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a b s t r a c t

A complete survey of a network in a large population may be prohibitively difficult and costly. So it is
important to estimate models for networks using data from various network sampling designs, such
as link-tracing designs. We focus here on snowball sampling designs, designs in which the members
of an initial sample of network members are asked to nominate their network partners, their network
partners are then traced and asked to nominate their network partners, and so on. We assume an
exponential random graph model (ERGM) of a particular parametric form and outline a conditional
maximum likelihood estimation procedure for obtaining estimates of ERGM parameters. This procedure
is intended to complement the likelihood approach developed by Handcock and Gile (2010) by providing
a practical means of estimation when the size of the complete network is unknown and/or the complete
network is very large. We report the outcome of a simulation study with a known model designed to
assess the impact of initial sample size, population size, and number of sampling waves on properties of
the estimates. We conclude with a discussion of the potential applications and further developments of
the approach.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In many empirical network studies, information is obtained
about the network contacts of every member of a circumscribed
population of actors, leading to a census of the presence or absence
of a network tie for every pair of actors in the population. Such an
approach is characteristic, for example, when assessing a network
in an organization of amoderate size, such as a firm or a school. The
resulting network data may be represented in the form of a graph,
and in many cases can be visualized and/or analysed in a way that
helps to illuminate key structural properties of the network, such
as the degree towhich network partners of an actor are themselves
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connected (clustering), the distribution of the number of network
partners across actors in the network (the degree distribution), and
the presence of actors and network ties whose presence is critical
to the connectivity of the network (cutpoints and bridges).

Over the past two decades, significant progress has been made
in developing statistical models for such networks that can be esti-
mated from this formof single census of all its ties. In thesemodels,
the presence or absence of a tie between any pair of actors in the
network is regarded as a random variable, and the model assigns
a probability to any possible outcome of the entire observation
process. Particularly promising models of this form are exponen-
tial random graph models (ERGMs) (see, e.g., Frank & Strauss, 1986;
Snijders, Pattison, Robins, & Handcock, 2006; Wasserman & Pat-
tison, 1996). These models have been demonstrated in a variety
of empirical contexts to be capable of capturing some of the key
structural features of networks such as the degree of clustering,
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the degree distribution, and features of network connectivity (see,
e.g., Goodreau, 2007; Robins, Snijders,Wang, Handcock, & Pattison,
2007).

Increasingly, though, we are interested in modelling larger net-
works. This interest is largely driven by the recognition that many
processes of interest, such as the diffusion of information or atti-
tudes or the spread of a contact-borne disease, depend crucially
on the structure of networks over potentially very large popula-
tions. If we are to understand the dynamics of these processes and
their outcomes at the population level – such as the distribution of
knowledge, attitudes, or disease states –weneed to understand the
structured nature of the relevant networks. In other words, when
a census of the network is not possible, we require methods for
estimating population-level network models from sampled obser-
vations on the network. This is the problem we address here.

The idea of using the network structure itself when sampling
from a network to discover some of its structural properties is
not new. There is a long history of studies in which personal
networks or egonets, i.e., collections of other individuals linked to
the respondents, are sampled from a network in order to throw
light on individuals’ immediate social environments within larger
networks (see, e.g., Bott, 1957), and the well-known study by
Milgram (1967) introduced a novel means of sampling paths in
networks. The technique of snowball sampling was also devised
to observe parts of a network that might be important to social
processes of particular interest. Barton (2001) attributed an early
interest in snowball sampling to Paul Lazarsfeld, who had found
in studies of voting behaviour that individuals reported high levels
of interpersonal influence from opinion leaders in their immediate
social environment. Lazarsfeld recognized that random samples of
voters provided an ineffective means of studying such processes:

‘‘The opinion leaders of a community could be best identified
and studied by asking people to whom they turn for advice
on the issue at hand and then investigating the interaction
between the advisors and advisees. It is obvious that in a study
involving a sample, like the present one, that procedure would
be difficult if not impossible since few of the related leaders
and ‘followers’ would happen to be included within the sample
(Lazarsfeld, Berelson, & Gaudet, 1944, 49:50; cited in Barton
(2001, 254–255)).’’

Barton noted a study conducted in 1943 and reported by Katz
and Lazarsfeld (1955) and Merton (1957) as a very early instance
of a snowball design.

Coleman (1958) is now recognized as introducing snowball
sampling to the methodological literature. Coleman’s work in-
spired Goodman’s (1961) now classic analysis of snowball sam-
pling which set out inferential procedures for determining the
number ofmutual ties and cycles in a network for various snowball
sampling schemes and sampling assumptions.

More generally, the problem of understanding properties of
a network from some sampling of network components is one
that has received a small though steady stream of attention for a
number of years. Frank (2005) and Handcock and Gile (2007, 2010)
have summarizedmuch of thiswork. An important body ofwork in
the domain has used network-based sampling designs, including
snowball sampling methods, to obtain population estimates of
individual characteristics, often in difficult-to-find populations
such as heroin addicts (Frank & Snijders, 1994), the homeless
(Dávid & Snijders, 2002), or cocaine users (Bieleman, Diaz, Merlo,
& Kaplan, 1993). In these snowball sampling designs, and in more
general adaptive (Thompson & Collins, 2002; Thompson & Frank,
2000) or respondent-driven (Heckathorn, 1997) sampling designs,
the goal is often to estimate characteristics of a population of
individuals in a way that utilizes network links to trace members
of a rare population but that also takes this sampling design into
account in computing the required estimates.
Another strand of work has, like Goodman’s (1961), attempted
to identify characteristics of the network itself. As both Frank
(2005) and Handcock and Gile (2010) have observed, this can
be done in one of two primary ways. The first, a design-based
approach, attempts to assess specific population-level network
characteristics in a way that makes no particular assumptions
about the form of the network. The second, a model-based
approach, takes a particular model form as its starting point, often
with the task of building population-level networkmodels inmind.

As Handcock and Gile (2010) demonstrated, the capacity for
progress within a design-based framework is inherently limited
in many link-tracing designs, but they also established that the
model-based approach can be used successfully to estimate ERGMs
fromanumber of different link-tracing designs, including snowball
sampling designs. In particular, they showed that likelihood-based
inference could be based on evaluation of the full data likelihood by
enumeration over all possible values for the unobserved data, or by
Monte Carlo simulation. They demonstrated the implementation
of this approach for two-wave samples from a 36-actor network,
showing the low bias and high efficiency of the approach.

We also adopt a model-based approach here, and consider
the problem of estimation in cases where Handcock and Gile’s
(2010) approach would be difficult to apply in practice because
the number of nodes in the total network is large or unknown. We
believe that our method has a practical relevance for parameter
estimation of ERGMs in large networks, and a theoretical relevance
because it elucidates a connection between specific dependence
assumptions that define specifications of the ERGM and snowball
sampling designs.

The paper is organized as follows. After describing snowball
sampling, we present the general modelling framework within
which this work is set, and describe the particular class of
models that we assume.We then propose a conditional estimation
approach that permits estimation of models within the class for
particular snowball sampling designs. We present the results of
several simulation studies designed to assess the effectiveness
of the approach. Finally, we discuss the way in which the
proposed scheme complements the likelihood-based method for
sampled data proposed by Handcock and Gile (2010), and set
out its potential application to different sampling processes and
model classes. In doing so, we illustrate the connection between
properties of the snowball sampling process and the form of the
exponential random graph model assumed for the network.

2. Snowball sampling

As we have already observed, it is generally not feasible to
observe the state of every potential tie in the network when the
node set of the network is large. Snowball sampling was devised to
sample partial network data in the vicinity of one or more selected
nodes, and it can be described using the concepts of zones and
neighbourhoods in networks. We begin with some notation and
essential definitions.

We suppose that N = {1, 2, . . . , n} is a fixed set of nodes, and
we let Y (i, j) denote a nondirected tie variable for the pair of nodes
i and j, with i, j ∈ N . The variable Y (i, j) takes the value 1 if there
is a tie between node i and node j; Y (i, j) = 0, otherwise. We
denote by Y = [Y (i, j)] the n × n array of tie variables, and by
y (i, j) and y a realization of Y (i, j) and Y , respectively. For themain
part of the paper, we assume nondirected tie variables (that is, we
do not distinguish Y (i, j) and Y (j, i)), but we touch briefly on the
case of directed networks in the final section. By N (2) we denote
the collection of unordered pairs {{i, j}|i, j ∈ N, i ≠ j} that label
the tie variables.

