
Stochastics Meeting Lunteren 2012

Scaling limits for random
trees and graphs

Christina Goldschmidt



Stochastics Meeting Lunteren 2012

Lecture 1: random trees
Principally based on work by

David Aldous and Jean-François Le Gall
University of California, Université Paris-Sud

Berkeley



Uniform random trees

We start with perhaps the simplest model of a random tree.

Let Tn be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

For example, T3 consists of the trees

3

21

1

32

2

3 1



Uniform random trees

We start with perhaps the simplest model of a random tree.

Let Tn be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

For example, T3 consists of the trees

3

21

1

32

2

3 1



Uniform random trees

We start with perhaps the simplest model of a random tree.

Let Tn be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

For example, T3 consists of the trees

3

21

1

32

2

3 1



Uniform random trees

Unordered means that these trees are all the same:

54

3

1

2 2

1

3

5 4

1

4 5

3 2

but this one is different:

23

1

4 5



Uniform random trees

Cayley’s formula: |Tn| = nn−2.

Write Tn for a tree chosen uniformly from Tn.

4

7

52

3 6

1

What happens as n grows?

It’s useful to have an algorithm for building Tn.



Uniform random trees

Cayley’s formula: |Tn| = nn−2.

Write Tn for a tree chosen uniformly from Tn.

4

7

52

3 6

1

What happens as n grows?

It’s useful to have an algorithm for building Tn.



Uniform random trees

Cayley’s formula: |Tn| = nn−2.

Write Tn for a tree chosen uniformly from Tn.

4

7

52

3 6

1

What happens as n grows?

It’s useful to have an algorithm for building Tn.



Uniform random trees

Cayley’s formula: |Tn| = nn−2.

Write Tn for a tree chosen uniformly from Tn.

4

7

52

3 6

1

What happens as n grows?

It’s useful to have an algorithm for building Tn.



The Aldous-Broder algorithm

Take the complete graph on n vertices.

The Aldous-Broder algorithm

1

2

3

4

5

6

I Pick a uniform vertex to be the starting point.

I Run a simple random walk (Sk)k≥0 on the graph (i.e. at each
step, move to a neighbour chosen uniformly at random).

I Anytime the walk visits a new vertex, keep the edge along
which it was reached.

I Stop when all vertices have been visited.

The resulting tree τ0 is uniformly distributed on Tn.



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

The random walk (Sk)k≥0 has a uniform stationary distribution,
and is reversible, so that it makes sense to talk about a stationary
random walk (Sk)k∈Z.

The dynamics of the random walk give rise to Markovian dynamics
on Tn.

Let τk be the tree constructed from the random walk started at
time k . Since the random walk is stationary, the tree must be also.



The Aldous-Broder algorithm

The random walk (Sk)k≥0 has a uniform stationary distribution,
and is reversible, so that it makes sense to talk about a stationary
random walk (Sk)k∈Z.

The dynamics of the random walk give rise to Markovian dynamics
on Tn.

Let τk be the tree constructed from the random walk started at
time k . Since the random walk is stationary, the tree must be also.



The Aldous-Broder algorithm

The random walk (Sk)k≥0 has a uniform stationary distribution,
and is reversible, so that it makes sense to talk about a stationary
random walk (Sk)k∈Z.

The dynamics of the random walk give rise to Markovian dynamics
on Tn.

Let τk be the tree constructed from the random walk started at
time k . Since the random walk is stationary, the tree must be also.



The Aldous-Broder algorithm

It remains to show that the stationary distribution for (τk)k∈Z is
uniform on Tn. It turns out to be easier to think of τk as rooted at
Sk , and also to think in reversed time.

Consider the transition probabilities P(τ, τ ′) for the reversed-time
chain (taking values in the set of rooted trees).



The Aldous-Broder algorithm

It remains to show that the stationary distribution for (τk)k∈Z is
uniform on Tn. It turns out to be easier to think of τk as rooted at
Sk , and also to think in reversed time.

Consider the transition probabilities P(τ, τ ′) for the reversed-time
chain (taking values in the set of rooted trees).



The Aldous-Broder algorithm

τ0

S4

S1

S7

S5

S0 = S3

S2 = S6

1

2

3

4

5

6



The Aldous-Broder algorithm

τ−1

S4

S1

S7

S5

S0 = S3

S−1 = S2 = S6

1

2

3

4

5

6



The Aldous-Broder algorithm

There are n − 1 different places that the root might move to and
so n − 1 possible rooted trees we can reach going backwards in
time, each equally likely.

So for fixed τ , P(τ, τ ′) = 0 or 1/(n − 1).

Similarly, for fixed τ ′, there are n − 1 places the root might have
jumped from, so that P(τ, τ ′) = 0 or 1/(n − 1).

So the matrix P is doubly stochastic and so has uniform stationary
distribution on the set of rooted trees.

It’s straightforward to show that the chain is irreducible and since
the root is uniformly distributed, it follows that τ0 is a uniform
random tree.



The Aldous-Broder algorithm

There are n − 1 different places that the root might move to and
so n − 1 possible rooted trees we can reach going backwards in
time, each equally likely.

So for fixed τ , P(τ, τ ′) = 0 or 1/(n − 1).

Similarly, for fixed τ ′, there are n − 1 places the root might have
jumped from, so that P(τ, τ ′) = 0 or 1/(n − 1).

So the matrix P is doubly stochastic and so has uniform stationary
distribution on the set of rooted trees.

It’s straightforward to show that the chain is irreducible and since
the root is uniformly distributed, it follows that τ0 is a uniform
random tree.



The Aldous-Broder algorithm

There are n − 1 different places that the root might move to and
so n − 1 possible rooted trees we can reach going backwards in
time, each equally likely.

So for fixed τ , P(τ, τ ′) = 0 or 1/(n − 1).

Similarly, for fixed τ ′, there are n − 1 places the root might have
jumped from, so that P(τ, τ ′) = 0 or 1/(n − 1).

So the matrix P is doubly stochastic and so has uniform stationary
distribution on the set of rooted trees.

It’s straightforward to show that the chain is irreducible and since
the root is uniformly distributed, it follows that τ0 is a uniform
random tree.



The Aldous-Broder algorithm

There are n − 1 different places that the root might move to and
so n − 1 possible rooted trees we can reach going backwards in
time, each equally likely.

So for fixed τ , P(τ, τ ′) = 0 or 1/(n − 1).

Similarly, for fixed τ ′, there are n − 1 places the root might have
jumped from, so that P(τ, τ ′) = 0 or 1/(n − 1).

So the matrix P is doubly stochastic and so has uniform stationary
distribution on the set of rooted trees.

It’s straightforward to show that the chain is irreducible and since
the root is uniformly distributed, it follows that τ0 is a uniform
random tree.



A variant due to Aldous

“Do the labelling as we go, then relabel at the end.”

1. Start from the vertex labelled 1.

2. For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
i − 1 with probability 1− (i − 2)/n

uniform on {1, 2, . . . , i − 2} otherwise.

3. Take a uniform random permutation of the labels.



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



The Aldous-Broder algorithm

1

2

3

4

5

6



Aldous’ algorithm

Consider n = 10.

1



Aldous’ algorithm

V2 = 1 with probability 1

21



Aldous’ algorithm

V3 =

{
1 with probability 1/10

2 with probability 9/10

1 2 3



Aldous’ algorithm

V4 =

{
j with probability 1/10, 1 ≤ j ≤ 2

3 with probability 8/10

41 2 3



Aldous’ algorithm

V5 =

{
j with probability 1/10, 1 ≤ j ≤ 3

4 with probability 7/10

321 4

5



Aldous’ algorithm

V6 =

{
j with probability 1/10, 1 ≤ j ≤ 4

5 with probability 6/10

6

5

41 2 3



Aldous’ algorithm

V7 =

{
j with probability 1/10, 1 ≤ j ≤ 5

6 with probability 5/10

321 4

5

6

7



Aldous’ algorithm

V8 =

{
j with probability 1/10, 1 ≤ j ≤ 6

7 with probability 4/10

8

321 4

5

6

7



Aldous’ algorithm

V9 =

{
j with probability 1/10, 1 ≤ j ≤ 7

8 with probability 3/10

9

8

321 4

5

6

7



Aldous’ algorithm

V10 =

{
j with probability 1/10, 1 ≤ j ≤ 8

9 with probability 2/10

10

9

8

321 4

5

6

7



Aldous’ algorithm

Permute.

10

9

83

2

1 4

56

7



Typical distances
Consider the tree before we permute. Let

Jn = inf{i ≥ 2 : Vi 6= i − 1}.

We can use Jn to give us an idea of typical distances in the tree.

