix P(i,j), called the adjacency matrix, is used as a diagnostic statistic in
the MUDFOLD method; see Van Schuur (1984). As a diagnostic statistic it is
based on the deterministic Coombsian unfolding model. In this model subjects
choose those stimuli, and only those, which are close to their ideal point. This im-
plies that every subject choosing two given items also has to choose all items in
between, so that P(i,j) > P(i,k) for all i < j < k. For an adjacency matrix of a
perfect and correctly ordered Coombsian unfolding scale, the highest values there-
fore are on the diagonal, and the entries are monotone decreasing both in the rows
and in the columns as one moves away from the diagonal.

This unimodality pattern does not always hold for the population value of the
adjacency matrix under the probabilistic unfolding model defined by assumptions
A1—A3 or A1—AS5. To illustrate this, consider tracelines of stimuli i, j, k with
item positions ¢; < o; < 06y, as shown in Figure 1. (Whether or not these trace-
lines satisfy A4 and A5 is immaterial.)

pi(e)
1 F = =

0.6

0.4

0.2

Figure 1: Three tracelines satisfying assumptions Al, A2, and A3.

The monotonicity property P(i,j) > P(i,k) is equivalent to

/pi(®)2(®){p;(8)—p,(8)}d6 > 0.
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Define 8, as the value for which pj(es) = p(9,). For 8 > 0, the term between
braces is negative. For any subject distribution concentrated on values larger than
0, i.e., satisfying P{8 < 6}=0, this implies

/pi(®)2(8){p;(8)—p,(8)}d6 < 0,

contradicting the proposed monotonicity.

However, it follows directly from properties 1 and 2 of Section 3.1 that if as-
sumptions Al, A2, and A4 are satisfied, the expected values P(i,j) of the adjacency
matrix do satisfy the TP, property. Further it appears that for another matrix
closely related to the adjacency matrix, another unimodality property can be deri-
ved in accordance with the intuitive reasoning given at the beginning of this sec-
tion. To introduce this matrix, we note that the conditional probability of choosing
item i, given that item j (i # j) is chosen, is given by

P(lj) = PlX;, = 11Xy, = 1) = PGj/PG) = fpi(e)g(9|Xj=1)d6.
This conditional probability can of course be estimated by
NGl = NG.j/NG) i #j

The matrix with entries N(ilj) will be called the conditional adjacency matrix. The
following theorem demonstrates a certain unimodality pattern of the rows of its po-
pulation version P(ilj). Note that the diagonal values of the conditional adjacency
matrix are undefined, because independent replications of a single item for a single
subject are usually not observed. This leads to a complication in the formulation
of the theorem.

In the theorem, column j*(i) is defined as the column where the entries in row
i assume their maximum:

P(ili() = max P(ilj).
BiEX
C

If the maximum is not unique, then the smallest j#i for which the maximum is
assumed may be chosen for j (i).

Theorem 4. P(((J)

Assume that assumptions A1l to AS5.hold. Then (a) P4j) is a weakly unimodal func-
tion of j for every fixed i (where j#i); (b) j >k(i) is a non-decreasing function of
1, except possibly for inversions at the diagonal, i.e., pairs of adjacent rows i, i+1
for which j*G) = i+1 while j“G+1) = i.

Proof: (a) P(ilj) is the conditional expectation of the weakly unimodal function
pi(®) under the condition X;=1. Since A5 holds, applying Theorem 1 to f(6)
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= p;(0) yields that for fixed i, P(ilj) is weakly unimodal as a function of j. (b)
Define P(i,i) as the integral in (8) for i = j. The traceline family satisfies A4 and
hence (by Theorem 2) is TP,; it follows from Property 2 that the matrix P(i,j) is
TP,. Property 1 implies then that the conditional adjacency matrix is also TP,.
Define j*(i) as the column where P(ilj) is maximal among all j, including i = j.
We have

PG +1lj)

Pi+1lj) =
P(ilj)

P(ilj).