For a network y on the node set N , consider a particular node,
termed a seed node, s ∈ N . Define a path of length k from actor s to
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Table 1
Adjacency matrix of the network y with rows and columns ordered according to
zones of some seed set A.

Z0 Z1 Z2 . . . Zk Zk+1 Zk+2 . . .

Z0 Y00 Y01 0 . . . 0 0 0 0
Z1 Y10 Y11 Y12 . . . 0 0 0 0
Z2 0 Y21 Y22 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
Zk 0 0 0 . . . Ykk Yk,k+1 0 0
Zk+1 0 0 0 . . . Yk+1,k Yk+1,k+1 Yk+1,k+2 . . .
Zk+2 0 0 0 . . . 0 Yk+2,k+1 Yk+2,k+2 . . .
. . . 0 0 0 . . . 0 . . . . . . . . .

another actor t to be a sequence s = s0, s1, . . . , sk = t of distinct
nodes in N such that y(sm−1, sm) = 1 for m = 1, 2, . . . , k. A path
from node s to node t is a geodesic if it is path of minimum length;
the length of such a path is defined to be the geodesic distance dst
between s and t . Define Zk(s), the zone of order k of node s in the
network y, to be the set of nodes at geodesic distance k from s in
y. We also define Zk(A), the zone of order k of a set A of nodes in
the network y as follows. Let Z0(A) = A, and define Zk(A) = {t :

t ∈ Zk(s) for some s ∈ A and t ∉ Zh(u) for any h < k and u ∈ A}.
The zone of order k of the set A therefore comprises those nodes
whoseminimumdistance to any node in A is k. Where dependence
of a zone on the seed set A is clear, we drop reference to A in
the notation and refer simply to Zk as the zone of order k. The
subarray of tie variables between members of Zk is denoted by
ykk, and the subarray of tie variables from Zk to Zl by ykl. We also
use y0+1+···+k,0+1+···+k to refer to the subarray of tie variables in y
between members of Z0 ∪ Z1 ∪ · · · ∪ Zk.

The k-wave snowball samplewith seed set A can be described as
follows. Assume that the set A of seed nodes is given. In the initial
wave (wave 0) of snowball sampling, we identify the presence or
absence of ties among members of Z0 = A; that is, we identify
values in the subarray y00. We also identify in the initial wave the
set Z1 of network partners of members of A who are not included
in A itself. The presence or absence of ties from members of Z0 to
members of Z1 is therefore also identified; that is, the subarray
y01 is observed. In the next wave of sampling, we observe values
in the subarray y11; that is, we observe ties among members of
Z1, and we also identify the set Z2 of nodes who are tied to one
or more node in Z1 but not to any node in Z0. In addition, we
identify the subarray y12, and hence all ties from nodes in Z1 to
nodes in Z2. More generally, in wave k, we identify the network
partners of nodes in Zk that have not already been included in Zh
for any h < k, and hence the members of Zk+1. We also observe
the subarray ykk corresponding to tie variables between nodes in Zk
and the subarray yk,k+1 referring to tie variables between nodes in
Zk and nodes in Zk+1. By construction, the ties in yhm for |h−m| ≥ 2
all have values of 0. The general structure of the adjacency matrix
of the network y with rows and columns organized according to
the zones of A is shown in Table 1.

For the discussion below, we suppose that we have first
obtained either a one-wave or higher-wave snowball sample based
on some seed set A. We assume that each party to a tie reports
it accurately, and hence that y(i, j) has the same value whether
reported by i or j. It is evident that, in general, a k-wave snowball
sample leads to the observation of a larger and more complete
portion of the network in the vicinity of the seed nodes than
a (k − 1)-wave sample. Snowball sampling can be contrasted
with other network sampling methods in this respect, such as
random sampling of egonets (randomly sampled nodes and their
associated ties) or a randomwalk on a network, namely, a sequence
of randomly selected edges, in which a partner of a seed node
is identified at random, a partner of that partner is identified at
random, and so on. In both of these latter cases, information about
the network structure in the vicinity of the seed nodes is only
partial. As we see below, it is the local ‘completeness’ of the data
observed through the snowball sampling process that supports the
conditional estimation procedure that we develop.

3. Exponential random graph models

A random graph model for Y assigns a probability to each
possible realization y of Y . For a nondirected network on n nodes,
the set Ω of possible realizations of Y contains 2n(n−1)/2 distinct
graphs, since each of the n(n−1)/2 pairs of nodes may or may not
be linked by an edge.

Building on Frank and Strauss (1986), Holland and Leinhardt
(1981) observed that a general framework for the development of
probability models for graphs could be developed by considering
the collection of tie variables as an interactive system of variables
(Besag, 1974). Their insight led to the development of models for
networks that avoided the need to assume independence of dyads,
an assumption characteristic of earlier approaches to statistical
networkmodelling (see, e.g., Holland& Leinhardt, 1981). Frank and
Strauss proposed aMarkov dependence assumption for network tie
variables in which two network tie variables are assumed to be
conditionally independent, given the values of all other network
tie variables, unless they have a node in common.

In their most general form (Frank & Strauss, 1986), exponential
random graph models are probability distributions of the form

Pr(Y = y) = exp(ΣPθPzP(y))/κ(θ), (1)

where

• P is a variable ranging over a collection of subsets of N (2),
referring to possible ties (and each value of P thus defines a
potential network configuration);

• θP is a parameter associated with the configuration P and is
nonzero if and only if every pair of variables in the subset P
are dependent conditionally on all tie variables (i, j) for (i, j)
outside P;

• zP(y) = ΠY (i,j)∈Py(i, j) is the network statistic corresponding to
the configuration P , and indicates whether or not all ties in the
configuration are present in the network y; and

• κ (θ) is a normalizing quantity.

To reduce the number of model parameters, Frank and
Strauss (1986) introduced a homogeneity constraint that θP =

θP ′ whenever P and P ′ are isomorphic configurations (that is,
whenever there is a one-to-one mapping φ on N so that, for all
Y (i, j) in the set P, Y (i, j) ∈ P if and only if Y (φ(i), φ(j)) ∈

P ′). With this constraint, there is a single parameter θ[P] for each
class [P] of isomorphic configurations. The statistic in the model
corresponding to the class [P] is then

z[P](y) = ΣP∈[P]ΠY (i,j)∈Py(i, j), (2)

that is, a count of all observed configurations in the graph y
that are isomorphic to the configuration corresponding to P .
Such homogeneous models can be extended by dependence on
covariates.

A fundamental example is the case of a homogeneous Markov
random graph, i.e., a random graph satisfying the Markov
dependence condition as defined by Frank and Strauss (1986).
These authors proved that the model then takes the form

Pr(Y = y) = exp(θL(y) + ΣkσkSk(y) + τT (y))/κ,

where L(y), Sk(y), and T (y) are the number of edges, k-stars (2 ≤

k ≤ n − 1), and triangles in the network y, and θ, σk(2 ≤ k ≤

n−1), and τ are corresponding parameters. An edge in the network
is simply a subgraph comprising two connected nodes, that is, a
pair {i, j} of nodes for which y(i, j) = 1. A k-star is a subgraph
comprising a node i and distinct nodes m1,m2, . . . ,mk, to each
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of which i is connected by a tie; that is, y(i,mh) = 1 for h =

1, 2, . . . , k. A triangle is a completely connected subgraph of three
nodes, that is, a triple {i, j, k} of nodes for which y(i, j) = 1 =

y(i, k) = y(j, k).
The Markov model has rarely provided a good fit to empirically

observed social networks except in cases where the number of
nodes is low (e.g., less than 20), or the average number of edges per
node is very low (e.g., less than 2), To achieve better fittingmodels,
Snijders et al. (2006; see also Hunter & Handcock, 2006) proposed
an alternative realization-dependent (Baddeley & Möller, 1989)
model form. Following Pattison and Robins (2002), they argued
that conditional dependencies may emerge from the network
processes themselves, with new dependencies created as network
ties are generated. In particular, they assumed that, in addition to
Markov dependencies, two network ties Y (i, j) and Y (k, l) might
be conditionally dependent in the case that there is an observed
tie between, say, j and k and between l and i, that is, if the presence
of a tie from i to j and from k to lwould create a 4-cycle in the graph.