In our example, J10 = 4:

10

9

8

321 4

5

6

7



Typical distances

For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
i − 1 with probability 1− (i − 2)/n

uniform on {1, 2, . . . , i − 2} otherwise.

Jn = inf{i ≥ 2 : Vi 6= i − 1}

Proposition

n−1/2Jn converges in distribution as n→∞.



Typical distances

Once we have built this first stick of consecutive labels, we pick a
uniform starting point along that stick and attach a new stick with
a random length, and so on.

Imagine now that edges in the tree have length 1. The proposition
suggests that rescaling edge-lengths by n−1/2 will give some sort of
limit for the whole tree. The limiting version of the algorithm is as
follows.



Typical distances

Once we have built this first stick of consecutive labels, we pick a
uniform starting point along that stick and attach a new stick with
a random length, and so on.

Imagine now that edges in the tree have length 1. The proposition
suggests that rescaling edge-lengths by n−1/2 will give some sort of
limit for the whole tree. The limiting version of the algorithm is as
follows.



Stick-breaking procedure

Take an inhomogeneous Poisson process on R+ of intensity t at t.

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0

P (C1 > x) = exp
(
−
∫ x

0 tdt
)

= exp(−x2/2).

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.



Stick-breaking procedure

Take an inhomogeneous Poisson process on R+ of intensity t at t.

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0

P (C1 > x) = exp
(
−
∫ x

0 tdt
)

= exp(−x2/2).

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.



Stick-breaking procedure

Take an inhomogeneous Poisson process on R+ of intensity t at t.

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0

P (C1 > x) = exp
(
−
∫ x

0 tdt
)

= exp(−x2/2).

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.



Stick-breaking procedure

Take an inhomogeneous Poisson process on R+ of intensity t at t.

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0

P (C1 > x) = exp
(
−
∫ x

0 tdt
)

= exp(−x2/2).

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.



Stick-breaking procedure

Take an inhomogeneous Poisson process on R+ of intensity t at t.

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0

P (C1 > x) = exp
(
−
∫ x

0 tdt
)

= exp(−x2/2).

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.



Stick-breaking procedure

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0



Stick-breaking procedure

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0



Stick-breaking procedure

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0



Stick-breaking procedure

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0



Stick-breaking procedure

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0



Stick-breaking procedure

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0



Stick-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.

Take the union of all the branches, and then take its closure.

This procedure gives (a rather informally expressed!) definition of
Aldous’ Brownian continuum random tree (CRT) which will be the
key object in this lecture.



Stick-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen uniformly
over the existing tree.

Take the union of all the branches, and then take its closure.

This procedure gives (a rather informally expressed!) definition of
Aldous’ Brownian continuum random tree (CRT) which will be the
key object in this lecture.



The Brownian continuum random tree

[Picture by Grégory Miermont]



Scaling limits of random trees

The purpose of today’s lecture is

I to show that the Brownian CRT is indeed the scaling limit of
the uniform random tree

I to explain in what sense this is true

I and also to show that the limit is universal for a whole family
of random trees.



An aside: a prototypical scaling limit
Suppose that Z1,Z2, . . . are independent and identically distributed
random variables with mean 0 and variance 1. Let X (0) = 0 and
X (k) =

∑k
i=1 Zi . Then (X (k), k ≥ 0) is a random walk.

Donsker’s theorem. As n→∞,

1√
n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0),

where (W (t), t ≥ 0) is a standard Brownian motion.



An aside: a prototypical scaling limit
Suppose that Z1,Z2, . . . are independent and identically distributed
random variables with mean 0 and variance 1. Let X (0) = 0 and
X (k) =

∑k
i=1 Zi . Then (X (k), k ≥ 0) is a random walk.

Donsker’s theorem. As n→∞,

1√
n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0),

where (W (t), t ≥ 0) is a standard Brownian motion.



Specifying distributions
We want to deal with random objects which are not real-valued.
We will typically specify their distributions via expectations of
real-valued test-functions.

To take Brownian motion as an example: the random object takes
values in C (R+,R) and its distribution is specified by the values of

E [f (W (t), t ≥ 0)]

for functions f : C (R+,R)→ R in a suitable class.



Specifying distributions
We want to deal with random objects which are not real-valued.
We will typically specify their distributions via expectations of
real-valued test-functions.

To take Brownian motion as an example: the random object takes
values in C (R+,R) and its distribution is specified by the values of

E [f (W (t), t ≥ 0)]

for functions f : C (R+,R)→ R in a suitable class.



Convergence in distribution

The convergence in distribution in Donsker’s theorem means that
for all bounded continuous real-valued functions f ,

E
[
f

(
1√
n

(X (bntc), t ≥ 0)

)]
→ E [f (W (t), t ≥ 0)] .

(Here, f is continuous for the metric on D(R+,R) given by

d(x , y) =
∞∑
k=1

2−k

(
sup

t∈[0,k]
|x(t)− y(t)| ∧ 1

)
,

yielding uniform convergence on compact time-intervals).



Convergence in distribution

The convergence in distribution in Donsker’s theorem means that
for all bounded continuous real-valued functions f ,

E
[
f

(
1√
n

(X (bntc), t ≥ 0)

)]
→ E [f (W (t), t ≥ 0)] .

(Here, f is continuous for the metric on D(R+,R) given by

d(x , y) =
∞∑
k=1

2−k

(
sup

t∈[0,k]
|x(t)− y(t)| ∧ 1

)
,

yielding uniform convergence on compact time-intervals).



The scaling limit of the uniform random tree

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

where T is the Brownian CRT.



Convergence in distribution

What is the the sense of the convergence in distribution

1√
n
Tn

d→ T as n→∞?

We don’t really care about vertex labels (except that they give a
combinatorial weight to our trees): the important things are the
shape of the tree and the distances between its vertices.

So we are going to think of (Tn, n ≥ 1) and T as metric spaces.



Trees as metric spaces
The vertices of Tn come equipped with a natural metric: the graph
distance.

1

2
4

7

52

3 6

1 1

5

6 3 4

12

10

98 112

7

. . .

Write 1√
n
Tn for the metric space given by the vertices of Tn with

the graph distance divided by
√
n.

We will see later how to formulate T properly as a metric space.



Convergence in distribution

Consider the space, M, of compact metric spaces. We’ll define a
distance dGH on M in a moment. Then

1√
n
Tn

d→ T as n→∞

will mean that for any bounded function f : M→ R which is
continuous with respect to dGH, we have

E
[
f

(
1√
n
Tn

)]
→ E [f (T )] as n→∞.



Measuring the distance between metric spaces

Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

(X , d) and (X ′, d ′) are at Gromov-Hausdorff distance less than
ε > 0 if there exists a correspondence R between X and X ′ such
that dis(R) < 2ε. Write

dGH((X , d), (X ′, d ′)) < ε.



Measuring the distance between metric spaces

Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

(X , d) and (X ′, d ′) are at Gromov-Hausdorff distance less than
ε > 0 if there exists a correspondence R between X and X ′ such
that dis(R) < 2ε. Write

dGH((X , d), (X ′, d ′)) < ε.



Measuring the distance between metric spaces

Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

(X , d) and (X ′, d ′) are at Gromov-Hausdorff distance less than
ε > 0 if there exists a correspondence R between X and X ′ such
that dis(R) < 2ε. Write

dGH((X , d), (X ′, d ′)) < ε.



Measuring the distance between metric spaces

Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

(X , d) and (X ′, d ′) are at Gromov-Hausdorff distance less than
ε > 0 if there exists a correspondence R between X and X ′ such
that dis(R) < 2ε. Write

dGH((X , d), (X ′, d ′)) < ε.



Coding discrete trees by functions

It turns out to be useful to encode the shapes of our trees by more
familiar objects: functions.

We will do this in two different ways: the contour function and the
depth-first walk.



Coding discrete trees by functions

It turns out to be useful to encode the shapes of our trees by more
familiar objects: functions.

We will do this in two different ways: the contour function and the
depth-first walk.



Contour function

The contour function is obtained by simply tracing the “contour”
of the tree from left to right at speed 1, so that we pass along
each edge twice. Record the distance from the root at each time
to get (C (t), 0 ≤ t ≤ 2(n − 1)).



Contour function

3 6 4

2 5

7

1

3

121110987

C(t)

t

42 6531
−1

0

1

2



Contour function

3 6 4

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6 4

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6 4

52

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6 4

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6

2

4

5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6 4

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6

2 5

4

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6 4

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6 4

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6

2

4

5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

3 6

2

4

5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

463

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3



Contour function

4

7

52

3 6

1

121110987

C(t)

t

42 6531
−1

0

1

2

3

The contour function is a sort of “expanded” version of the tree.



Depth-first walk

The depth-first walk is constructed using a depth-first search of
the tree. At each step, the vertices may be in one of four states:
unexplored, current, alive or dead.