The ratio P(i+1,j)/P(i,j) is, due to the TP, property, a nondecreasing function of
j. Part (a) implies that for row i, P(ilj) is nondecreasing in j for 1 < j < j¥(i).
Hence P(i+1lj) = PG,j)[PGi+1,j)/P@,j)] is also nondecreasmg for 1 <j <jt(),
so that j*(i+1) > j*(i). This implies that ]*(l+ > *(i), except possibly for
inversions at the diagonal which may occur if j¥(i+1) = i+1 or j*(i) = i. QED.

The order pattern for P(ilj) is observed, except for chance fluctuations, in the
conditional adjacency matrix. Therefore, one can check the unfolding model by
checking whether the conditional adjacency matrix does not deviate too strongly
from the pattern indicated in Theorem 4. The question as to the statistical signifi-
cance of an observed deviation will be treated in another paper.

In addition to the conditional adjacency matrix, one could study the matrix with
entries

N@,j.j+1)

i# il
NG.j+1)

® NGlj.j+1 =

where N(i,j,j+1) is the number of people simultaneously choosing items i, j, and
j+1. This is relevant only if the sample size is large enough that the numerator
and denominator of (9), divided by N, are stable estimators of the corresponding
probabilities. Similarly as above, it can be proven that the conditional subject
distributions, given that X, = X., |, = 1, are stochastically increasing as a func-
tion of j. Since these conditional distributions will be sharper (have smaller varian-
ce) than the conditional distributions given that Xj = 1, matrix (9) will permit a
more sensitive examination of the unimodality of the tracelines than the conditional
adjacency matrix provided that the sample size is large enough.

Last but not least something can be said about the patterns of the correlation
matrix of the items. In the cumulative Mokken model, all correlations are neces-
sarily nonnegative. For the unfolding model, however, negative correlations are
possible. If two items are close together on the latent trait, subjects tend to either
choose them both or not choose them both, resulting in a positive correlation.
If two items i and j are widely separated in the sense that p;(0) is low where pj(e)
is high and vice versa, then subjects will tend to respond positively either to item
i or to item j but not to both, resulting in a negative correlation. Davison (1977)
derived for a metric unidimensional unfolding model that the correlation matrix
exhibits a simplex pattern (Guttman, 1954), i.e., the correlations are non-decreas-
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ing from the first column towards the diagonal and non-increasing from the diago-
nal towards the last column. A weaker property than the simplex pattern is derived
for our model; this is formulated in the following corollary.

Corollary.

If Al to A5 hold, each row and column of the correlation matrix has at most two
sign changes. If the number of sign changes in a row or column is 2, then the first

sign pattern is negative. In other words, the correlation matrix has the sign struc-
ture of Figure 2.

+ + +
S+ + +
T+ ++
++++ 7+
++ + +
+ + +

/

I
i

+
\ - -+ + 4+

Figure 2: The sign pattern of the correlation matrix if assumptions
Al to AS hold.

Proof: We prove the equivalent assertion for the covariance matrix. Define P(i,i)
and P(ili) as the appropriate integrals, corresponding to independent replications
of the single item i. Consider any fixed number ¢ and any fixed item i. Since P(ilj)
is a unimodal function of j, P(ilj) — c has at most two sign changes (defined as
in the proof of Theorem 1 in the Appendix, which contains a more elaborate dis-
cussion of the relation between sign changes and unimodality); and if it has two,
then the unimodality implies that the sign pattern is — + —. Therefore, also
P(i,j) — cP(j) = P(){P(ilj) — c} has at most two sign changes, with sign pattern
— + — if the number of changes is two. For ¢ = P(i) and i = j the covariances
are obtained. For i = j, the values are positive P(i,i) — P2(i); these are not equal
to the variances but they do have the same sign, so the sign pattern of the matrix
P(i,j) — P@)P(j) is the same as that of the covariance matrix. This shows that the
covariance matrix has at most two sign changes per row and therefore also per
column. QED.

Summarizing this section, the following diagnostic properties have been pro-
posed: The TP, property of the (conditional) adjacency matrix can be used to
check model assumptions Al, A2, and A4. The unimodality per row of the con-



Nonparametric unfolding 147

ditional adjacency matrix with the non-decreasing positions of the maxima, as well
as the sign structure of the correlation matrix, can be used to check the entire
model (assumptions Al to AS5). Of course, these properties are deduced from the
nonparametric unfolding model: they are necessary but not sufficient.