Snijders et al. (2006) showed that the consequence of
this assumption was a set of additionally permitted nonzero
parameters in an exponential random graph model, including
those referring to collections of 2-paths with common starting
and ending nodes, and collections of triangles with a common
base. These configurations have been very useful in providing
model specifications that achieve a good model fit for many
empirical data sets, when implemented in the following way. We
define a k-2-path to be a subgraph comprising two nodes, i and
j, and a set of k paths of length 2 through distinct intermediate
nodes m1,m2, . . . ,mk. A k-triangle is a subgraph comprising two
connected nodes, i and j, and a set of k paths of length 2 through
distinct intermediate nodesm1,m2, . . . ,mk.

Following Snijders et al. (2006), if we let σk, νk, and τk be the
model parameters associated with a k-star, a k-2-path, and a k-
triangle, respectively, then we can entertain assumptions about
relationships among related parameters, such as

σk+1 = −σk/λ (k ≥ 2), and
νk+1 = −νk/λ and τk+1 = −τk/λ (k ≥ 1),

for λ ≥ 1 a (fixed) constant. This is just a hypothesis, and
its adequacy needs to be assessed empirically. Under these
assumption, the statistics

S[λ](y) = Σk(−1)kSk(y)/λk-2,

U [λ](y) = Σk(−1)kUk(y)/λk-2,

and

T [λ](y) = Σk(−1)kTk(y)/λk-2,

where Sk(y),Uk(y), and Tk(y) are, respectively, the number of k-
stars, k-2-paths, and k-triangles in the network y, become single
statistics associated with the parameters σ2, ν1, and τ1. These
statistics may be termed respectively the alternating star, the
alternating 2-path statistic, and the alternating triangle statistic. It
should be noted that the value of λ need not be the same for each
statistic.

Hunter (2007) and Hunter and Handcock (2006) referred to the
latter two statistics U [λ](y) and T [λ](y) as GWDSP (geometrically
weighted dyad-wise shared partners) and GWESP (geometrically
weighted edge-wise shared partners), respectively. The first is
equivalent to a geometrically weighted aggregate over k of the
number of dyads with exactly k shared partners and the second
to a geometrically weighted aggregate over k of connected dyads
with exactly k shared partners.

Robins et al. (2007) coined the term social circuit dependence to
characterize those ERGMs (1) whose statistics zp (y) are of the form
(2)with each P corresponding to a subgraphwith the property that
any pair of nonadjacent edges in P is part of a 4-cycle. In other
words, for any P with a nonzero parameter, if {i, j}, {t, s} ∈ P for
four distinct vertices i, j, s, t , then also either {i, t}, {j, s} ∈ P or
{i, s}, {j, t} ∈ P . The definitions of k-triangles and k-2-paths clearly
satisfy this definition, as well as many other configurations.

It is worth reiterating that adoption of a particular ERGM form
assumes not only that the number of nodes in the network is fixed,
but also that the ERGM model specification is the correct one: the
analysis is model based. This means assuming that the network Y
is an outcome of a probability model of the ERGM form (1),
Pr(Y = y) = exp(ΣPθPzP(y))/κ (θ),

for which the functions zP (y) are such that social circuit
dependence holds. As noted above, this set of assumptions has
proved realistic in a number of social networkmodelling scenarios
(see, e.g., Goodreau, 2007; Robins et al., 2007; Snijders et al., 2006)
and, as we discuss in the final section of the paper, it is possible to
adapt the procedure developed here to other model specifications.
Nonetheless, the selection of an appropriate model specification
remains a difficult problem within the ERGM framework (see, e.g.,
Pattison & Snijders, 2013).

ERGMmodel parameters may be interpreted by observing that,
if a parameter has a large positive (or negative) value, then graphs
with high (or low) values of the corresponding statistics have
higher (or lower) probability, net of other effects. Nonetheless, it
is important to observe that there are complex constraints among
the values of the statistics. Themodel iswell understood in the case
where only the edge parameter θ is nonzero, this being the well-
known Erdös and Rényi (1959) model with uniform tie probability
p = exp(θ)/[1 + exp(θ)]. However, a dyad-dependent instantia-
tion of model (1) can be seen as a model for a self-organizing net-
work process, one that is often characterized by highly nonlinear
relationships between model parameters and network properties
(Handcock, 2003; Robins, Pattison, & Woolcock, 2005).

In many settings, primary interest lies in estimating the
parameters of exponential random graph models from observed
network data. Early attempts to apply Markov Chain Monte Carlo
maximum likelihood estimation (MCMCMLE) approacheswere not
always successful, because the properties of the models under
considerationwere not always fully appreciated, as Snijders (2002)
and Handcock (2004) demonstrated. However, with a growing
understanding of model properties, and more careful attention to
model adequacy, MCMCMLE approaches have been successfully
implemented (Hunter & Handcock, 2006; Robins et al., 2007;
Snijders et al., 2006).

4. A conditional estimation strategy

This paper presents a new conditional estimation strategy for
the exponential random graphmodels just described in the case of
multi-wave snowball samples. The one-wave sample approach is
presented first because of its conceptual simplicity, but its practical
application may be restricted to cases in which the initial seed
set comprises a relatively large sample of nodes in N (and, in
this case, the method of Handcock and Gile (2010) is likely to be
preferred as long as the size of N is known). The approach for two-
wave or higher-wave samples is intended to be more practical and
more useful for the estimation of large networks. In both cases, we
assume a model of the social circuit form described above, and we
write the model as
Pr(Y = y) = (1/c) exp(Σpθpzp(y)). (3)
We also assume that the seed set A and the graph Y are mutually
independent; for example, the seed set may be chosen in advance,
without knowledge of Y .

4.1. Conditional estimation based on a one-wave sample

For the one-wave snowball sample design, the conditional es-
timation conditions on the composition of the seed set Z0 and the
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first-order zone Z1, as well as the ties between zones Z0 and Z1 and
those within zone Z1, and uses as outcomes only the array of tie
variables y00 within zone Z0. Conditionality on the node set Z1 is
equivalent to requiring that for all nodes i in Z1 there is at least one
connecting tie to i from some node in Z0. We let Y00 refer to the set
of variables for which y00 is a realization and Y c

00 refer to all vari-
ables in Y except those in Y00; yc00 refers to the realization y omit-
ting the values in y00. In this notation, the conditional estimation
strategy is based on the probability model Pr(Y00 = y00 | Y c

00 =

yc00), in which yc00 is considered fixed. Note that assumption (1) and
the fact that the subsets y00 and yc00 of the outcome y do not over-
lap imply that these conditional probabilities are always positive.
Conditioning here does not reflect any assumption about these tie
variables being fixed by design, but is merely an estimation device.

Using the outcome Y00 = 0 as an arbitrary point of reference,
we can write

log(Pr(Y00 = y00 | Y c
00 = yc00)/ Pr(Y00 = 0 | Y c

00 = yc00))

= Σpθp[zp (y) − zp(y00)],

where y00 is equal to y but with all entries in y00 set to 0. Hence

log(Pr(Y00 = y00 | Y c
00 = yc00)) = C + Σpθpzp(y),

where C = log(Pr(Y00 = 0 | Y c
00 = yc00)) − Σpθpzp(y00), which

does not depend on y00.
The conditional estimation strategy exploits the characteriza-

tion of the social circuit model given above. This characterization
implies for the one-wave snowball sample that, if i, j ∈ Z0 and the
variables Y (i, j) and Y (k, l) are conditionally dependent, where k
and l are distinct from i and j, then either y(i, k) = 1 = y(j, l) or
y(i, l) = 1 = y(j, k), and, in either case, k, l ∈ Z0 ∪ Z1. Hence, if
Y (i, j) is a variable in Y00, then Y (i, j) is conditionally independent
of any variable that is not in Y00, Y01, or Y11, so that any nonzero
statistics zp (y) depending on values in y00 involve only configu-
rations on some subset of Z0 ∪ Z1. Ties outside Z0 ∪ Z1 therefore
cannot contribute to zp (y). This proves the following result.