Let X (k) be the number of vertices alive at step k .



Depth-first walk

The depth-first walk is constructed using a depth-first search of
the tree. At each step, the vertices may be in one of four states:
unexplored, current, alive or dead.

Let X (k) be the number of vertices alive at step k .



Depth-first walk

Step 0: initialisation

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 1 Alive: none Dead: none X (0) = 0.



Depth-first walk

Step 1

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 7 Alive: none Dead: 1 X (1) = 0.



Depth-first walk

Step 2

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 2 Alive: 5 Dead: 1, 7 X (2) = 1.



Depth-first walk

Step 3

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 3 Alive: 6, 5 Dead: 1, 7, 2 X (3) = 2.



Depth-first walk

Step 4

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 6 Alive: 5 Dead: 1, 7, 2, 3 X (4) = 1.



Depth-first walk

Step 5

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 5 Alive: none Dead: 1, 7, 2, 3, 6 X (5) = 0.



Depth-first walk

Step 6

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Current: 4 Alive: none Dead: 1, 7, 2, 3, 6, 5 X (6) = 0.



Depth-first walk

Step 7

3 6 4

2 5

7

1

3

7

X(k)

k

42 6531
−1

0

1

2

Dead: 1, 7, 2, 3, 6, 5, 4



Depth-first walk

4

7

52

3 6

1

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

Why does (X (k), 0 ≤ k ≤ n) encode the shape of the tree? At
each step, we had

X (k) = X (k − 1) + #children of the kth vertex visited− 1.

So we can recover the sequence of numbers of children, which is
enough to get to the shape.

X (n) = −1 precisely at the end of the tree. (This is simply
because we added up the number of children and subtracted the
number of vertices.)



Depth-first walk

Why does (X (k), 0 ≤ k ≤ n) encode the shape of the tree? At
each step, we had

X (k) = X (k − 1) + #children of the kth vertex visited− 1.

So we can recover the sequence of numbers of children, which is
enough to get to the shape.

X (n) = −1 precisely at the end of the tree. (This is simply
because we added up the number of children and subtracted the
number of vertices.)



Coding a uniform random tree by functions

For a uniform random tree, the contour function and depth-first
walk are random. We would like to understand their distributions.

Although it’s a little easier to see why the contour function
encodes the shape of the tree, the depth-first walk is easier to work
with. To see why, it’s actually helpful to generalize our tree model.



Coding a uniform random tree by functions

For a uniform random tree, the contour function and depth-first
walk are random. We would like to understand their distributions.

Although it’s a little easier to see why the contour function
encodes the shape of the tree, the depth-first walk is easier to work
with. To see why, it’s actually helpful to generalize our tree model.



Reminder: Galton-Watson process

A Galton-Watson branching process (Bk)k≥0 describes the size of
a population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution µ, where µ(i) gives the probability
of i children, i ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Bk gives the number of individuals in generation k (in particular,
B0 = 1).



Reminder: Galton-Watson process

A Galton-Watson branching process (Bk)k≥0 describes the size of
a population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution µ, where µ(i) gives the probability
of i children, i ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Bk gives the number of individuals in generation k (in particular,
B0 = 1).



Reminder: Galton-Watson process

A Galton-Watson branching process (Bk)k≥0 describes the size of
a population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution µ, where µ(i) gives the probability
of i children, i ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Bk gives the number of individuals in generation k (in particular,
B0 = 1).



Reminder: Galton-Watson process

A Galton-Watson branching process (Bk)k≥0 describes the size of
a population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution µ, where µ(i) gives the probability
of i children, i ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Bk gives the number of individuals in generation k (in particular,
B0 = 1).



Reminder: Galton-Watson process

A Galton-Watson branching process (Bk)k≥0 describes the size of
a population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution µ, where µ(i) gives the probability
of i children, i ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Bk gives the number of individuals in generation k (in particular,
B0 = 1).



Galton-Watson trees

A Galton-Watson tree is the family tree arising from a
Galton-Watson branching process.

B0 = 1

B1 = 1

B2 = 2

B3 = 3

B4 = 0



Galton-Watson trees

We will only consider the case where the offspring distribution µ is
critical and has finite offspring variance i.e.

∞∑
i=1

iµ(i) = 1,
∞∑
i=1

i2µ(i) <∞.

We also impose that µ(1) < 1. These conditions ensure that the
Galton-Watson process becomes extinct with probability 1, which
entails that the tree is finite.



The uniform random tree is a Galton-Watson tree

Proposition. The uniform random tree Tn has the same
distribution as a tree generated as follows:

I Take a Galton-Watson tree with Poisson(1) offspring
distribution;

I Condition it to have total progeny precisely n;

I Assign the vertices random labels chosen from {1, 2, . . . , n}.



The depth-first walk of a Galton-Watson tree

Let Tn be a Galton-Watson tree with critical offspring distribution
µ conditioned to have total progeny n (and given a uniform
random labelling). What does this mean for the depth-first walk
(X n(k), 0 ≤ k ≤ n) which encodes it?

The numbers of children of different vertices in the branching
process are i.i.d. random variables with distribution µ.

Recall that

X n(k) = X n(k − 1) + #children of the kth vertex visited− 1.

So (X n(k), 0 ≤ k ≤ n) is like a random walk with step sizes having
distribution µ(·)− 1, which has mean 0 and finite variance σ2.

The effect of the conditioning is to force X n(k) > −1 for
1 ≤ k ≤ n − 1 and X n(n) = −1.



The depth-first walk of a Galton-Watson tree

Let Tn be a Galton-Watson tree with critical offspring distribution
µ conditioned to have total progeny n (and given a uniform
random labelling). What does this mean for the depth-first walk
(X n(k), 0 ≤ k ≤ n) which encodes it?

The numbers of children of different vertices in the branching
process are i.i.d. random variables with distribution µ.

Recall that

X n(k) = X n(k − 1) + #children of the kth vertex visited− 1.

So (X n(k), 0 ≤ k ≤ n) is like a random walk with step sizes having
distribution µ(·)− 1, which has mean 0 and finite variance σ2.

The effect of the conditioning is to force X n(k) > −1 for
1 ≤ k ≤ n − 1 and X n(n) = −1.



The depth-first walk of a Galton-Watson tree

Let Tn be a Galton-Watson tree with critical offspring distribution
µ conditioned to have total progeny n (and given a uniform
random labelling). What does this mean for the depth-first walk
(X n(k), 0 ≤ k ≤ n) which encodes it?

The numbers of children of different vertices in the branching
process are i.i.d. random variables with distribution µ.

Recall that

X n(k) = X n(k − 1) + #children of the kth vertex visited− 1.

So (X n(k), 0 ≤ k ≤ n) is like a random walk with step sizes having
distribution µ(·)− 1, which has mean 0 and finite variance σ2.

The effect of the conditioning is to force X n(k) > −1 for
1 ≤ k ≤ n − 1 and X n(n) = −1.



The depth-first walk of a Galton-Watson tree

Let Tn be a Galton-Watson tree with critical offspring distribution
µ conditioned to have total progeny n (and given a uniform
random labelling). What does this mean for the depth-first walk
(X n(k), 0 ≤ k ≤ n) which encodes it?

The numbers of children of different vertices in the branching
process are i.i.d. random variables with distribution µ.

Recall that

X n(k) = X n(k − 1) + #children of the kth vertex visited− 1.

So (X n(k), 0 ≤ k ≤ n) is like a random walk with step sizes having
distribution µ(·)− 1, which has mean 0 and finite variance σ2.

The effect of the conditioning is to force X n(k) > −1 for
1 ≤ k ≤ n − 1 and X n(n) = −1.



Convergence to a Brownian motion

Let’s ignore the conditioning for the moment. Then we have a
random walk (X (k), k ≥ 0) with step sizes having mean 0 and
variance σ2, and so Donsker’s theorem tells us that

1

σ
√
m

(X (bmtc), t ≥ 0)
d→ (W (t), t ≥ 0),

as m→∞, where (W (t), t ≥ 0) is a Brownian motion.



Convergence to a Brownian excursion

We want a version of this result where the time-interval is
restricted to be [0, n] and the process is conditioned to stay above
−1 until time n when it hits −1.

Since we’re going to rescale the process by 1/
√
n and let n go to

∞, this is essentially the same as conditioning the process to stay
above 0 until time n.



Convergence to a Brownian excursion
We get

1

σ
√
n

(X n(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1),

as n→∞, where (e(t), 0 ≤ t ≤ 1) is a standard Brownian
excursion. (Think of this as a Brownian motion conditioned to stay
positive until time 1 when it returns to 0.)



