
Stochastic Processes and their Applications, Oaxaca, 19th-24th June 2011

The scaling limit of critical
random graphs

Christina Goldschmidt
University of Warwick

Joint work with

Louigi Addario-Berry Nicolas Broutin Grégory Miermont
McGill University INRIA Rocquencourt Université Paris-Sud



Part I: the Erdős-Rényi random graph



The Erdős-Rényi random graph

Take n vertices labelled by [n] := {1, 2, . . . , n} and put an edge
between any pair independently with probability p. Call the
resulting model G (n, p).

Example: n = 10, p = 0.4 (vertex labels omitted).



The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).
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The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 1.2



The phase transition (Erdős and Rényi (1960))

Consider p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).



The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

We will also need to think about the surplus of a component, the
number of edges more than a tree that it has.

A component with surplus 3:
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Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes in

decreasing order, and let Sn
1 ,S

n
2 , . . . be their surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).

Convergence for the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}

and for the second in the sense of finite-dimensional distributions.
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Limiting sizes and surpluses
Let W λ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = W λ(t)−min0≤s≤t W
λ(s) be the process reflected at

its minimum.

[Pictures by Louigi Addario-Berry]
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x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
which fall above the x-axis and below the graph.

C is the sequence of excursion-lengths of this process, in
decreasing order.

S is the sequence of numbers of points falling in the corresponding
excursions.



Question

What do the limiting components look like?

The vertex-labels are irrelevant: we are really interested in what
distances look like in the limit. So we will give a metric space
answer.

Convergence will be in the sense of the Gromov-Hausdorff distance
between compact metric spaces.
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Our approach

Simple but important fact: a component of G (n, p) conditioned to
have m vertices and s surplus edges is a uniform connected graph
on those m vertices with m + s − 1 edges.

General approach: to pick out a (well-chosen) spanning tree, and
then to put in the surplus edges.

There is one case which we already understand very well: when the
surplus of a component is 0 and so we have a uniform random tree.
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Warm-up: the tree case

Take a uniform random tree Tm on vertices labelled by
[m] = {1, 2, . . . ,m} and, using the ordinary graph distance, think
of it as a metric space.

Now rescale the edge-lengths by 1/
√
m:
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Warm-up: the tree case

Theorem (Aldous (1993)) As m→∞,

1√
m
Tm

d→ T ,

where the convergence is in the Gromov-Hausdorff distance.

The limit T is the Brownian continuum random tree.



Trees from excursions

Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1).



Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...



Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...



Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...



Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...



Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...



Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...
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Trees from excursions

Now put glue on the underside of the excursion and push the two
sides together to get a tree.



Trees from excursions



Trees from excursions

[Picture by Grégory Miermont]

The Brownian continuum random tree is the tree we obtain by
doing this glueing procedure to the function 2e, where
(e(x), 0 ≤ x ≤ 1) a standard Brownian excursion.



The limit of the random graph

In the tree case, we rescaled distances by 1/
√
m, where m was the

number of vertices. This is the correct distance rescaling for all of
the big components in the random graph.

Since the big components have sizes of order n2/3, we should
rescale distances by n−1/3.
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The limit of the random graph

Each excursion of the process (Bλ(t), t ≥ 0) encodes a continuum
random tree, which is a “spanning tree” for a limit component.

These are not scaled Brownian CRT’s, but CRT’s whose
distribution has been “tilted” in a way which we will make precise
in a moment.

In the limit, surplus edges correspond to vertex-identifications
(since edge-lengths have shrunk to 0). In each excursion, the
points of the Poisson process tell us where these
vertex-identifications should occur.
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Excursions of the limit process

Consider the process (Bλ(t), t ≥ 0). An excursion ẽ(x) of this
process, conditioned to have length x , has a distribution specified
by

E
[
f
(
ẽ(x)

)]
=

E
[
f
(
e(x)

)
exp

(∫ x
0 e(x)(u)du

)]
E
[
exp

(∫ x
0 e(x)(u)du

)] ,

where f is any suitable test-function and e(x) is a Brownian
excursion of length x .

We refer to ẽ(x) as a tilted excursion and to the tree T̃ that it
encodes as a tilted tree.
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Vertex identifications

A point at (x , y) identifies the vertex v at height h(x) with the
vertex at distance y along the path from the root to v .



A limiting component

Note that it follows from properties of the tilted trees and of the
Poisson process that we may equivalently describe the limit of a
component on ∼ xn2/3 vertices as follows.



A limiting component
Sample a tilted excursion ẽ(x) of length x and use it to create a
CRT T̃ .

Conditional on ẽ(x), sample a random variable P with
Poisson

(∫ x
0 ẽ(x)(u)du

)
distribution.



A limiting component
Sample a tilted excursion ẽ(x) of length x and use it to create a
CRT T̃ .

Conditional on ẽ(x), sample a random variable P with
Poisson

(∫ x
0 ẽ(x)(u)du

)
distribution.



A limiting component

Conditional on P = s, pick s vertices of the tree T̃ independently
with density proportional to their height. (These will almost surely
be leaves.)