Proposition 1. For a one-wave snowball sample from an ERGM
satisfying social circuit dependence, with seed set Z0 and first-order
zone Z1, denoting by Y00 the set of tie variables among nodes in Z0 and
by Y[1,1] the set of tie variables among nodes in Z0 ∪ Z1, it holds that

Pr(Y00 = y00 | Y c
00 = yc00, Z0, Z1)

= (1/C ′) exp(Σpθpzp(y[1,1])) (4)

for a constant C ′ independent of y00, for outcomes y00 that yield Z1
as the first-order zone when starting with seed set Z0, whereas this
probability is 0 for all other values of y00.

The proposition implies that this conditional distribution does
not depend on all of yc00 but only on that part of yc00 which is
observable from a one-wave snowball sample. The conditioning is
on yc00, and therefore also on the choice of the initial set of nodes
Z0. It follows that the parameters of the conditional probability
model for Pr(Y00 = y00 | Y c

00 = yc00) can be estimated from the
observed data on y[1,1] without needing any further information
about the rest of the network, such as the total number of nodes.
Note that, depending on yc00, it is in theory possible that (4) is
insensitive to some parameters in θ , and these parameters are then
unidentified under this conditional probability model. If the seed
set Z0 is sufficiently large, however, this has a vanishingly small
probability.

The essential insight underlying the procedure is that a
conditional probability model for the collection Y00 of ties among
nodes in Z0 has the same parameters as the ERGM for the network
as a whole, but can be estimated conditionally from the one-wave
snowball sample with seed set Z0. This result is based on the
observation that a potential tie Yij linking two nodes i and j in Z0
may depend, given the assumed model, on any tie between node i
or node j and another partner k (in which case, k is in N1) or on any
tie Ykl for nodes k and l, each ofwhom is directly connected to either
i or j (and therefore both k and l are in Z1). Either way, the relevant
observations are included in the one-wave snowball sample with
seed set Z0, and each Yij in Y00 depends only on potential tieswhose
values have been observed, and not on any unobserved ties.

Estimates of θ obtained as a result of MCMC maximization of
(4)may be called conditionalMarkov chainMonte Carlomaximum
likelihood estimates (CMCMCMLEs). The estimation proceeds as a
modification of the MCMCMLE of the network y[1,1]. Estimation
algorithms for ERGMs (see Handcock, Hunter, Butts, Goodreau, &
Morris, 2008, Snijders, 2002) have two components: simulation
of the ERGM for a known parameter vector by Gibbs sampling
or a Metropolis–Hastings algorithm, and inserting the results
of such simulations in a procedure for solving the likelihood
equation. For the CMCMCMLE, the second component is identical
to the procedures for the MCMCMLE discussed in the literature
(the Robbins–Monro algorithm as in Snijders (2002), or the
Geyer–Thompson algorithm as in Handcock et al. (2008)). The
first component, however, is different: in the Gibbs sampler or
Metropolis–Hastings procedure, only variables in y00 are allowed
to change in the simulations, that is, we treat all other ties in y[1,1]
as fixed; and the additional condition is posed that a variable in y00
is allowed to change only if the resulting newvalue of y00 still yields
Z1 as the first-order zone for a snowball sample starting with seed
set Z0. Thus, for example, Gibbs sampling to simulate the ERGM for
a known parameter vector proceeds as follows.

1. Sample randomly a pair (i, j) for which Y (i, j) belongs to y00.
2. If replacing the value y(i, j) by 1 − y(i, j) would imply that

Z1 is no longer the first-order zone for the one-wave snowball
sample with seed set Z0, then go to step 1.

3. Sample randomly a value for Y (i, j) from its conditional
distribution of Y (i, j) given all other elements of Y[1,1], as
implied by distribution (4).

4. Replace Y (i, j) by this value.
5. Go to step 1.

One important consideration is the existence of conditional
MLEs for any observed subgraph y0+1,0+1. Handcock (2003) has
articulated the circumstances in which MLEs may not exist in
the ERGM context, and has also set out various circumstances in
whichMCMCMLEsmay not exist even thoughMLEs do. In practice,
when snowball samples are small and hence configurations
corresponding to model statistics may be rare, conditional
MCMCMLEsmay be impossible or difficult to obtain because of the
nonexistence of the MLE or the MCMCMLE, or outcomes close to
these situations.

The approach just described makes less efficient use of the data
than the method of Handcock and Gile (2010) for estimation of
ERGMparameters in the presence ofmissing datawhen estimation
over all of Y is feasible. In that case, it is not recommended. A
difference between the two approaches is that in the conditional
estimation approachwe do not need to know n, the size of the node
set N , whereas n is clearly required for the use of Handcock and
Gile’s (2010) approach. Our approach is computationally simpler in
the case that the number of unobserved nodes is known to be large,
because in the Handcock–Gile approach all tie variables between
those nodes need to be simulated.

When a saturated snowball sample is observed – i.e., starting
from some initial node set A, subsequent snowball waves are
observed until no new nodes are found – a more efficient
estimation method is the procedure suggested by Snijders (2010,
discussion of Corollary 3). Under the assumption that the ERGM
satisfies the condition of so-called component independence
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(weaker than social circuit dependence), parameters for such an
incompletely observed network can be estimated by anMCMCMLE
where in the simulation only those changes are allowed thatwould
yield the observed node set as the node set for a saturated snowball
sample with seed set A, and the number of unobserved nodes does
not need to be known.

The conditional estimation method just presented can be re-
garded as analogous to Besag’s (1974) coding scheme approach for
the Isingmodel. To illustrate the coding scheme approach, consider
a set of binary variables associated with the points of intersection
of a regular two-dimensional grid, with any pair of variables which
are immediate neighbours in the grid regarded as conditionally de-
pendent.Without loss of generality, each variable can be identified
with a pair (m, h) of integers, and its immediate neighbours are
(m − 1, h), (m, h − 1), (m + 1, h), and (m, h + 1). In the coding
scheme approach, all variableswith an even sumof integers are as-
signed to one class, and all variables with an odd sum of integers to
the other. The partition of variables into classes is then such that all
variableswithin one class are conditionally independent of one an-
other given the observations in the other class, and hence a model
can be estimated readily for the observations in one class condi-
tional on the values of the variables in the other class.

While the approach just presented does not isolate a set
of variables that are conditionally independent given values of
variables in a second set, it does isolate a set of variables that are
conditionally independent of the variables for which there are no
observations in the sample. Just as for the coding scheme approach,
the conditional MLE is less efficient that the MLE computed for
the entire set of variables, but, as we argue below, there may be
circumstances in which the latter is very difficult to obtain, and
the conditional MLE is therefore a valuable substitute.

4.2. Conditional estimation based on a two-wave or higher-wave
sample

In the case of a two-wave or higher-wave sample, we can
proceed similarly. For the two-wave case, we obtain conditional
estimates for model parameters from a model for network ties
within Z0 ∪ Z1 that is conditional on Y12 and Y22 as well as the
composition of the node sets Z0, Z1 and Z2. More generally, we
obtain conditional estimates for a model for ties within Z0 ∪ Z1 ∪

· · · ∪ Zk−1, conditional on Yk−1,k and Ykk as well as the composition
of the node sets Z0, Z1, . . . , Zk. Conditionality on the node sets
Z0, Z1, . . . , Zk is equivalent to the fact that, for each h = 1, . . . , k,
for all nodes i in Zh there is at least one connecting tie to i from some
node in Zh−1 and there are no ties to i from any nodes in Zm form <
h−1. As a result, Ymh = 0 for allm < h−1, and all arrays of the form
Yh,h+1 satisfy the condition that every column contains at least one
unit entry. For the two-wave sample, this means that Y02 = 0, and
in Y01 and Y12 every column must contain at least one unit entry.