5. Unimodal popularities

A question of some interest, albeit of secondary importance, is whether the popu-
larities P(i) are unimodal, i.e.,

P(1) < PQ) < ... <PE¥) >PGi*+1) > ... > P(), for some i".

In our unfolding model, it is not necessary that the popularities are unimodal: It
is easy to construct examples of bimodal popularities in a model satisfying Al to
A5 by using a bimodal subject density function g(8). However, under the addition-
al requirements that the tracelines are a location family and the subject density
is unimodal, the popularities must indeed be unimodal, as is expressed in the
following theorem.

Theorem 5.

Suppose that A1—AS5 are satisfied, and that the subject distribution has a unimodal
probability density g (8). Then the popularities P(i) are a weakly unimodal func-
tion of i.

Proof: Schoenberg (1951) showed that if the unimodal function p(0) defines a
TP; location family (this function is therefore called a Polya frequency function
of order 3), then it has a finite integral. Let p(6—o;) be the traceline of item i;
then the assumptions of the theorem and Schoenberg’s result imply that

[ p(6—0c,)d0 < oo for every i.

This integral does not depend on i because the tracelines constitute a location fami-
ly. Applying Theorem 1 in its slightly stronger form (see the Appendix) with g(8)
= 1 and f(8) = g,(0) and Theorem 3 immediately yields the weak unimodality of
the popularities.

6. An example

A dataset of Andrich (1988) concerning statements about the attitude towards
capital punishment is used to illustrate the utilization of the conditional adjacency
matrix and correlation matrix for model checking. Graduate students, taking an
introductory course in educational measurement and statistics, were asked to re-
spond to statements by agreeing or disagreeing with them. Eight statements were
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answered by 54 students. In Table 1 the statements are presented with their popu-
larities.

Table 1: Statements about capital punishment and their popularity

Statement Popularity

A.  Capital punishment is one of the most hideous 0.44
practices of our time.

B.  The state cannot teach the sacredness of human 0.65
life by destroying it.

C.  Capital punishment is not an effective 0.67
deterrent to crime.

D. Idon’t believe in capital punishment but I am 0.46
not sure it isn’t necessary.

E. I think capital punishment is necessary but I 0.48
wish it were not.

F.  Until we find a more civilized way to prevent 0.44
crime we must have capital punishment,

G.  Capital punishment is justified because it does 0.35
act as a deterrent to crime.

H. Capital punishment gives the criminal what he deserves. 0.35

In the MUDFOLD program an ordering of stimuli can be supplied by the user
for which several statistics are then calculated. The conditional adjacency and cor-
relation matrices are incorporated in its newest version (Van Schuur & Post,
1990). Both statistics are also incorporated in the newest version of PARELLA,
the program for parametric probabilistic unfolding for dichotomous data based on
Cauchy tracelines (see Hoijtink, Molenaar, & Post, 1992). The order of the items
as presented in Table 1 was obtained by Andrich. This scale can be interpreted as
ranging from ‘strongly against’ to ‘strongly in favor of” capital punishment. The
associated conditional adjacency matrix and correlation matrix are presented in
Table 2 and Table 3. The row maxima in the conditional adjacency matrix are
printed in bold. According to Theorem 3 the conditional adjacency matrix should
have two properties, namely, each row should exhibit a unimodal pattern and the
maxima of the rows should be situated in positions that move to the right as one
moves downwards in the matrix, except possibly for inversions around the
diagonal.

Inspecting the unimodality condition of each row, we see some small disturb-
ances. For instance, in row B we have to exchange columns F and G to obtain a
unimodal pattern. In row H the columns A, B, and C cause disturbances of the
unimodal pattern. These disturbances, however, are small and do not occur struc-
turally in the same columns. The largest disturbance occurs in row F in columns
G and H. We could say that if there are inversions, they occur either within the
first three columns or within the last two columns. Checking the condition for
the maxima shows that, this condition is satisfied and there are indeed some
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inversions around the diagonal. For instance row C has a maximum observed in
cell (C,B), while it is plausible that the maximum occurs on the non-observable
diagonal element. The same argument holds for the maximum of row H.