A limiting component

For each of the selected leaves, pick a uniform point on the path
from the leaf to the root.



A limiting component

Identify each of the selected leaves with its chosen point.



Convergence result

Let Cn1 , Cn2 , . . . be the sequence of components of G (n, p) in
decreasing order of size, considered as metric spaces with the
graph distance.

Theorem As n→∞,

n−1/3(Cn1 , Cn2 , . . .)
d→ (C1, C2, . . .),

where C1, C2, . . . is the sequence of metric spaces corresponding to
the excursions of Aldous’ marked limit process in decreasing order
of length.

Here, convergence is with respect to the distance

d(A,B) :=

( ∞∑
i=1

dGH(Ai ,Bi )4

)1/4

.



Idea of proof

The key idea turns out to be study a component of G (n, p)
conditioned on its size (but not on its surplus).

We will begin by taking an arbitrary connected graph G and
picking out a particular spanning tree via a depth-first exploration.

We explore the graph step-by-step. At each step, the vertices may
be in one of four states: unexplored, current, alive or dead.

Let X (k) be the number of vertices alive at step k .
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Depth-first exploration

Step 0: initialization
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Current: 1 Alive: none Dead: none X (0) = 0.



Depth-first exploration

Step 1
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Current: 5 Alive: 7, 10 Dead: 1 X (1) = 2.



Depth-first exploration

Step 2
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Current: 2 Alive: 9, 7, 10 Dead: 1, 5 X (2) = 3.



Depth-first exploration

Step 3
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Current: 3 Alive: 9, 7, 10 Dead: 1, 5, 2 X (3) = 3.



Depth-first exploration

Step 4
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Depth-first exploration

Step 5
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Depth-first exploration

Step 6
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Depth-first exploration

Step 7
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Current: 8 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10 X (7) = 0.



Depth-first exploration

Step 8
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Current: 4 Alive: 6 Dead: 1, 5, 2, 3, 9, 7, 10, 8 X (8) = 1.



Depth-first exploration

Step 9

1
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Current: 6 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10, 8, 4
X (9) = 0.



Depth-first walk

X (k) = the number of vertices alive at the kth step of the
depth-first exploration.
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Depth-first tree

We essentially explored this tree; the dashed edges made no
difference to the depth-first exploration.

5 7 10

2 9

3
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4 6
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Call it the depth-first tree associated with the graph G , and write
T (G ).

It turns out that we can recover this tree (although not its
labels) from the process X .
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Permitted edges

For a given tree T , which connected graphs have depth-first tree
T?

In other words, where can we put surplus edges so that they don’t
change T?

Call such edges permitted.



Depth-first walk and permitted edges
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Step 0: X (0) = 0.



Depth-first walk and permitted edges
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Step 1: X (1) = 2.



Depth-first walk and permitted edges
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Step 2: X (2) = 3.
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Step 3: X (3) = 3.
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Step 4: X (4) = 2.



Depth-first walk and permitted edges
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Step 5: X (5) = 1.



Depth-first walk and permitted edges
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Step 6: X (6) = 0.
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Step 7: X (7) = 0.



Depth-first walk and permitted edges
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Step 8: X (8) = 1.



Depth-first walk and permitted edges
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Step 10: X (9) = 0.



Area
At step k ≥ 0 there are X (k) permitted edges. So the total
number is

a(T ) =
m−1∑
k=0

X (k).

We call this the area of T .
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Surplus edges

We can easily set up a bijection between the permitted edges and
the integer points under the graph of the depth-first walk. For our
original graph, the two surplus edges correspond to the filled red
points below:
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Surplus edges
Notice also that surplus edges almost go to ancestors: in fact, the
permitted edges all go to younger children of ancestors of the
current vertex.
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Classifying graphs by depth-first tree

Let T[m] be the set of trees with label-set [m] = {1, 2, . . . ,m} and
let GT be the set of graphs G such that T (G ) = T .

Then{
GT : T ∈ T[m]

}
is a partition of the set of connected graphs on [m].

Moreover, |GT | = 2a(T ).
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Recipe for creating a connected graph on [m]

Create a connected graph G̃p
m as follows.

I Pick a random labelled tree T̃ p
m such that

P
(
T̃ p
m = T

)
∝ (1− p)−a(T ), T ∈ T[m].

I Add each of the a(T̃ p
m) permitted edges to T̃ p

m independently
with probability p.
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Recipe for creating a connected graph on [m]

Lemma G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p
m = G

)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G ) = pm+s−1(1− p)(m

2 )−s+1

∝ (p/(1− p))s .

�
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Taking limits

When m ∼ xn2/3 and p = n−1 + λn−4/3, we need to show that

I the tree T̃ p
m converges to a CRT coded by a tilted excursion;

I the locations of the surplus edges converge to the locations in
our limiting picture.