Convergence to a Brownian excursion

It turns out that more-or-less the same limit holds for the contour
function:

σ√
n

(Cn(2nt), 0 ≤ t ≤ 1)
d→ (2e(t), 0 ≤ t ≤ 1),

as m→∞, where (e(t), 0 ≤ t ≤ 1) is a standard Brownian
excursion.



From excursions back to trees

This result certainly suggests that there should be some sort of
limiting tree encoded by the Brownian excursion.

Indeed, the Brownian excursion acts as a sort of contour function
for the limit tree.

The procedure to get the Brownian continuum random tree from a
Brownian excursion generalises to other similar functions
(deterministic or random), so I’ll present it in general.



From excursions back to trees

This result certainly suggests that there should be some sort of
limiting tree encoded by the Brownian excursion.

Indeed, the Brownian excursion acts as a sort of contour function
for the limit tree.

The procedure to get the Brownian continuum random tree from a
Brownian excursion generalises to other similar functions
(deterministic or random), so I’ll present it in general.



From excursions back to trees

This result certainly suggests that there should be some sort of
limiting tree encoded by the Brownian excursion.

Indeed, the Brownian excursion acts as a sort of contour function
for the limit tree.

The procedure to get the Brownian continuum random tree from a
Brownian excursion generalises to other similar functions
(deterministic or random), so I’ll present it in general.



From excursions back to trees

Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1).



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together to get a tree.



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together to get a real tree.



From excursions back to trees

The Brownian continuum random tree is the real tree we obtain by
doing this gluing procedure to the function (2e(t), 0 ≤ t ≤ 1).



From excursions back to trees
If we do the same gluing operation to the contour function of a
discrete tree, we get a real tree which is at Gromov-Hausdorff
distance 1 from the discrete tree.

121110987

C(t)

t

42 6531
−1

0

1

2

3

4

7

52

3 6

1



The convergence result

Recall that (Cn(t), 0 ≤ t ≤ 2n) is the contour function of a critical
Galton-Watson tree conditioned to have n vertices and that

σ√
n

(Cn(2nt), 0 ≤ t ≤ 1)
d→ (2e(t), 0 ≤ t ≤ 1).

Write Tn for the real tree version of σ√
n
Tn. We have

dGH

(
σ√
n
Tn, Tn

)
≤ σ√

n
.



The convergence result

σ√
n

(Cn(2nt), 0 ≤ t ≤ 1)
d→ (2e(t), 0 ≤ t ≤ 1).

These contour functions give us a natural correspondence between
Tn and T : just match up the positions parametrized by t in the
two trees.

Since the contour function converges to 2e in distribution, the
distortion of this correspondence goes to 0 and so σ√

n
Tn converges

to T in the Gromov-Hausdorff distance.



Random trees: a summary

I Tn is a uniform random tree on vertices labelled by
{1, 2, . . . , n}.

I We think of Tn as a (random) metric space by using the
graph distance.

I Write 1√
n
Tn for the same metric space with all distances

divided by
√
n.

I 1√
n
Tn

d→ T as n→∞ in the sense of the Gromov-Hausdorff

distance.

I T is the Brownian continuum random tree, the tree encoded
by (2e(t), 0 ≤ t ≤ 1) (or constructed via the stick-breaking
procedure).

I The same limit holds for any Galton-Watson tree Tn with
critical offspring distribution of finite variance (up to a scaling
constant depending on the variance).



Scaling limits for other random trees

The Brownian CRT is a universal scaling limit for a whole class of
trees including critical Galton-Watson trees with finite offspring
variance, as well as unordered binary trees (Marckert & Miermont),
uniform unordered trees (Haas & Miermont) and critical multitype
Galton-Watson trees (Miermont).

If the offspring distribution is critical but in the domain of
attraction of a stable law of index in (1, 2) then there is
convergence to the so-called stable tree which is encoded by an
excursion of a stable Lévy process (Duquesne). More generally,
there is a whole family of Lévy trees (Duquesne & Le Gall).



Scaling limits for other random trees

The Brownian CRT is a universal scaling limit for a whole class of
trees including critical Galton-Watson trees with finite offspring
variance, as well as unordered binary trees (Marckert & Miermont),
uniform unordered trees (Haas & Miermont) and critical multitype
Galton-Watson trees (Miermont).

If the offspring distribution is critical but in the domain of
attraction of a stable law of index in (1, 2) then there is
convergence to the so-called stable tree which is encoded by an
excursion of a stable Lévy process (Duquesne). More generally,
there is a whole family of Lévy trees (Duquesne & Le Gall).



Bibliography: random trees

The continuum random tree I
D. Aldous, Annals of Probability 19 (1991) pp.1-28.

The continuum random tree II. An overview
D. Aldous, in Stochastic analysis (Durham 1990), vol. 167 of
London Mathematical Society Lecture Note Series (1991)
pp.23-70.

The continuum random tree III
D. Aldous, Annals of Probability 21 (1993) pp.248-289.

Random trees and applications
J.-F. Le Gall, Probability Surveys 2 (2005) pp.245-311.

Random trees, Lévy processes and spatial branching
processes
T. Duquesne and J.-F. Le Gall, Asterisque 281 (2002).



Stochastics Meeting Lunteren 2012

Lecture 2: random graphs
Joint work with

Louigi Addario-Berry and Nicolas Broutin
McGill University INRIA Rocquencourt,

Paris



Random trees: a summary from Lecture 1

I Tm is a uniform random tree on vertices labelled by
{1, 2, . . . ,m}.

I We think of Tm as a (random) metric space by using the
graph distance.

I Write 1√
m
Tm for the same metric space with all distances

divided by
√
m.

I 1√
m
Tm

d→ T as m→∞ in the sense of the Gromov-Hausdorff

distance.

I T is the Brownian continuum random tree, the tree encoded
by (2e(t), 0 ≤ t ≤ 1) (or constructed via the stick-breaking
procedure).



The Erdős-Rényi random graph

Take n vertices labelled by [n] := {1, 2, . . . , n} and put an edge
between any pair independently with probability p. Call the
resulting model G (n, p).

Example: n = 10, p = 0.4.

1

2

3

4

5

6

7

8

9

10



Connected components

We’re going to be interested in the connected components of these
graphs.

Below, there are three of them.

1

2

3

4

5

6

7

8

9

10



The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 0.4



The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 0.8



The phase transition
Let p = c/n and consider the largest component (vertices in green,
edges in red).

n = 200, c = 1.2



The phase transition (Erdős and Rényi (1960))

By the size of a component, we mean its number of vertices.

Consider p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

(These statements hold with probability tending to 1 as n→∞.)



The phase transition (Erdős and Rényi (1960))

By the size of a component, we mean its number of vertices.

Consider p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

(These statements hold with probability tending to 1 as n→∞.)



Heuristic picture of the phase transition

Vertex 1 has a Binomial(n − 1, c/n) ≈ Poisson(c) number of
neighbours, N.

Consider now one of those neighbours. It has a
Binomial(n − N − 1, c/n) number of neighbours we haven’t seen
before, which is still well-approximated by Poisson(c) as long as
N = o(n).

Continuing in this way, we see that we can approximate the size of
the component containing vertex 1 by the total progeny in a
branching process with Poisson(c) offspring distribution (as long as
the population doesn’t get too large...).



Heuristic picture of the phase transition

Vertex 1 has a Binomial(n − 1, c/n) ≈ Poisson(c) number of
neighbours, N.

Consider now one of those neighbours. It has a
Binomial(n − N − 1, c/n) number of neighbours we haven’t seen
before, which is still well-approximated by Poisson(c) as long as
N = o(n).

Continuing in this way, we see that we can approximate the size of
the component containing vertex 1 by the total progeny in a
branching process with Poisson(c) offspring distribution (as long as
the population doesn’t get too large...).



Heuristic picture of the phase transition

Vertex 1 has a Binomial(n − 1, c/n) ≈ Poisson(c) number of
neighbours, N.

Consider now one of those neighbours. It has a
Binomial(n − N − 1, c/n) number of neighbours we haven’t seen
before, which is still well-approximated by Poisson(c) as long as
N = o(n).

Continuing in this way, we see that we can approximate the size of
the component containing vertex 1 by the total progeny in a
branching process with Poisson(c) offspring distribution (as long as
the population doesn’t get too large...).



Heuristic picture of the phase transition

If c ≤ 1, this branching process dies out with probability 1, which
corresponds to getting only a small component containing vertex 1.
A similar argument works for subsequent components.

If, on the other hand, c > 1, there is a positive probability that the
branching process will survive. The branching process
approximation holds good until we explore the first component
which does not die out; this component ends up being the giant.



Heuristic picture of the phase transition

If c ≤ 1, this branching process dies out with probability 1, which
corresponds to getting only a small component containing vertex 1.
A similar argument works for subsequent components.