The sign pattern of the correlation matrix shows no disturbances. Each row
(column) has exactly one sign change. Note that the simplex pattern does not hold.

Table 2: The conditional adjacency matrix for the order of stimuli obtained by Andrich.

A B C D E F G H

A — 0.57 0.58! 0.48 0.23 0.21 0.16 0.16
B 0.83 = 0.86 0.68 0.35 0.29 0.32 0.11
C 0.87 0.89 0.76 0.38 0.33 0.16 0.21
D 0.50 0.49 0.53 == 0.46 0.42 0.42 0.42
E 0.25 0.26 0.28 0.48 = 0.96 0.84 0.89
F 0.21 0.20 0.22 0.40 0.88 — 0.79 0.89
G 0.12 0.17 0.08 0.32 0.62 0.62 — 0.74
H

0.12 0.06 0.11 0.32 0.65 0.71 0.74 —

I The bold elements are the observed maxima of the rows.

Table 3: The correlation matrix for the ordering obtained by Andrich.

A B C D E F G H
A 1 0.35 0.40 0.07 —0.41 —0.43 —042 —0.42
B 0.35 1 0.63 0.06 —0.61 —0.67 —0.51 —0.84
@ 0.40 0.63 1 0.18 —0.58 —0.63 —0.80 —0.71
D 0.07 0.06 0.18 1 0.00 —0.08 —0.06 —0.06
E —041 —0.61 —0.58 0.00 1 0.85 0.53 0.61
F —043 —0.67 —0.63 —0.08 0.85 1 0.51 0.67
G 042 —-051 —0.80 —0.06 0.53 0.51 1 0.59
H —-04 —084 —071 —0.06 0.61 0.67 0.59 1

The small disturbances in the conditional adjacency matrix could indicate some
doubt about the order of the first three items and also about the order of the last
four items. This is emphasized by the results of the search procedure incorporated
in MUDFOLD, which finds another unfolding scale, in the order BCADEFHG.
We see that the first three iteras are permuted and also the last two items. The crite-
ria of this procedure have been documented in Van Schuur (1984) and Van Schuur
and Wierstra (1987). The order obtained by MUDFOLD can also be interpreted
as ranging from ‘against’ to ‘in favor of” capital punishment. The sign pattern of
the correlation matrix is the same for both scales, but there are some changes in
the conditional adjacency matrix as can be seen in Table 4.

Again small disturbances are apparent in the rows of the matrix, but their num-
ber is smaller. The maxima conform to the requirements: with increasing row
number, they move from left to right except for some inversions at the diagonal.
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Table 4: The conditional adjacency matrix for the order obtained by MUDFOLD.

B C A D E F H G

— 0.86! 0.83 0.68 0.35 0.29 0.11 0.32
0.89 — 0.87 0.76 0.38 0.33 0.21 0.16
0.57 0.58 0.48 0.23 0.21 0.16 0.16

0.49 0.53 0.50 — 0.46 0.42 0.42 0.42
0.26 0.28 0.25 0.48 - 0.96 0.89 0.84
0.20 0.22 0.21 0.40 0.88 — 0.89 0.79
0.06 0.11 0.12 0.32 0.65 0.71 — 0.74
0.17 0.08 0.12 0.32 0.62 0.62 0.74 —

O@nTmo»Ow

1 The bold elements are the observed maxima of the rows.

The differences of the statistics for the two orders, however, are too small to
conclude which order is best. One should only conclude that the items A, B, and
C are close together on the scale as are items G and H, because permutations do
not provide evidently better results. This is supported by the rather large con-
ceptual equivalence of the relevant items.

7. Discussion

In this paper nonparametric conditions for unfolding models for dichotomous pick
any/n data were introduced. These conditions were formulated in terms of item
response theory with unimodal tracelines. The purpose here was to construct an
unfolding model with a minimal set of assumptions, where the unfolding nature
of the scale and the order of the items do not depend on the population of subjects.
Unimodality of the tracelines proved not sufficient to derive empirically testable
consequences. Special assumptions for the family of tracelines are required, name-
ly, total positivity of orders 2 and 3. These rather technical assumptions were
proven to be equivalent to sensible properties concerning population-independent
inference about latent trait values; these properties were expressed in assumptions
A4 and AS.