Denote N[k−1] = Z0 ∪ Z1 ∪ · · · ∪ Zk−1, and let Y[k−1,k−1] be the
block in the adjacency matrix corresponding to node set N[k−1]. It
may be noted that, if the seed set were N[k−1], the zone of order 1
would be Zk. Therefore applying the reasoning above to N[k−1] and
Zk leads to the conclusion that

log(Pr(Y[k−1,k−1] = y[k−1,k−1] | Y c
[k−1,k−1] = yc

[k−1,k−1]))

= C + Σpθpzp(y)

for some C which does not depend on y[k−1,k−1] and where ties
outside Z[k] do not contribute to zp (y). This proves the following
result.

Proposition 2. For a (k + 1)-wave snowball sample from an ERGM
satisfying social circuit dependence,

log(Pr(Y[k,k] = y[k,k] | Z0, Z1, . . . , Zk+1, Y c
[k,k] = yc

[k,k]))

= C + Σpθpzp(y[k+1,k+1]) (5)
for a constant C independent of y[k,k], where Y[h,h] denotes the set of
tie variables among nodes in Z0 ∪ Z1 ∪ · · · Zh, for outcomes y[k,k] that
for h = 1, . . . , k + 1 yield Zh as the zone of order h when starting
with seed set Z0, whereas this probability is 0 for all other values of
y[kk].

This proposition allows an MCMC procedure for simulating
and estimating the ERGM from a (k + 1)-wave snowball sample,
conditional on the last wave. The algorithm has exactly the form
described earlier: in the Gibbs or Metropolis–Hastings procedure
to simulate the conditional distribution (5) for a given parameter
value θ , the values of elements Y (i, j) of Y[k,k] are sampled from
their conditional distribution implied by (5), but proposed moves
need to respect the conditioning on the structure defined by the
zones Z0, Z1, . . . , Zk+1. As discussed above, this is equivalent to
Ymh = 0 for all m < h − 1 and all columns in the arrays Yh,h+1
containing at least one element equal to 1. It is easy to see that
the collection of changes in Y[k,k] in whichmoves that violate these
requirements are forbidden defines a walk on the outcome space
of Y[k,k] conditional on Z0, Z1, . . . , Zk+1 which communicates with
every other state.

4.3. Snowball sampling with a well-separated seed set or well-
separated classes

In many empirical instances, the set Awill be a random sample
of nodes in N , as Goodman (1961) originally assumed. If the set A
happens to satisfy a particular separation condition, then the esti-
mationmay be based on computations conducted in parallel, and it
can potentially be carried out with considerable efficiency. We say
that a partition A = A1∪A2∪· · ·∪As of the seed set A of a two-wave
snowball sample into classes {A1, A2, . . . , As} is well separated for
models satisfying social circuit dependence if the geodesic distance
dst ≥ 3 in y for every pair of nodes s, t from distinct classes in the
partition. In this case, ∩j{Z0(Aj) ∪ Z1(Aj)} = ∅, and the computa-
tion of change statistics across subarrays corresponding to Z0(Aj)∪
Z1(Aj)maybe carried out in parallel. For a k-wave snowball sample,
wewould consider a partition whose classes satisfy dst ≥ 2k−1 in
y for every pair of nodes s, t from distinct classes in the partition.

Indeed, one potential application of the conditional estimation
approach we have described is to the development of fast
approximate estimation methods in the case of very large
networks; we discuss this application further below.

4.4. Assessment of the ERGM homogeneity assumption

Another potentially useful application of the method just
described is to assess the plausibility of the assumption of ho-
mogeneity made in many practical applications of ERGMs. By ho-
mogeneity we mean here that parameters are constant between
subsets of nodes even if these are separated by large geodesic dis-
tances. The assumption of homogeneity of ERGM effects is a strong
one, particularly in large networks. A well-separated partition of
some random seed set may be used to obtain multiple indepen-
dent estimates of the model parameters, and these estimates may
be assessed for homogeneity in the manner of Lubbers (2003).

5. Simulation studies

In this section, we present the results of three simulation stud-
ies designed to assess the effectiveness of the proposed conditional
estimation strategy and to evaluate some of its properties. In each
case, we began with a known model, that is, with a fixed number
n of nodes and a fixed parameter vector θ . In all of the simulations
reported below, the same true model is assumed, with edge, alter-
nating star, alternating triangle, and alternating 2-path parameters
equal to −4.0, 0.2, 1.0 and −0.2, respectively, with λ = 2. These
parameter values are in line with estimates obtained from empiri-
cal data sets. We set the size of the network of interest to be either
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Fig. 1. Illustrative graphs drawn fromexponential randomgraphdistributionswith
parameters fixed at −4 (edge), 0.2 (alternating star), 1.0 (alternating triangle), and
−0.2 (alternating 2-path) for networks of size 150, 500, and 1000.

150, 500, or 1000 nodes. The resulting network distributions are
relatively sparse, but increasing in average degree as a function of
n. The average degree is 2.8 for the 150-node distribution, 4.8 for
the 500-node distribution, and 6.0 for the 1000-node distribution.
The level of clustering is quite high: on average, networks in these
distributions have approximately 10 times the number of triangles
expected in a random graph distribution of the same density, and
approximately 100 times the number of 2-triangles. A single graph
sampled from each graph distribution is presented in Fig. 1.

For each of the three network distributions (n = 150, 500,
or 1000), we simulated the random graph distribution with pa-
rameter vector θ = (−4.0, 0.2, 1.0, −0.2) and sampled a speci-
fied number of networks from each distribution. The samples were
obtained by running one long MCMC simulation, sampling every
100,000th graph after a burn-in of 1,000,000 steps. A single seed
set of each predetermined fixed size (a = 10, 20, 30, 40, 50, 60)
was then selected at random from each of the sampled graphs, the
corresponding snowball samplewas identified, and the conditional
estimation procedure described earlier was then conducted. For
the cases of n = 150 and n = 500, we also obtained MCMCMLEs
for the full graph for comparative purposes.

In the first simulation study, we systematically varied both n
and the size a = |A| of the seed set in order to assess the impact
of these factors on bias and variability in the conditional estimates
obtained from two-wave snowball samples.

In the second simulation study, still for a two-wave snowball
sample, we focused on estimates for the case of n = 500 and
seed sets of size 10, and evaluated variability in the conditional
estimates using 100 random seed sets of size 10 from each of 100
Table 2
Convergence rates for simulation study 1 (dashes appear for conditions not utilized
in the study).

Convergence rate

Seed set size n = 150 n = 500 n = 1000

3 0.762 0.852 0.764
5 0.914 0.976 0.940
7 0.986 0.992 0.966
9 0.998 0.998 0.984

11 1.000 1.000 0.984
13 1.000 1.000 0.998
15 1.000 1.000 0.998
17 – 1.000 –
18 – 1.000 –
19 – 1.000 –
20 – 1.000 1.000
30 – 1.000 –
40 – 1.000 –
50 – 1.000 –

sampled graphs. (These 100 sampled graphs were independent
of the 500 samples used in the first study.) The purpose of this
second study was to assess the relative contribution to variability
in the conditional estimates of (a) the sampling of complete graphs
from the ERGM distribution, and (b) snowball sampling within the
sampled complete graph.

In the third simulation study, we assessed the performance
of the conditional estimation approach for a one-wave snowball
sample for a new set of 500 networks of size 150, 500, and 1000
sampled from the same ERGM, and for varying seed set sizes. We
also compared these estimates to MCMCMLEs for the entire graph
in the case of 150 nodes.

In all cases, simulations and estimations were carried out
using the program PNet (Wang, Robins, & Pattison, 2009), which
implements the MCMCMLE using the Robbins–Monro algorithm
presented in Snijders (2002) but respects the snowball structure
as outlined in Section 4 above. Provided that there was evidence
of convergence of the estimation procedure, that is, provided that
the convergence t-value for each of the statistics that correspond
to parameters in the model was less than a predetermined
value, set here at 0.1, we retained the estimated parameter
values for the summary statistics described below. For each
parameter in themodel, we calculated various summarymeasures
characterizing the distribution of estimates. Bias was estimated
as the difference between the average of the converged estimates
and the true parameter value; the root mean square error (RMSE)
was estimated as the square root of the mean squared difference
between converged estimated and true parameter value. As the
sampling distribution of estimates can be long tailed, we also
present the median and inter-quartile range as robust measures
of central tendency and spread.