If, on the other hand, c > 1, there is a positive probability that the
branching process will survive. The branching process
approximation holds good until we explore the first component
which does not die out; this component ends up being the giant.



The critical point of the phase transition

Recall: p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

If c = 1, the largest component has size Θ(n2/3) and, indeed,
there is a whole sequence of components of this order.



The critical point of the phase transition

Recall: p = c/n.

I For c < 1, the largest connected component has size O(log n);

I for c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n)).

If c = 1, the largest component has size Θ(n2/3) and, indeed,
there is a whole sequence of components of this order.



The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

We will also be interested in the surplus of a component, the
number of edges more than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9



The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

We will also be interested in the surplus of a component, the
number of edges more than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9



Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes of

G
(
n, 1

n + λ
n4/3

)
in decreasing order, and let Sn

1 ,S
n
2 , . . . be the

corresponding surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).



Convergence of the sizes and surpluses

Fix λ and let Cn
1 ,C

n
2 , . . . be the sequence of component sizes of

G
(
n, 1

n + λ
n4/3

)
in decreasing order, and let Sn

1 ,S
n
2 , . . . be the

corresponding surpluses.

Write Cn = (Cn
1 ,C

n
2 , . . .) and Sn = (Sn

1 ,S
n
2 , . . .).

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S).



Convergence of the sizes and surpluses

Theorem. (Aldous (1997)) As n→∞,

(n−2/3Cn,Sn)
d→ (C,S) as n→∞.

Convergence for the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}

with the usual `2-distance ‖x− y‖2 =
√∑∞

i=1(xi − yi )2. For the
second co-ordinate, convergence is in the distance

d(u, v) = 2− inf{i≥1:ui 6=vi}

between integer sequences u and v.



Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]



Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]



Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]



Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]



x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
in the plane which fall above the x-axis and below the graph.

The path of Bλ can be split up into excursions above 0.

C is the sequence of lengths of these excursions, in decreasing
order.

S is the sequence of numbers of points falling under those
excursions.



x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
in the plane which fall above the x-axis and below the graph.

The path of Bλ can be split up into excursions above 0.

C is the sequence of lengths of these excursions, in decreasing
order.

S is the sequence of numbers of points falling under those
excursions.



x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
in the plane which fall above the x-axis and below the graph.

The path of Bλ can be split up into excursions above 0.

C is the sequence of lengths of these excursions, in decreasing
order.

S is the sequence of numbers of points falling under those
excursions.



Proof technique: depth-first exploration

As for the random trees yesterday, a key tool is a depth-first
exploration. For a tree, we defined the depth-first walk by
X (0) = 0 and, for 1 ≤ k ≤ m,

X (k) =
k−1∑
i=0

(k(vi )− 1),

where k(v) is the number of children of vertex v and
v0, v1, . . . , vm−1 are the vertices in depth-first order.

The problem with this is that the components of a random graph
are not (in general) trees. This is resolved by simply ignoring the
extra edges!



Depth-first exploration

Recall that vertices can have four states: unexplored, current, alive
or dead. There’s no need to stop when we hit the end of the first
component. X (k) will be the number of vertices alive at step k
minus the number of components already fully explored.



Depth-first exploration: an example

Step 0

6

5 7 10

2 9 8

43

1

Current: 1 Alive: none Dead: none X (0) = 0.



Depth-first exploration: an example

Step 1

6

2 9 8

43

1

5 7 10

Current: 5 Alive: 7, 10 Dead: 1 X (1) = 2.



Depth-first exploration: an example

Step 2

6

8

43

1

5 7 10

2 9

Current: 2 Alive: 9, 7, 10 Dead: 1, 5 X (2) = 3.



Depth-first exploration: an example

Step 3

6

8

4

1

5 7 10

9

3

2

Current: 3 Alive: 9, 7, 10 Dead: 1, 5, 2 X (3) = 3.



Depth-first exploration: an example

Step 4

6

8

4

1

5 7 10

2 9

3

Current: 9 Alive: 7, 10 Dead: 1, 5, 2, 3 X (4) = 2.



Depth-first exploration: an example

Step 5

6

8

4

1

5 7 10

2 9

3

Current: 7 Alive: 10 Dead: 1, 5, 2, 3, 9 X (5) = 1.



Depth-first exploration: an example

Step 6

6

8

4

1

5 7

2 9

3

10

Current: 10 Alive: none Dead: 1, 5, 2, 3, 9, 7 X (6) = 0.



Depth-first exploration: an example

Step 7

1

5 7 10

2 9

3

8

4 6

Current: 8 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10 X (7) = 0.



Depth-first exploration: an example

Step 8

1

5 7 10

2 9

3

8

4 6

Current: 4 Alive: 6 Dead: 1, 5, 2, 3, 9, 7, 10, 8 X (8) = 1.



Depth-first exploration: an example

Step 9

1

5 7 10

2 9

3

8

4 6

Current: 6 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10, 8, 4
X (9) = 0.



Depth-first exploration: an example

We explored the graph as if the dashed edges weren’t there:

5 7 10

2 9

3

8

4 6

1



Depth-first walk

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

If there are several components, T (k) = inf{i ≥ 0 : X (i) = −k}
marks the beginning of the (k + 1)th component. So the
component sizes are {T (k + 1)−T (k), k ≥ 0}. This sequence can
clearly be reconstructed from the path of (X (i), i ≥ 0).



Depth-first walk

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k

If there are several components, T (k) = inf{i ≥ 0 : X (i) = −k}
marks the beginning of the (k + 1)th component. So the
component sizes are {T (k + 1)−T (k), k ≥ 0}. This sequence can
clearly be reconstructed from the path of (X (i), i ≥ 0).



Convergence of the depth-first walk

Let X n
λ be the depth-first walk associated with G

(
n, 1

n + λ
n4/3

)
.

Theorem. (Aldous (1997)) As n→∞,

(n−1/3X n
λ (bn2/3tc), t ≥ 0)

d→ (Wλ(t), t ≥ 0),

uniformly on compact time-intervals.



Sketch of proof
Fortunately, X n is a (time-inhomogeneous) Markov process. We
need to understand its step distribution.

At time i ,

I vi is the current vertex;

I i vertices are dead;

I X n(i) vertices are alive;

I we want to know k(vi ), the number of children of vi .

We have not yet looked at the possible edges from vi to any of the
other n− i −X n(i) unexplored vertices in the graph. Each of these
is present with probability 1

n + λ
n4/3 independently. So, given X n(i),

k(vi ) ∼ Bin

(
n − i − X n(i),

1

n
+

λ

n4/3

)
.



As long as X n(i) = o(n) and i = O(n2/3),

(n − i − X n(i))

(
1

n
+

λ

n4/3

)
≈ 1 +

λ

n1/3
− i

n
+ o(n−1/3),

and so we approximately have

X n(i + 1)− X n(i) ∼ Poisson

(
1 +

λ

n1/3
− i

n

)
− 1.

So X n is close to being a random walk with a deterministic (but
time-dependent) drift. Let

Mn(i) = X n(i)−
i−1∑
j=0

(
λ

n1/3
− i

n

)
≈ X n(i)− λi

n1/3
+

i2

2n
.



X n(i + 1)− X n(i) ∼ Poisson

(
1 +

λ

n1/3
− i

n

)
− 1

and so if

Mn(i) ≈ X n(i)− λi

n1/3
+

i2

2n

then (Mn(i), i ≥ 0) is approximately a martingale.

Plug in i = btn2/3c:

n−1/3Mn(btn2/3c) ≈ n−1/3X n(btn2/3c)− λt +
t2

2
.

Since the Poisson distribution here has variance ≈ 1 for all i , we
can apply the martingale functional CLT (a more general version of
Donsker’s theorem) to obtain(

n−1/3X n(btn2/3c)− λt +
t2

2
, t ≥ 0

)
d→ (W (t), t ≥ 0).



Question

So we now understand the limiting sizes and surpluses of
components of the critical random graph.

But what do the limiting components look like?

They are no longer (in general) trees. Again, the vertex-labels are
irrelevant: we are really interested in what shapes and distances
look like in the limit. So we will give a metric space answer, and
convergence will be in the Gromov-Hausdorff distance.



Question

So we now understand the limiting sizes and surpluses of
components of the critical random graph.

But what do the limiting components look like?

They are no longer (in general) trees. Again, the vertex-labels are
irrelevant: we are really interested in what shapes and distances
look like in the limit. So we will give a metric space answer, and
convergence will be in the Gromov-Hausdorff distance.



Question

So we now understand the limiting sizes and surpluses of
components of the critical random graph.

But what do the limiting components look like?