From a measurement point of view, assumptions A4 and A5 are desirable prop-
erties for an unfolding model. These assumptions led us to the conditional adjacen-
cy matrix as a diagnostic tool. This matrix is intuitively appealing, since its rows
may be regarded as observable proxies for the tracelines of the items: the expected
value for the element of the conditional adjacency matrix,

P(ilj) = /pi(0)g(BIX;=1)d6

is an average of the traceline p;(8) with respect to the conditional distribution of
the latent trait, given a positive answer to item j; as j increases, this conditional
distribution increases stochastically. We could say that when proceeding from left
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to right through the row of the conditional adjacency matrix, the traceline appears
through a blurred (by averaging) and error-prone (by sampling errors) window,
where the window also moves from left to right (stochastic increasingness). Prop-
erties of the conditional adjacency matrix and correlation matrix under the non-
parametric unfolding model were derived, which permit their use as diagnostic
statistics.

However, the TP; property poses certain restrictions on the form of the trace-
lines. This is illustrated in that for location families, TP, tracelines are log-
concave, and therefore tend to zero exponentially fast for low and for high values
of the latent trait. For empirical applications, this seems rather restrictive. The
Cauchy tracelines of Hoijtink (1990), although not being TP,, have the advantage
of tending to zero more slowly when [6] gets large. More research will be needed
to receive a more definite answer to the empirical applicability of TP; traceline
families in attitudinal scaling.

Another problem, but of a less serious nature, is the statistical testing of the
properties of the diagnostics. If the unimodality patterns in the rows of the con-
ditional adjacency matrix are disturbed, or if the maxima do not have the required
pattern, one may ask whether these deviations are significant or whether they are
due to sample fluctuations. This problem leads to a rather complex statistical test-
ing problem under order restrictions. A more detailed discussion about this prob-
lem will be given in another paper.

8. Appendix: Proofs of properties in Section 3

Proof of Property 2 for r=2.
The definition of K(x,y) in terms of K; and K, implies that

K,y pK5,y,2) — K(x,¥)K(xy,y1) =
= [ Ki(x1,2Ka(1,y DK (x0,20)Ko(22,¥,)d2,dz,
— ] Ki(x,2)Ka(21,y2)K  (x0,20)Ko(2,y1)dz,dz,
7)<y
- // K (x1,20)K(2,,¥2)K (%9, 1)Ko (21, y )z dz, =
2157,
= f/ Kl(xl,Zl)Kl(Xz,Zz){KQ(Zl,yl)Kz(Zz,YQ) — Kz(Zl>}’2)K2(22,Y1)}dzldz2
21<Zp

+ /f K2(Z1’yl)K2(Z2’y2){K1(X19ZI)K1(X2,Z2) et Kl(xl,Z2)K1(X2,Zl)}d21dz2.

71523

In both terms of the last expression, the integrands are non-negative because of the
TP, property of K; and K,. This establishes TP, for the function K. QED.
Theorem 1 will be proven in a slightly stronger form, mdlca:cd as Theorem 1%
this is necessary for the proof of Theorem 5, and Theorem 1® is not harder to
prove than Theorem 1. The difference is that in Theorem 1™ the function g(8) does
not need to be integrable (recall that g(0) is a probability density function in the
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main part of the paper). The function Fg(el,ez,i) in the formulation below is to
be identified with P5l6; < 6 < 6,/X;=1} in Theorem 1, and H,(f,)) with
EG{f(e)'Xi= 1}.

Theorem 1 *.