5.1. Simulation study 1: bias and variability of conditional estimates
from two-wave snowball samples as a function of network size,
conditioning, and seed set size

Table 2 contains the convergence rates for estimations in
each condition of simulation study 1, and demonstrates that
convergence rates were high; only for very small seed sets
were the convergence rates not satisfactory, presumably in part
because of the nonexistence of MLEs. Tables 3–6 contain summary
statistics for the conditional estimates of the edge, alternating star,
alternating triangle, and alternating 2-path effects, respectively, as
a function of network size and seed set size.

A number of patterns are evident in Tables 3–6.
First, even allowing for differences in the scale of parameters,

measures of bias and variability vary across the four effects. The



P.E. Pattison et al. / Journal of Mathematical Psychology 57 (2013) 284–296 291
Table 3
Summary statistics for conditional estimates of the edge effect in simulation study
1 (population value −4.0).

Edge

Network size Seed set size Mean Median IQR Bias RMSE

150 3 −1.394 −2.838 6.464 2.606 6.838
5 −3.044 −3.620 4.069 0.956 4.153
7 −3.342 −3.778 3.712 0.658 3.244
9 −3.453 −3.699 3.143 0.547 2.509

11 −3.603 −3.913 2.681 0.397 2.111
13 −3.717 −3.890 2.255 0.283 1.927
15 −3.717 −3.839 2.185 0.283 1.682

500 3 0.647 −2.214 14.703 4.647 11.593
5 −0.667 −2.657 9.115 3.333 8.471
7 −1.381 −3.160 8.460 2.619 7.269
9 −2.086 −3.296 6.166 1.914 5.742

11 −2.218 −3.291 5.375 1.782 4.951
13 −2.241 −3.431 5.365 1.759 4.892
15 −2.832 −3.646 4.598 1.168 4.024
20 −2.966 −3.514 4.086 1.034 3.378
30 −3.221 −3.637 3.041 0.779 2.594
40 −3.551 −3.847 2.614 0.449 2.173
50 −3.510 −3.853 2.457 0.490 1.967

1000 3 0.208 −2.348 18.231 4.208 13.625
5 −0.529 −2.886 13.101 3.471 10.373
7 −0.074 −2.910 12.410 3.926 10.385
9 −0.052 −2.261 10.333 3.948 9.399

11 −1.187 −2.918 9.514 2.813 8.149
13 −1.394 −3.239 8.485 2.606 7.410
15 −1.787 −3.269 7.730 2.213 6.796
20 −2.265 −3.462 6.885 1.735 5.814

Table 4
Summary statistics for conditional estimates of alternating star effect in simulation
study 1 (population value 0.2).

AS

Network size Seed set size Mean Median IQR Bias RMSE

150 3 −0.963 −0.624 3.049 −1.163 2.937
5 −0.230 −0.082 1.891 −0.430 1.649
7 −0.001 0.087 1.610 −0.201 1.308
9 0.026 0.097 1.430 −0.174 1.080

11 0.089 0.146 1.145 −0.111 0.857
13 0.123 0.209 1.076 −0.077 0.833
15 0.111 0.161 1.002 −0.089 0.748

500 3 −1.235 −0.597 4.612 −1.435 3.630
5 −0.807 −0.381 2.875 −1.007 2.564
7 −0.576 −0.063 2.711 −0.776 2.189
9 −0.375 −0.041 1.872 −0.575 1.730

11 −0.345 −0.089 1.655 −0.545 1.527
13 −0.315 −0.044 1.687 −0.515 1.494
15 −0.131 0.099 1.522 −0.331 1.242
20 −0.101 0.049 1.319 −0.301 1.041
30 −0.031 0.047 1.008 −0.231 0.813
40 0.076 0.165 0.822 −0.124 0.682
50 0.058 0.138 0.755 −0.142 0.621

1000 3 −0.971 −0.524 5.197 −1.171 3.964
5 −0.768 −0.245 3.717 −0.968 3.011
7 −0.887 −0.186 3.472 −1.087 2.955
9 −0.931 −0.346 3.017 −1.131 2.649

11 −0.582 −0.125 2.716 −0.782 2.314
13 −0.525 −0.061 2.353 −0.725 2.092
15 −0.423 −0.018 2.169 −0.623 1.941
20 −0.285 −0.026 1.995 −0.485 1.644

bias and variability are generally very low in the case of the
alternating triangle and alternating 2-path effects, and lower than
those for the edge and alternating star effects. The latter exhibit
more skewed distributions, and are clearly affected by some very
large estimates on one side of the distribution, estimates that may
be questioned as implausible in the estimation of an ERGM from a
Table 5
Summary statistics for conditional estimates of alternating triangle effect in
simulation study 1 (population value 1.0).

AT

Network size Seed set size Mean Median IQR Bias RMSE

150 3 1.043 1.033 0.844 0.043 0.766
5 0.991 0.972 0.515 −0.009 0.607
7 0.972 0.965 0.401 −0.028 0.375
9 0.970 0.980 0.353 −0.030 0.309

11 0.989 0.992 0.313 −0.011 0.240
13 0.990 0.981 0.243 −0.010 0.215
15 0.986 0.974 0.220 −0.014 0.184

500 3 1.028 1.007 0.577 0.028 0.548
5 1.003 0.988 0.366 0.003 0.304
7 1.022 1.019 0.282 0.022 0.239
9 0.996 0.992 0.230 −0.004 0.178

11 1.003 1.005 0.177 0.003 0.147
13 1.002 1.009 0.167 0.002 0.132
15 0.995 0.994 0.153 −0.005 0.116
20 0.999 1.001 0.129 −0.001 0.095
30 1.000 1.000 0.095 0.000 0.075
40 0.997 0.998 0.086 −0.003 0.061
50 0.996 0.993 0.067 −0.004 0.053

1000 3 0.983 0.943 0.476 −0.017 0.480
5 1.000 0.971 0.372 0.000 0.297
7 1.004 0.988 0.255 0.004 0.203
9 1.010 1.012 0.223 0.010 0.174

11 0.997 1.000 0.185 −0.003 0.139
13 1.000 1.009 0.164 0.000 0.123
15 0.997 0.997 0.145 −0.003 0.110
20 0.994 0.999 0.121 −0.006 0.094

Table 6
Summary statistics for conditional estimates of alternating 2-path effect in simula-
tion study 1 (population value −0.2).

A2P

Network size Seed set size Mean Median IQR Bias RMSE

150 3 −0.052 −0.083 0.721 0.148 0.648
5 −0.182 −0.147 0.440 0.018 0.382
7 −0.226 −0.197 0.376 −0.026 0.308
9 −0.212 −0.181 0.339 −0.012 0.257

11 −0.216 −0.203 0.277 −0.016 0.205
13 −0.217 −0.200 0.267 −0.017 0.209
15 −0.205 −0.199 0.258 −0.005 0.182

500 3 −0.164 −0.143 0.390 0.036 0.344
5 −0.167 −0.149 0.264 0.033 0.198
7 −0.182 −0.171 0.212 0.018 0.166
9 −0.178 −0.181 0.174 0.022 0.127

11 −0.176 −0.166 0.152 0.024 0.125
13 −0.183 −0.178 0.149 0.017 0.116
15 −0.192 −0.189 0.141 0.008 0.102
20 −0.190 −0.187 0.120 0.010 0.087
30 −0.191 −0.186 0.092 0.009 0.070
40 −0.198 −0.197 0.081 0.002 0.061
50 −0.195 −0.189 0.074 0.005 0.054

1000 3 −0.190 −0.169 0.282 0.010 0.257
5 −0.188 −0.180 0.236 0.012 0.175
7 −0.181 −0.176 0.181 0.019 0.142
9 −0.168 −0.173 0.164 0.032 0.120

11 −0.182 −0.181 0.138 0.018 0.111
13 −0.184 −0.179 0.123 0.016 0.095
15 −0.186 −0.179 0.124 0.014 0.097
20 −0.189 −0.183 0.110 0.011 0.076

complete single observation.We discuss the skewness in estimates
of the edge and alternating star effects further below.