They are no longer (in general) trees. Again, the vertex-labels are
irrelevant: we are really interested in what shapes and distances
look like in the limit. So we will give a metric space answer, and
convergence will be in the Gromov-Hausdorff distance.



Our approach

Consider the components one by one.

Simple but important fact: a component of G (n, p) conditioned to
have m vertices and s surplus edges is a uniform connected graph
on those m vertices with m + s − 1 edges.

General idea: to pick out a (well-chosen) spanning tree, and then
understand where to put in the surplus edges.



Our approach

Consider the components one by one.

Simple but important fact: a component of G (n, p) conditioned to
have m vertices and s surplus edges is a uniform connected graph
on those m vertices with m + s − 1 edges.

General idea: to pick out a (well-chosen) spanning tree, and then
understand where to put in the surplus edges.



Depth-first tree

In the depth-first exploration, we effectively explored this spanning
tree; the dashed edges made no difference.

5 7 10

2 9

3

8

4 6

1

Call it the depth-first tree associated with the graph G , and write
T (G ).



The tree case

There is one case which we already understand: when the surplus
of a component is 0. Then the component is a uniform random
tree (and is necessarily the same as its depth-first tree). In this
case, it is clear that the scaling limit is the Brownian CRT.

In the tree case, we should rescale distances by 1/
√
m, where m is

the number of vertices in the component. This is the correct
distance rescaling for all of the big components in the random
graph. Since the big components have sizes of order n2/3, we
should rescale distances by n−1/3.



The tree case

There is one case which we already understand: when the surplus
of a component is 0. Then the component is a uniform random
tree (and is necessarily the same as its depth-first tree). In this
case, it is clear that the scaling limit is the Brownian CRT.

In the tree case, we should rescale distances by 1/
√
m, where m is

the number of vertices in the component. This is the correct
distance rescaling for all of the big components in the random
graph.

Since the big components have sizes of order n2/3, we
should rescale distances by n−1/3.



The tree case

There is one case which we already understand: when the surplus
of a component is 0. Then the component is a uniform random
tree (and is necessarily the same as its depth-first tree). In this
case, it is clear that the scaling limit is the Brownian CRT.

In the tree case, we should rescale distances by 1/
√
m, where m is

the number of vertices in the component. This is the correct
distance rescaling for all of the big components in the random
graph. Since the big components have sizes of order n2/3, we
should rescale distances by n−1/3.



The limit of the random graph: spanning tree

x xx x x
x x

It turns out that each excursion of the process (Bλ(t), t ≥ 0)
encodes a continuum random tree, which is a “spanning tree” for a
limit component.

These are not Brownian CRT’s, but CRT’s
whose distribution has been “tilted”: the corresponding excursion
ẽ (normalized to have length 1) has a distribution specified by

E [f (ẽ)] =
E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)] ,

where f is any suitable test-function and e is a standard Brownian
excursion.



The limit of the random graph: spanning tree

x xx x x
x x

It turns out that each excursion of the process (Bλ(t), t ≥ 0)
encodes a continuum random tree, which is a “spanning tree” for a
limit component. These are not Brownian CRT’s, but CRT’s
whose distribution has been “tilted”:

the corresponding excursion
ẽ (normalized to have length 1) has a distribution specified by

E [f (ẽ)] =
E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)] ,

where f is any suitable test-function and e is a standard Brownian
excursion.



The limit of the random graph: spanning tree

x xx x x
x x

It turns out that each excursion of the process (Bλ(t), t ≥ 0)
encodes a continuum random tree, which is a “spanning tree” for a
limit component. These are not Brownian CRT’s, but CRT’s
whose distribution has been “tilted”: the corresponding excursion
ẽ (normalized to have length 1) has a distribution specified by

E [f (ẽ)] =
E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)] ,

where f is any suitable test-function and e is a standard Brownian
excursion.



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: spanning tree

Write T̃ for the tree encoded by 2ẽ:



The limit of the random graph: vertex identifications

In the limit, surplus edges correspond to vertex-identifications
(since edge-lengths have shrunk to 0). The points of the Poisson
process tell us where these vertex-identifications should occur.

A point at (x , y) under 2ẽ identifies the vertex v at height 2ẽ(x)
with the vertex at distance y along the path from the root to v in
the tree T̃ .



A limiting component

What about components which don’t have size exactly n2/3 but,
say, xn2/3?

Such a component, in the limit, is encoded by a tilted excursion of
length x , ẽ(x), which has a Brownian scaling relationship with the
standard tilted excursion:

E
[
f
(
ẽ(x)

)]
= E

[
f
(√

xẽ(t/x), 0 ≤ t ≤ x
)]
.

Note that it follows from properties of the tilted trees and of the
Poisson process that we may equivalently describe the limit of a
component on ∼ xn2/3 vertices as follows.



A limiting component

What about components which don’t have size exactly n2/3 but,
say, xn2/3?

Such a component, in the limit, is encoded by a tilted excursion of
length x , ẽ(x), which has a Brownian scaling relationship with the
standard tilted excursion:

E
[
f
(
ẽ(x)

)]
= E

[
f
(√

xẽ(t/x), 0 ≤ t ≤ x
)]
.

Note that it follows from properties of the tilted trees and of the
Poisson process that we may equivalently describe the limit of a
component on ∼ xn2/3 vertices as follows.



A limiting component

What about components which don’t have size exactly n2/3 but,
say, xn2/3?

Such a component, in the limit, is encoded by a tilted excursion of
length x , ẽ(x), which has a Brownian scaling relationship with the
standard tilted excursion:

E
[
f
(
ẽ(x)

)]
= E

[
f
(√

xẽ(t/x), 0 ≤ t ≤ x
)]
.

Note that it follows from properties of the tilted trees and of the
Poisson process that we may equivalently describe the limit of a
component on ∼ xn2/3 vertices as follows.



A limiting component
Sample a tilted excursion ẽ(x) of length x and use it to create a
CRT T̃ .

Conditional on ẽ(x), sample a random variable P with
Poisson

(∫ x
0 ẽ(x)(u)du

)
distribution.



A limiting component
Sample a tilted excursion ẽ(x) of length x and use it to create a
CRT T̃ .

Conditional on ẽ(x), sample a random variable P with
Poisson

(∫ x
0 ẽ(x)(u)du

)
distribution.



A limiting component

Conditional on P = s, pick s vertices of the tree T̃ independently
with density proportional to their height. (These will almost surely
be leaves.)



A limiting component

For each of the selected leaves, pick a uniform point on the path
from the leaf to the root.



A limiting component

Identify each of the selected leaves with its chosen point.



Convergence result

Let Cn1 , Cn2 , . . . be the sequence of components of G
(
n, 1

n + λ
n4/3

)
in decreasing order of size, considered as metric spaces with the
graph distance.

Theorem. As n→∞,

n−1/3(Cn1 , Cn2 , . . .)
d→ (C1, C2, . . .),

where C1, C2, . . . is the sequence of metric spaces corresponding to
the excursions of Aldous’ marked limit process Bλ in decreasing
order of length.

Convergence is with respect to the distance

d(A,B) :=

( ∞∑
i=1

dGH(Ai ,Bi )4

)1/4

.



Idea of proof

The key idea turns out to be study a component of G (n, p)
conditioned on its size (but not on its surplus).



Depth-first tree

Take an arbitrary component G of G (n, p) of size m. Recall that
T (G ) is the depth-first tree associated with G

5 7 10

2 9

3

8

4 6

1

and that (X (k), 0 ≤ k ≤ m) is the depth-first walk of T (G ).



Permitted edges

Look at things the other way round: for a given tree T , which
connected graphs G have depth-first tree T (G ) = T?

In other words, where can we put surplus edges so that they don’t
change T?

Call such edges permitted.



Depth-first walk and permitted edges

6

5 7 10

2 9 8

43

1

Step 0: X (0) = 0.



Depth-first walk and permitted edges

6

8

43

1

5 7 10

2 9

Step 1: X (1) = 2.



Depth-first walk and permitted edges

6

8

4

1

5 7 10

9

3

2

Step 2: X (2) = 3.



Depth-first walk and permitted edges

6

8

4

1

5 7 10

2 9

3

Step 3: X (3) = 3.



Depth-first walk and permitted edges

6

8

4

1

5 7 10

2 9

3

Step 4: X (4) = 2.



Depth-first walk and permitted edges

6

8

4

1

5 7

2 9

3

10

Step 5: X (5) = 1.



Depth-first walk and permitted edges

1

5 7 10

2 9

3

8

4 6

Step 6: X (6) = 0.



Depth-first walk and permitted edges

1

5 7 10

2 9

3

8

4 6

Step 7: X (7) = 0.



Depth-first walk and permitted edges

1

5 7 10

2 9

3

8

4 6

Step 8: X (8) = 1.