Let {p;®li = 1, . . ., n} be a family of non-negative functions. For 8; < 6, and
non-negative functions g(8), define < B

"\;‘
2, %%pi(e)gw)de

F_ 6, 05, 1) =
e e Ip(®)g(©)do

[£(0)p;(0)g(6)do
H(f, 1) =
A ORI

The following poperties are equivalent: a) (identical to AS5) For all 6, < 8, and
all non-negative functions g(8) for which the integrals defining Fg(el,ez,i) are
positive and finite, Fg(61,62,i) is a weakly unimodal function of i. b) For all non-
negative functions g(8) and all weakly unimodal functions f(8) for which the in-
tegrals defining Hg(f,i) are positive and finite, Hg(f,i) is a weakly unimodal
function of 1.

Proof.
Step 1. (b) — (a):

For given 6, and 6,, define the function s(8) = 1 for 8; < 8 < 8, and s(0) =
—1 for 8 < 6, and for 6 > 0,. It follows from (b) that Hg(s,i) is a weakly
unimodal function of i. Since 2Fg(61,62,i) = Hg(s,i) + 1, it follows that
Fg(6],92,i) is also a weakly unimodal function of i.

Step 2. (a) — (b):

In this proof, the number of sign changes of a sequence x(i) is used. This is the
number of sign changes of x(i) as i traverses its domain of possible values from
low to high, without considering changes to zero values: for example, the sequence
x(i) = (i—3)? for i = 1 to 5 has no sign changes, and the sequence x(i) =
(i—3)2—1 has two. The number of sign changes is related in the following way
to unimodality. The sequence x(i) is weakly unimodal if and only if, for every real
number c, the sequence x(i)—c has at most two sign changes, and if it has two,
the sign pattern is — + —.

Let f(6) be a weakly unimodal and g(6) a non-negative function. We shall prove
unimodality of Hg(f,i) by demonstrating that, for every c, Hg(f,i)—c has at most
two sign changes as a function of i.

If ¢ < infyf() or ¢ > supyf(6), it can be concluded immediately that H(f,i)—c
has no sign changes. Therefore, assume further that infgf(8) < c < supgf(0).

D~
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Since f(0) is unimodal, there exist 6; and 8, (possibly *o0) with 6; < 6, such
that f(8)—c > 0 for 6; < 6 < 0, and < O elsewhere. Define the function s(0) as
in Step 1. Then h(8) = s(8)(f(8)—c)g(8) is non-negative, and integrable because
f(8) is bounded. Define Pg(i) = fpi(e)g(e)de and Py (i) likewise. Using s2(0) =
1 it can be concluded that

2F,(81,6,,)—1 = Hy(s,i) = {P,())/P,()HHy(f,i)—c}.

It follows from (a) that F;(6,,0,,1) is a weakly unimodal function of i; hence
2F;(01,6,,i)—1 has at most two sign changes; if it has two, the sign pattern is
— + —. (It can be demonstrated by a continuity argument, that 8; or 6, =
* oo does not present a problem.) Since Pg(i)/Ph(i) > 0 this implies that
Hg(f,i)—c has at most two sign changes, and if it has two, then the sign pattern
is — + —. QED.

Proof of Theorem 2.
Step 1. a) — b):
Note that

P5l0 > 6,lX. =1} = 1—G(8,|X;=1),

where G(6y|X;=1) is the conditional cdf defined in (3). This shows that A4 states
that for any G, for all 6y, and for all i < j,

(10) G(BylX;=1) < G(ByIX;=1).

Now let 6, 0,, i, j be arbitrary with 8; < 6, and i < j. To prove (b) we use a
suitably chosen cdf G(0) depending on i, j, 0;, and 0,, namely, the cdf corre-
sponding to the two-point discrete distribution with probabilities g(8,) = g(6,)
= 1/2. Since (a) implies that (10) holds for this G, it can be concluded that

) G6,IX,=1) < G@O,IX;=1) = Pi(6y)
;0 + p;(6) i@ + pi(6y)
implying

Pi(0)/pi(8) < pi(6,)/p;(8)).

Since this holds for all 8; < 6,, the traceline family has MTR (cf. (7)).
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Step 2. b) — o):

Formula (4) gives the conditional density function g(8|X;=1). Since g(8) and
1/P5(i) are non-negative functions, it follows from Property 1 that if p;(0) is TP,
(i.e., has MTR), then also g(61X;=1) is TP, (has MLR).