The second general pattern evident in Tables 3–6 is that, for a
given network size, the bias and variability generally decrease as a
function of seed set size, and are atmodest levels for seed sets of 10
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Table 7
Coverage probabilities for estimates in the two-wave snowball sampling (simula-
tion study 1).

Coverage probabilities

Network size Seed set size Edge AS AT A2P

150 3 0.995 0.992 0.982 0.921
5 0.980 0.969 0.989 0.917
7 0.963 0.951 0.963 0.929
9 0.982 0.970 0.956 0.932

11 0.978 0.974 0.970 0.948
13 0.972 0.952 0.936 0.944
15 0.974 0.962 0.956 0.964

500 3 0.988 0.993 0.974 0.958
5 0.969 0.984 0.959 0.961
7 0.966 0.970 0.966 0.962
9 0.964 0.984 0.952 0.966

11 0.960 0.974 0.954 0.948
13 0.958 0.964 0.962 0.944
15 0.942 0.950 0.956 0.966
20 0.952 0.956 0.954 0.946
30 0.974 0.968 0.940 0.952
40 0.950 0.952 0.962 0.952
50 0.954 0.948 0.960 0.964

1000 3 0.990 0.992 0.969 0.976
5 0.964 0.972 0.949 0.970
7 0.967 0.981 0.961 0.950
9 0.982 0.984 0.945 0.967

11 0.961 0.970 0.955 0.951
13 0.980 0.978 0.954 0.972
15 0.976 0.972 0.952 0.962
20 0.952 0.958 0.948 0.962

or so. This is encouraging, and suggests that the strategy has some
value in recovering parameter values from snowball samples.

A third pattern, however, is that, as the network size increases,
the bias and variability appear to increase somewhat as well,
particularly for the edge and alternating star effects, suggesting
that larger networks are likely to need somewhat larger seed sets if
estimates of these effects with low bias and variability are desired.

Fourth, and importantly, the median of the conditional esti-
mates generally is much closer to the true value than the average
estimate, confirming the impact of the shape of the distribution on
the average estimates and hence on estimates of bias in Tables 3–6.

To provide some insight into the distribution of the estimates,
particularly for the edge and alternating-star effects, Figs. 2 and
3 contain boxplots of estimates as a function of seed set size for
networks of size 500 and 1000. It is evident from these plots that
the distribution of the estimates for some effects is quite skewed.
This may reflect the fact that observed graph statistics can be
close to extreme values, leading to estimates that are very large
in magnitude. This is an important feature of the behaviour of the
conditional estimation strategy, and means that care is required in
practice to ensure that observed statistics are not close to extreme
values. It should also be noted that, for the edge and alternating
k-star effects, the increase in variability of estimates with network
size is also evident in Figs. 2 and 3: for a given seed set size, the
variability of the estimates is greater in the case of the network of
size 1000.

Table 7 contains the coverage probabilities, that is, the propor-
tion of times the true value of the parameterwaswithin an approx-
imate confidence interval constructed as themean estimate plus or
minus two estimated standard deviations of the estimate. Encour-
agingly, the coverage probabilities are close to their nominal values
of 0.95.

Overall, while these figures suggest that care needs to be
exercised in interpreting results of this approach given the
skewed distribution of conditional estimates in some cases, and
an associated modest bias, especially for edge and alternating
star effects, they also suggest that these snowball design-
based methods do offer some value in obtaining approximate
Table 8
Variation of conditional parameter estimates, based on a one-way analysis inwhich
the graph sampled from the ERGM with edge, alternating star, alternating 2-path,
and alternating triangle parameters of −4.0, 0.2, −0.2, and 1.0, respectively, is
treated as a random factor. The analysis utilizes estimates for 100 random seed sets
for each of the 100 sampled graphs. The seed set size is fixed at 10 and conditional
estimation is based on a two-wave sample.

Estimate Mean square
(between sampled
graphs)

Mean square
(within sampled
graphs)

Intraclass
correlation

Edge 146.53 26.20 0.821
Alternating star 15.45 2.41 0.844
Alternating 2-path 0.155 0.015 0.900
Alternating triangle 0.198 0.025 0.875

estimates of ERGM effects when other methods are not feasible or
impractical, and they also offer the prospect of using thesemethods
fruitfully in schemes designed to speed computation in estimating
models for large networks. A strong cautionary note, however,
must be made in relation to the relative size of the initial seed set
compared to the size of the network: as the case of 1000 nodes
illustrates,more seeds are required for networks of larger size if the
impact ofmore variability in conditional estimates is to be avoided.
This is demonstrated in Fig. 3, where it is clear that the variability
of estimates remains high even for the larger seed set.

5.2. Simulation study 2: the effects of graph sampling and seed set
sampling on the variability of conditional estimates

In this second simulation study, 100 graphs were sampled from
the same fixed exponential random graph distribution with n =

500 nodes (that is, the parameter values were the same as those
for the first study). For each of these 100 graphs, 100 random
seed sets of size 10 were used to obtain conditional parameter
estimates based on a two-wave sampling design. The number
of nodes included in the two-wave samples ranged from 120 to
274, with a mean of 200.9 and standard deviation of 20.0. The
purposewas to assess, at this seed set size, the relative contribution
to variability in the conditional estimates of the sampling of
complete graphs from the ERGM distribution and the sampling of
seed sets from those sampled complete graphs. The contributions
were assessed by performing a one-way analysis of variance in
which sampled complete graphs constituted a random factor.
The intraclass correlation coefficient is also reported; it indicates
the proportion of variation in the conditional estimates that is
attributable to sampling a complete network from the ERGM.

The results are presented in Table 8. Notably, in all cases,
the major amount of variation in the conditional estimates is
associated with the sampling of the initial complete network
from the ERGM. The intraclass correlations ranged from 0.82 to
0.90, and they show that a substantial portion of the variability
among conditional estimates can be attributed to the sampling of
networks from the ERGM rather than to the sampling of seed sets
within those sampled graphs. The effect is most marked in the
case of the alternating 2-path and alternating triangle effects, but
is nonetheless still strong for the edge and alternating star effects.
Of course, the size of the initial seed set (here, 10) is a factor in
determining consistency among conditional estimates based on
different seed sets of that size: smaller seed sets, and larger node
sets, would almost certainly yield less consistency across seed sets.

5.3. Simulation study 3: estimation using a one-wave snowball
sample

Table 9 provides summary statistics including bias and RMSE
for the case of conditional estimation using a one-wave sample.



P.E. Pattison et al. / Journal of Mathematical Psychology 57 (2013) 284–296 293
Fig. 2. Boxplots for conditional estimates from a two-wave snowball sample as a function of seed set size for the case n = 500.
Table 9
Summary statistics for estimates from the one-wave snowball sampling simulation as a function of network size and seed set size.

Network size Seed set size Effect Bias RMSE Effect Bias RMSE

150 30 Edge −0.460 2.922 Alt-star 0.267 1.367
50 0.068 1.286 0.023 0.679

100 0.101 0.681 −0.011 0.380
150 0.081 0.307 −0.007 0.532
30 Alt-triangle −0.035 0.503 Alt-2-path −0.121 0.436
50 −0.011 0.204 −0.039 0.223

100 −0.006 0.111 −0.015 0.123
150 −0.004 0.095 −0.011 0.098

500 30 Edge −1.521 11.139 Alt-star 0.597 3.649
50 −0.915 7.198 0.332 2.314

100 0.126 2.975 −0.016 0.990
200 0.264 1.476 −0.076 0.503
500 0.073 0.730 −0.007 0.261
30 Alt-triangle −0.259 1.292 Alt-2-path −0.129 0.470
50 −0.046 0.609 −0.052 0.240

100 −0.004 0.118 −0.011 0.114
200 −0.001 0.062 0.061 0.061
500 −0.002 0.035 −0.005 0.035

1000 30 Edge 0.444 15.901 Alt-star 0.062 4.814
50 −0.151 13.047 0.107 3.849

100 0.146 8.131 −0.016 2.388
200 0.562 3.670 −0.153 1.088
30 Alt-triangle −0.619 1.971 Alt-2-path −0.098 0.460
50 −0.200 0.958 −0.041 0.265

100 −0.011 0.154 −0.011 0.136
200 −0.003 0.072 0.001 0.067
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Fig. 3. Boxplots for conditional estimates from a two-wave snowball sample as a function of seed set size for the case n = 1000.
The statistics are reported for varying seed set sizes and for
networks of size 150, 500, and 1000.