Depth-first walk and permitted edges

5 7 10

2 9

3

8

4 6

1

Step 10: X (9) = 0.



Area
At step k ≥ 0 there are X (k) permitted edges. So the total
number is

a(T ) =
m−1∑
k=0

X (k).

We call this the area of T .

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k



Classifying graphs by depth-first tree

Let GT be the set of graphs G such that T (G ) = T . It follows
that |GT | = 2a(T ), since each permitted edge may either be
included or not.

Recall that Tm is the set of trees with label-set
[m] = {1, 2, . . . ,m}. Then

{GT : T ∈ Tm}

is a partition of the set of connected graphs on [m].



Classifying graphs by depth-first tree

Let GT be the set of graphs G such that T (G ) = T . It follows
that |GT | = 2a(T ), since each permitted edge may either be
included or not.

Recall that Tm is the set of trees with label-set
[m] = {1, 2, . . . ,m}. Then

{GT : T ∈ Tm}

is a partition of the set of connected graphs on [m].



Recipe for creating a connected graph on [m]

Create a connected graph G̃p
m as follows.

I Pick a random labelled tree T̃ p
m such that

P
(
T̃ p
m = T

)
∝ (1− p)−a(T ), T ∈ T[m].

I Add each of the a(T̃ p
m) permitted edges to T̃ p

m independently
with probability p.



Recipe for creating a connected graph on [m]

Create a connected graph G̃p
m as follows.

I Pick a random labelled tree T̃ p
m such that

P
(
T̃ p
m = T

)
∝ (1− p)−a(T ), T ∈ T[m].

I Add each of the a(T̃ p
m) permitted edges to T̃ p

m independently
with probability p.



Recipe for creating a connected graph on [m]

Create a connected graph G̃p
m as follows.

I Pick a random labelled tree T̃ p
m such that

P
(
T̃ p
m = T

)
∝ (1− p)−a(T ), T ∈ T[m].

I Add each of the a(T̃ p
m) permitted edges to T̃ p

m independently
with probability p.



Recipe for creating a connected graph on [m]

Lemma. G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof. For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p
m = G

)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G ) = pm+s−1(1− p)(m

2 )−m−s+1

∝ (p/(1− p))s .



Recipe for creating a connected graph on [m]

Lemma. G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof. For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p
m = G

)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G ) = pm+s−1(1− p)(m

2 )−m−s+1

∝ (p/(1− p))s .



Recipe for creating a connected graph on [m]

Lemma. G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof. For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p
m = G

)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G ) = pm+s−1(1− p)(m

2 )−m−s+1

∝ (p/(1− p))s .



Taking limits

When m ∼ xn2/3 and p = 1
n + λ

n4/3 , we need to show that

I the tree T̃ p
m converges to a CRT coded by a tilted excursion;

I the locations of the surplus edges converge to the locations in
our limiting picture.

For simplicity, take p = m−3/2 (i.e. x = 1, λ = 0); the general case
is similar.



Taking limits

When m ∼ xn2/3 and p = 1
n + λ

n4/3 , we need to show that

I the tree T̃ p
m converges to a CRT coded by a tilted excursion;

I the locations of the surplus edges converge to the locations in
our limiting picture.

For simplicity, take p = m−3/2 (i.e. x = 1, λ = 0); the general case
is similar.



Taking limits for the tree

Write X̃m for the depth-first walk associated with T̃ p
m. Then

a
(
T̃ p
m

)
=

∫ m

0
X̃m(s)ds.

If Tm is a uniform random tree on [m] and Xm is its depth-first
walk, then

(m−1/2Xm(mt), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).



Taking limits for the tree

Write X̃m for the depth-first walk associated with T̃ p
m. Then

a
(
T̃ p
m

)
=

∫ m

0
X̃m(s)ds.

If Tm is a uniform random tree on [m] and Xm is its depth-first
walk, then

(m−1/2Xm(mt), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).



Taking limits for the tree

Use the change of measure to get from X̃m to Xm: for any
bounded continuous function f ,

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
=

E
[
f
(
m−1/2Xm(mt), 0 ≤ t ≤ 1

)
(1− p)−

∫ m
0 Xm(u)du

]
E
[
(1− p)−

∫ m
0 Xm(u)du

]

Note that by a change of variable in the integral,

(1− p)−
∫ m

0 Xm(u)du = (1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds .

Since p = m−3/2,

(1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds d→ exp

(∫ 1

0
e(u)du

)
.



Taking limits for the tree

Use the change of measure to get from X̃m to Xm: for any
bounded continuous function f ,

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
=

E
[
f
(
m−1/2Xm(mt), 0 ≤ t ≤ 1

)
(1− p)−

∫ m
0 Xm(u)du

]
E
[
(1− p)−

∫ m
0 Xm(u)du

]
Note that by a change of variable in the integral,

(1− p)−
∫ m

0 Xm(u)du = (1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds .

Since p = m−3/2,

(1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds d→ exp

(∫ 1

0
e(u)du

)
.



Taking limits for the tree

Use the change of measure to get from X̃m to Xm: for any
bounded continuous function f ,

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
=

E
[
f
(
m−1/2Xm(mt), 0 ≤ t ≤ 1

)
(1− p)−

∫ m
0 Xm(u)du

]
E
[
(1− p)−

∫ m
0 Xm(u)du

]
Note that by a change of variable in the integral,

(1− p)−
∫ m

0 Xm(u)du = (1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds .

Since p = m−3/2,

(1− p)−m
3/2

∫ 1
0 m−1/2Xm(ms)ds d→ exp

(∫ 1

0
e(u)du

)
.



Taking limits for the tree

Taking care with the limits, we obtain

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
→

E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)]
= E [f (ẽ)] .

This (after a bit more work) entails that

1√
m
T̃ p
m

d→ T̃ .



Taking limits for the tree

Taking care with the limits, we obtain

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
→

E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)]
= E [f (ẽ)] .

This (after a bit more work) entails that

1√
m
T̃ p
m

d→ T̃ .



Taking limits for the surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk.

Since each
permitted edge is included independently with probability p, the
surplus edges form a Binomial point process.

5 7 10

2 9

3

8

4 6

1

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k



Taking limits for the surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk. Since each
permitted edge is included independently with probability p, the
surplus edges form a Binomial point process.

5 7 10

2 9

3

8

4 6

1

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k



Taking limits for the surplus edges
Surplus edges almost go to ancestors... In fact, they always go to
younger children of ancestors of the current vertex.

6

8

43

1

5 7 10

2 9

6

8

4

1

5 7 10

9

3

2

6

8

4

1

5 7 10

2 9

3

6

8

4

1

5 7 10

2 9

3 6

8

4

1

5 7

2 9

3

10

1

5 7 10

2 9

3

8

4 6



Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The Binomial point process of surplus edges, when rescaled,
straightforwardly converges to the required Poisson point process.
(This gives another proof of Aldous’ result on the limiting number
of surplus edges.)

Taking care over the details, this completes the proof.



Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The Binomial point process of surplus edges, when rescaled,
straightforwardly converges to the required Poisson point process.

(This gives another proof of Aldous’ result on the limiting number
of surplus edges.)

Taking care over the details, this completes the proof.



Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The Binomial point process of surplus edges, when rescaled,
straightforwardly converges to the required Poisson point process.
(This gives another proof of Aldous’ result on the limiting number
of surplus edges.)

Taking care over the details, this completes the proof.



Cycle structure of a limit component

A limiting component can have quite a complicated cycle structure:

What more can we say about it?



Cycle structure of a limit component

A limiting component can have quite a complicated cycle structure:

What more can we say about it?



Cycle structure of a graph

Fix a connected graph G .

The core C (G ) consists of the edges in cycles and those joining the
cycles.

If G is a tree, C (G ) is empty.



Cycle structure of a graph

Fix a connected graph G .

The core C (G ) consists of the edges in cycles and those joining the
cycles.

If G is a tree, C (G ) is empty.



Cycle structure of a graph

Fix a connected graph G .

The core C (G ) consists of the edges in cycles and those joining the
cycles.

If G is a tree, C (G ) is empty.



Cycle structure: an example

Graph G



Cycle structure: an example

Core C (G )



Cycle structure of a graph

The kernel K (G ) is the multigraph which gives the “shape of the
core”:

take the vertices of the core of degree 3 or more; contract
the paths between them to a single edge.

By convention, the kernel of a tree or unicyclic component is
empty.



Cycle structure of a graph

The kernel K (G ) is the multigraph which gives the “shape of the
core”: take the vertices of the core of degree 3 or more; contract
the paths between them to a single edge.

By convention, the kernel of a tree or unicyclic component is
empty.