Step 3. ¢) — a):

If a family of probability densities, or probability functions, has MLR as a func-
tion of an index i, then the corresponding family of probability distributions is
stochastically non-decreasing as a function of i. A proof can be found in Lehmann
(1986, p. 85). This shows that (c) implies (a). QED.

Proof of Theorem 3.
In this proof the identity

(11) (A;B,—A,B,)(B,C3—B;C,) — (A;B;—A3B,)(B;C,—B,C))

A B G
=B, Ay By Gy
Az B3 G5

can be proven by working out both expressions.
Proof of part (a). It follows from Theorem 2 that A4 is satisfied. To prove A3,
denote F(i) = P50, < 6 < 6,IX;=1}; if F(i) is not weakly unimodal, then there
must exist some i < n—1, for which F(i+1) < min {F(i), F(i+2)}. This must be
proven impossible. In order not to make notation too cluttered, we prove that
F(i+1) > min {F@i), F(i+2)} for i=1. For other i the proof is identical.
Define
A(B) = g(0) if 8 < 6, and O elsewhere;
A= P{6 <0,and X; = 1;
B(®) = g(0) if 8; < 8 < 0, and O elsewhere;
B, = P5l0, <8 <6, and X; = 1};

C(0) = g(®) if 8 > 6, and O elsewhere;

C = PG{G > 0y and X; = 1}.

The definition of the determinant implies that

P18 P18y P1(60)
[ A@)BO,)COI20)0)20) | P28 P8 py@) | d6,d6,d6,
P38y P36y p3(6o)

A@B)g6,)p10,) BOR2OGYPBy)  COIZBIP;(6)
= (1] | AP0 BB2BYP2B,)  COIgBIP,6,) | d8,d6,d6
AB)g0,)p56,) BB BP0, COIZBIP3(8,)
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(12) Al B, Cl
=[Ay By G
A3 B3 G5

Because of the definition of the functions A, B, and C, the triple integral in the
first expression has non-zero contributions only for 8, < 8, < 8.. With the TP,
property, this implies that (12) is non-negative. Similarly, the TP, property im-
plies that all principal minors of (12) such as A;B,—A,B; and B;C5;—B;C, are
non-negative. We wish to prove that F(2) > min {F(1), F(3)}. Given F(i) =
B;/(A;+B;+C,); simple calculations show that F(2) < min {F(1), F(3)} is equiva-
lent with {A;B,—A,B; < B;C,—B,C; and B,C;—B;C, < A,B;—A;B,}. It
follows from (a) together with the non-negativity of all these minors that this is
incompatible with the positivity of (12).

Proof of part (b). Assume that the family of positive tracelines does satisfy A4,
but not TP3; we shall prove that it then cannot satisfy A5. Because of Theorem
2, the traceline family is TP,. Since TP, does not hold, there exist 8, < 8, < 6,
and i < j < k such that

pi0) piBy p;iB)
pi®) 0y pi6) | <O.
P(0) Pe®y) pr(8)

Define 8, = (6,+6,)/2 and 8, = (6,+6.)/2. Consider a discrete probability di-
stribution concentrated on the points 9,, 6,, and 8. with positive probabilities
2(9,), 8(8y), g(6,); use the same notation with A, etc., as in part (a) of this proof,
with the modification that the distribution of 6 now is discrete rather than con-
tinuous and item numbers 1, 2, and 3 are replaced by i, j, and k. Then the determi-
nant (12) is negative. With (11) and the positivity of pj(eb), this implies

(A;B,—A,B)(B,C3—B;C,) < (A,B;—A3B,)(B;C,—B,C)).

Note that g(8,) is a proportionality factor for the A;, and similarly for g(8,). By
taking g(6,):g(0.) suitably, it can be ensured that A;B,—A,B; = B,C,—B,C;.
This implies B,C;—B3C, < A,;B3;—A;3B,. Taking g(6,) slightly smaller will not
affect the validity of the latter inequality, but will make A;B,—A,B; <
B,C,—B,C,. This means for the F(i) as defined above that F(j) < min IFQ),
F(k)!, contradicting assumption A5. QED.
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