For simplicity, take p = m−3/2 (i.e. x = 1, λ = 0); the general case
is similar.
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Taking limits

Write X̃m for the depth-first walk associated with T̃ p
m. Then

a
(
T̃ p
m

)
=

∫ m

0
X̃m(s)ds.

If Tm is a uniform random tree on [m] and Xm is its depth-first
walk, then

(m−1/2Xm(mt), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).
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Taking limits

Use the change of measure to get from X̃m to Xm: for any
bounded continuous function f ,
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3/2
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0 m−1/2Xm(ms)ds .

Since p = 1
m3/2 ,

(1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds d→ exp

(∫ 1

0
e(u)du

)
.
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Taking care with the limits, we obtain

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
→

E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)]
= E [f (ẽ)] .

This (after a bit more work) entails that

1√
m
T̃ p
m

d→ T̃ .

The surplus edges form a Binomial point process under X̃m which,
after rescaling, converges to a homogeneous Poisson point process
under ẽ. The rules for the locations of the surplus edges also pass
to the limit to give the locations of the vertex identifications.
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Part II: application to the minimum spanning
tree of the complete graph



The minimum spanning tree of the complete graph
Consider the complete graph on n vertices with independent
edge-weights having Uniform(0,1) distribution.
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The minimum spanning tree of the complete graph
The minimum spanning tree (MST), Mn, is the spanning subtree
of least weight.
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Question (originally posed by David Aldous)

What does the MST of the complete graph on n vertices look like
for large n?

In particular, does it have a scaling limit?

We can construct Mn very easily using Kruskal’s algorithm, which
at each step simply adds the lowest weight edge possible, as long
as it does not create a cycle.
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Kruskal’s algorithm
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Kruskal’s algorithm: the MST
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Erdős-Rényi process

Consider a dynamic version of the Erdős-Rényi random graph,
constructed as follows.

Each edge of the complete graph is assigned a Uniform(0,1)
random variable, which tells us at what time that edge is added to
the random graph. So at a fixed time t, the graph consists of all
the edges with weight at most t. Since weights are uniform, each
edge is thus present with probability t and we have a realisation of
G (n, t).

Call the resulting graph-valued process the Erdős-Rényi process.



Kruskal and Erdős-Rényi processes

As first observed by Addario-Berry, Broutin and Reed (2009), by
using the same weights, we can think of (a continuous-time version
of) Kruskal’s algorithm as “sitting inside” the Erdős-Rényi process.

Call this the Kruskal process.

In particular, the components in both processes (which are all trees
in the case of Kruskal) have the same vertex-sets.

To get from the state of the Erdős-Rényi process at a fixed time to
the state of the Kruskal process, we simply need to break the cycles
in the components of the Erdős-Rényi graph at high-weight edges.
(Note that the edges we remove in this cycle-breaking are not the
same as the surplus edges!)
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Kruskal and Erdős-Rényi processes

Since the component sizes are the same, the critical window is the
same (i.e. times t = n−1 + λn−4/3, λ ∈ R). It is, of course, natural
to want to look inside the critical window, rescale the edge-lengths
in both graph processes by n−1/3 and take the limit as n→∞.



Kruskal and Erdős-Rényi processes: marginal distributions

For a fixed time t = n−1 + λn−4/3, we already know the limit of
the Erdős-Rényi process; call it

(Cλ1 , Cλ2 , . . .).

In order to obtain the limit for the Kruskal process at the same
fixed time, we again just need to break the cycles. This gives us a
sequence

(Kλ1 ,Kλ2 , . . .)

of trees.

Each component (Cλi or Kλi ) has a mass (the length of the coding
excursion) and comes naturally endowed with a measure which
allows us to pick uniform points.



Kruskal and Erdős-Rényi processes: marginal distributions

For a fixed time t = n−1 + λn−4/3, we already know the limit of
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Kruskal and Erdős-Rényi processes: dynamics

The dynamics of the two finite-n processes may be (approximately)
described as follows:

In both, for each pair of distinct components, at a rate given by
the product of their masses, we put an edge between a uniform
vertex in one and a uniform vertex in the other.

In addition, in the Erdős-Rényi process, at a rate given by the
square of a component’s mass, we pick two points uniformly at
random from that component and join them by an edge.

These dynamics should carry over to the limit, with vertex
identifications replacing edge insertions.
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Kruskal and Erdős-Rényi processes

Of course, we have to prove that there exist properly-defined
Markov processes with the given limiting marginal distributions at
“time” λ ∈ R and the right dynamics. Since our processes take
values in the space of sequences of measured metric spaces,
considerable care is required to do this.

Write
(Cλ1 , Cλ2 , . . .)λ∈R

for the limit of the Erdős-Rényi process and

(Kλ1 ,Kλ2 , . . .)λ∈R

for the limit of the Kruskal process.
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Back to the MST

The MST of the complete graph is obtained by running the
Kruskal process to the end. But most of the “action” occurs in the
critical window. In particular, we strongly believe that the metric
structure of the MST has already been entirely built by the top of
the critical window. So the scaling limit of the MST should
essentially be the same as limλ→∞Kλ1 .



The scaling limit of the MST

Conjecture (on its way to being proved!) There exists a random
compact metric space M such that

1

n1/3
Mn

d→M

as n→∞, in the sense of the Gromov-Hausdorff distance.
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