Cycle structure of a graph

The kernel K (G ) is the multigraph which gives the “shape of the
core”: take the vertices of the core of degree 3 or more; contract
the paths between them to a single edge.

By convention, the kernel of a tree or unicyclic component is
empty.



Cycle structure: an example

Vertices of degree at least 3 in the core



Cycle structure: an example

Contract paths between them



Cycle structure: an example

Kernel K (G )

Note that the kernel has the same surplus as the original graph.



Cycle structure: an example

Kernel K (G )

Note that the kernel has the same surplus as the original graph.



Cycle structure of a real tree with vertex identifications

It still makes sense to talk about the degree of a point in a real
tree with vertex identifications.

It’s not hard to see that the core and kernel also make sense in the
real tree context as a path metric space and a discrete multigraph
respectively.

Cycle structure of a limit component

A limiting component can have quite a complicated cycle structure:

What more can we say about it?



Cycle structure of a real tree with vertex identifications

It still makes sense to talk about the degree of a point in a real
tree with vertex identifications.

It’s not hard to see that the core and kernel also make sense in the
real tree context as a path metric space and a discrete multigraph
respectively.

Cycle structure of a limit component

A limiting component can have quite a complicated cycle structure:

What more can we say about it?



Convergence

The kernels of the components of G
(
n, 1

n + λ
n4/3

)
converge in

distribution.



Alternative construction of a limit component

Condition on the size (= total mass) and surplus, s.

Once we condition on the size of such a component, it only appears
as a scaling factor so, for ease of presentation, I will take it to be 1.

The cases s = 0 and s = 1 are a little different, so I’ll skip them in
order to concentrate on the generic case (as represented by s = 2!).



Alternative construction of a limit component

Condition on the size (= total mass) and surplus, s.

Once we condition on the size of such a component, it only appears
as a scaling factor so, for ease of presentation, I will take it to be 1.

The cases s = 0 and s = 1 are a little different, so I’ll skip them in
order to concentrate on the generic case (as represented by s = 2!).



Alternative construction of a limit component

Condition on the size (= total mass) and surplus, s.

Once we condition on the size of such a component, it only appears
as a scaling factor so, for ease of presentation, I will take it to be 1.

The cases s = 0 and s = 1 are a little different, so I’ll skip them in
order to concentrate on the generic case (as represented by s = 2!).



Alternative construction of a limit component

Sample a kernel according to the correct distribution, conditioned
to have surplus s.



Alternative construction of a limit component
Sample independent rooted Brownian CRT’s T1, T2, . . . , T3(s−1).



Alternative construction of a limit component
Sample a uniform point in each.



Alternative construction of a limit component
Randomly rescale so that the mass of Ti becomes Xi , where
(X1,X2, . . . ,X3(s−1)) ∼ Dirichlet( 1

2 , . . . ,
1
2 ).



Alternative construction of a limit component

Glue the trees to the kernel.

This has the same distribution as our real tree with
vertex-identifications, conditioned to have mass 1 and surplus s.



Alternative construction of a limit component

Glue the trees to the kernel.

This has the same distribution as our real tree with
vertex-identifications, conditioned to have mass 1 and surplus s.



The core

We get core paths of relative lengths Dirichlet(1, 1, . . . , 1).

Moreover, the total length of the core is
√

Γ where
Γ ∼ Gamma((3s − 2)/2, 1/2) (independently of the relative core
lengths).



Stick-breaking construction

Starting from the core, it turns out we can give a stick-breaking
construction for the rest of the limit component.

Take an inhomogeneous Poisson process of rate t at time t,
conditioned to have its first point at

√
Γ. Write C0 =

√
Γ;

subsequent points occur at times C1,C2, . . ..

Consider the line-segments [C0,C1), [C1,C2), . . . and proceed
inductively.

For i ≥ 0, attach [Ci ,Ci+1) at a random point chosen uniformly
over the existing structure.

Take the closure of the metric space obtained.



Stick-breaking construction

Starting from the core, it turns out we can give a stick-breaking
construction for the rest of the limit component.

Take an inhomogeneous Poisson process of rate t at time t,
conditioned to have its first point at

√
Γ. Write C0 =

√
Γ;

subsequent points occur at times C1,C2, . . ..

Consider the line-segments [C0,C1), [C1,C2), . . . and proceed
inductively.

For i ≥ 0, attach [Ci ,Ci+1) at a random point chosen uniformly
over the existing structure.

Take the closure of the metric space obtained.



Stick-breaking construction

Starting from the core, it turns out we can give a stick-breaking
construction for the rest of the limit component.

Take an inhomogeneous Poisson process of rate t at time t,
conditioned to have its first point at

√
Γ. Write C0 =

√
Γ;

subsequent points occur at times C1,C2, . . ..

Consider the line-segments [C0,C1), [C1,C2), . . . and proceed
inductively.

For i ≥ 0, attach [Ci ,Ci+1) at a random point chosen uniformly
over the existing structure.

Take the closure of the metric space obtained.



Stick-breaking construction

Starting from the core, it turns out we can give a stick-breaking
construction for the rest of the limit component.

Take an inhomogeneous Poisson process of rate t at time t,
conditioned to have its first point at

√
Γ. Write C0 =

√
Γ;

subsequent points occur at times C1,C2, . . ..

Consider the line-segments [C0,C1), [C1,C2), . . . and proceed
inductively.

For i ≥ 0, attach [Ci ,Ci+1) at a random point chosen uniformly
over the existing structure.

Take the closure of the metric space obtained.



Stick-breaking construction

Starting from the core, it turns out we can give a stick-breaking
construction for the rest of the limit component.

Take an inhomogeneous Poisson process of rate t at time t,
conditioned to have its first point at

√
Γ. Write C0 =

√
Γ;

subsequent points occur at times C1,C2, . . ..

Consider the line-segments [C0,C1), [C1,C2), . . . and proceed
inductively.

For i ≥ 0, attach [Ci ,Ci+1) at a random point chosen uniformly
over the existing structure.

Take the closure of the metric space obtained.



Stick-breaking construction

Random core.



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Run Poisson process...



Stick-breaking construction

Final component



Universality

The Brownian CRT is the scaling limit for any conditioned
Galton-Watson branching process family tree with offspring mean 1
and finite variance (and for several other tree models besides).

We expect that our limit for the critical random graph should be
universal for a whole range of random graph models, including
those with fixed degree sequences satisfying certain conditions.



Universality

The Brownian CRT is the scaling limit for any conditioned
Galton-Watson branching process family tree with offspring mean 1
and finite variance (and for several other tree models besides).

We expect that our limit for the critical random graph should be
universal for a whole range of random graph models, including
those with fixed degree sequences satisfying certain conditions.



The minimum spanning tree of the complete graph
Consider the complete graph on n vertices with independent
edge-weights which are uniformly distributed on [0, 1].

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24
0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57



The minimum spanning tree of the complete graph

Find the minimum spanning tree (MST).

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24

0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57



Question
Does the MST of the complete graph on n vertices possess a
scaling limit?

[Picture by Louigi Addario-Berry]



The scaling limit of the MST

Let Mn be the MST of the complete graph on n vertices,
considered as a metric space using the graph distance.

Theorem. (Addario-Berry, Broutin, G. & Miermont) There exists
a random compact real tree M such that

1

n1/3
Mn

d→M

as n→∞, in the sense of dGH. Moreover, although M is almost
surely binary, it is not the Brownian CRT.

The key to understanding this result is a connection between the
Erdős-Rényi random graph and Kruskal’s algorithm for
constructing the MST.



The scaling limit of the MST

Let Mn be the MST of the complete graph on n vertices,
considered as a metric space using the graph distance.

Theorem. (Addario-Berry, Broutin, G. & Miermont) There exists
a random compact real tree M such that

1

n1/3
Mn

d→M

as n→∞, in the sense of dGH. Moreover, although M is almost
surely binary, it is not the Brownian CRT.

The key to understanding this result is a connection between the
Erdős-Rényi random graph and Kruskal’s algorithm for
constructing the MST.



Bibliography: random graphs

Brownian excursions, critical random graphs and the
multiplicative coalescent
D. Aldous, Annals of Probability 25 (1997) pp.812-854.

The continuum limit of critical random graphs
L. Addario-Berry, N. Broutin and C. Goldschmidt, Probability
Theory and Related Fields 152 (2012), pp.367-406.

Critical random graphs: limiting constructions and
distributional properties
L. Addario-Berry, N. Broutin and C. Goldschmidt,
Electronic Journal of Probability 15 (2010), pp.741-775.

The scaling limit of the minimum spanning tree of the
complete graph
L. Addario-Berry, N. Broutin, C. Goldschmidt and G. Miermont
in preparation.



Thank you for your attention!