These figures exhibit a number of systematic trends similar to
those for the two-wave case. First, for small seed sets, the bias and
RMSE are higher. However, the situation is greatly improved for
larger seed sets and, for each network size, the bias and RMSE are
generally decreasing functions of seed set size, and are reasonably
small for all but the lower samples sizes. There are some cases
where the estimated bias does not go down with increasing seed
set size, but these deviations frommonotonicity are not significant.
As before, for a given seed set size, the bias and RMSE appear to
increase as a function of network size, particularly for the edge
and alternating star effects, again suggesting the worth of using
larger samples from larger networks. Nonetheless, the triangle and
alternating 2-path effects appear to be well recovered at more
modest seed set sizes.

For the networks of size 150 and 500, we can compare the
conditional estimates with the MCMCMLEs. The MCMCMLEs are,
in fact, the values corresponding to a seed set size of 150 or
500, respectively: in this case, all nodes are in Z0, Z1 is empty,
and the conditional estimates are equivalent to the unconditional
MCMCMLEs. The RMSEs are then empirical estimates of the
variability of the estimates.

A comparison of the RMSEs for smaller seed sets with the
RMSE of estimates based on the complete network also provides
a quantitative guide to the loss of efficiency in using the partial
snowball data rather than a complete network.
6. Approximate estimates for large networks

We observed earlier that this conditional estimation approach
could be used to obtain approximate estimates for large complete
networks,whether to obtain a good starting point forMCMCMLE or
as a substitute where MCMCMLE is not feasible. The estimation in
this case can be improved by taking a random sample of seed sets,
and averaging the conditional estimates obtained. The average
over a good number of random seed sets will have a variance
that approximates the variance of a single conditional estimate,
multiplied by the intraclass correlation studied in simulation study
2. We illustrate this potential using results from the simulation
studies described in the preceding section.

For the same ERGM treated in the earlier section, we selected a
single complete network of n = 500 nodes from the distribution.
For this network, we obtained the MCMCMLE for each effect
in the model. The estimated effects (standard errors) for edge,
alternating star, alternating 2-path, and alternating triangle were
−3.277 (0.911), 0.030 (0.315), −0.210 (0.037), and 1.000 (0.038),
respectively. From this network, we also selected from 1 to 100
random seed sets of size 10, and used these seed sets to construct
two-wave snowball samples fromwhichwe estimated conditional
MCMCLEs for each effect.

Fig. 4 compares the MCMCMLE for each effect in the model (the
horizontal line) with the distribution of conditional estimates for
the effect (displayed in boxplot form) as we increase the number
of random seeds to obtain the sample informing the average effect.
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Fig. 4. Boxplots of conditional estimates for effects from seed sets of size 10, as a function of the number of random seed sets used. The MLEs for the complete network are
shown as horizontal lines and are −3.277, −0.030, 1.000, and −0.210 for edge, alternating star, alternating triangle, and alternating 2-path effects, respectively.
It can be seen that, once we are combining the estimates from 40
or more random seed sets, approximation to the MCMCMLEs is
reasonable.

This is illustrative only, but it suggests that the approach of
combining conditional estimates from multiple random seed sets
for a single complete network is worthy of further exploration,
particularly as the computations for multiple random seed sets
may be conducted in parallel. In the present case, the time for
MCMCMLE for the full estimate (approximately 30 min) can be
compared with the time for a single conditional MCMCMLE using
a seed set of size 10 (of the order of 60 s).1

7. Discussion and extensions

The approach we have described offers the potential to extend
the circumstances in which ERGMs might be employed to analyse
snowball sampled network data and also to facilitate estimation
and analysis for very large networks by obtaining fast approximate
estimates as well as an understanding of the variability of
estimates. If the sample size of the network is known and the

1 Performance may vary depending on hardware and estimation configurations
(as in Snijders’ (2002) estimation algorithm). Here, the time for a single estimation
run was approximated based on a PC with 2.4 GHz CPU. The estimation requires
26 Mb of RAM for the full network, and the estimation configurations are the same
for both the full network and the conditional estimations.
network is not too large, the approach of Handcock and Gile (2010)
is clearly optimal and should be used. If, however, the sample size
is not known, or if the network is too large to consider imputation
over the full set of nonobserved variables, then the approach we
have outlined offers a useful method.

The conditional estimation procedure, applied as suggested to
a very large network using a snowball sample from a random seed
set, may also be used to study heterogeneity between different
parts of the large network. For very large networks, it is implausible
that an ERGM with constant parameters would apply throughout
thenetwork, as local conditions – exogenous aswell as endogenous
– may lead to variations in parameter values. With a snowball
sample from a small seed set one will obtain a small part of
the large network; variation in parameter estimates between the
snowball samples may give information about possible deviations
from constancy of the ERGM parameters across the network. It
might be possible to combine this with ideas from Snijders (2010)
to estimate parameters only from connected parts of snowball
samples, thereby extracting parameter estimates from different
small and relatively cohesive parts of the network.

There are also several further potential extensions of what we
have proposed.

The conditional estimation method just described relies on
being able to identify a subset of observed ties variables that (a) can
be modelled in terms of the same parameters as the model for the
full network, (b) are conditionally independent of what has not
been observed, and (c) can be estimated conditional on the values
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of other observed variables. This is clearly a model-dependent
strategy, and the approach may need to be modified for other
model specifications. For example, the Markov and social circuit
models described earlier can be estimated, in principle, from a
one-wave snowball sample, just as we demonstrated earlier. More
complexdependence assumptionsmay require additional data. For
example, a 3-path model (Pattison & Robins, 2002) assumes that
two ties Y (i, j) and Y (k, l) are conditionally dependent in the event
that there is at least one tie linking one or both of {i, j} to one or
both of {k, l}. If nodes i and j are both seed nodes and therefore
members of Z0, the tie Y (i, j) may then be dependent on a tie that
links a node in Z1 to a node in Z2, but is necessarily conditionally
independent of ties that link nodes within Z2 or ties that extend
beyond Z2. Thismeans that, in order to use a conditional estimation
strategy of the form we have described, we would need to at least
observe ties within Y12, but we would not need necessarily to
observe ties within Y22 or beyond.

In the case of directed networks, a large variety of potential
ERGMs can be described, but a directed version of the social circuit
model (Robins, Pattison, & Wang, 2009; Snijders et al., 2006)
has been demonstrated to be useful in a number of modelling
situations. The strategy outlined for the nondirected case may be
adapted for directed networks, though the simplest adaptation is
associated with an assumption that both parties to a potential tie
agree on its presence or absence, and can therefore report on it
with complete accuracy. In this case, respondents should be asked
about both outgoing and incoming ties in order to accommodate
the full range of dependencies within the version of the social
circuit model described by Robins et al. However, since this is an
unrealistic assumption to make in many contexts, the directed
case is likely to need either (a) models in which dependencies
are described in terms of outgoing ties only; or (b) some further
developments in the handling of measurement error in networks.
Both of these are likely fruitful directions for further work. One
case, for example, where the first of these strategies may be
illuminating is in the domain where snowball sampling first arose,
namely, in the assessment of directed influence networks.

In the case of bipartite networks (Wang, Pattison, & Robins,
2013; Wang, Robins et al., 2009; Wang, Sharpe, Robins, & Patti-
son, 2009), the adaptation of themethod proposed here is arguably
more straightforward in principle because ties are nondirected;
however, the context of applicationwill determine how readily the
ties of the two different types of nodemay be elicited in a snowball
scheme.

Finally, we have described the conditional estimation strategy
for snowball sampling, but the approach can be described in amore
abstract form. In each application we have proposed a partitioning
of tie variables in a network to be modelled into three classes: a
subset of observed tie variables to be modelled conditionally (pos-
sibly subject to constraints); a subset of observed tie variables on
which the ties to be modelled are assumed conditionally depen-
dent; and a subset of (unobserved) tie variables that are condition-
ally independent of the ties to bemodelled. Other sampling designs
may give rise to partitions on the tie set of this general structure.
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