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Prerequisites

Part A Probability is a prerequisite. BS3a/OBS3a Applied Probability or B10 Martin-
gales and Financial Mathematics would be useful, but are by no means essential; some
material from these courses will be reviewed without proof.

Aims

Lévy processes form a central class of stochastic processes, contain both Brownian motion
and the Poisson process, and are prototypes of Markov processes and semimartingales.
Like Brownian motion, they are used in a multitude of applications ranging from biology
and physics to insurance and finance. Like the Poisson process, they allow to model
abrupt moves by jumps, which is an important feature for many applications. In the last
ten years Lévy processes have seen a hugely increased attention as is reflected on the
academic side by a number of excellent graduate texts and on the industrial side realising
that they provide versatile stochastic models of financial markets. This continues to
stimulate further research in both theoretical and applied directions. This course will
give a solid introduction to some of the theory of Lévy processes as needed for financial
and other applications.

Synopsis

Review of (compound) Poisson processes, Brownian motion (informal), Markov property.
Connection with random walks, [Donsker’s theorem], Poisson limit theorem. Spatial
Poisson processes, construction of Lévy processes.

Special cases of increasing Lévy processes (subordinators) and processes with only
positive jumps. Subordination. Examples and applications. Financial models driven
by Lévy processes. Stochastic volatility. Level passage problems. Applications: option
pricing, insurance ruin, dams.

Simulation: via increments, via simulation of jumps, via subordination. Applications:
option pricing, branching processes.

Reading

• J.F.C. Kingman: Poisson processes. Oxford University Press (1993), Ch.1-5, 8

• A.E. Kyprianou: Introductory lectures on fluctuations of Lévy processes with Ap-
plications. Springer (2006), Ch. 1-3, 8-9

• W. Schoutens: Lévy processes in finance: pricing financial derivatives. Wiley (2003)

Further reading

• J. Bertoin: Lévy processes. Cambridge University Press (1996), Sect. 0.1-0.6, I.1,
III.1-2, VII.1

• K. Sato: Lévy processes and infinite divisibility. Cambridge University Press (1999),
Ch. 1-2, 4, 6, 9
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10.2 Introduction to Lévy markets . . . . . . . . . . . . . . . . . . . . . . . . 45

10.3 Incomplete discrete financial markets . . . . . . . . . . . . . . . . . . . . 46
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11.2 Option pricing by simulation . . . . . . . . . . . . . . . . . . . . . . . . . 50

11.3 Time changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11.4 Quadratic variation of time-changed Brownian motion . . . . . . . . . . . 52

12 Subordination and stochastic volatility 55

12.1 Bochner’s subordination . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

12.2 Ornstein-Uhlenbeck processes . . . . . . . . . . . . . . . . . . . . . . . . 57

12.3 Simulation by subordination . . . . . . . . . . . . . . . . . . . . . . . . . 58

13 Level passage problems 59

13.1 The strong Markov property . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.2 The supremum process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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Lecture 1

Introduction

Reading: Kyprianou Chapter 1
Further reading: Sato Chapter 1, Schoutens Sections 5.1 and 5.3

In this lecture we give the general definition of a Lévy process, study some examples of
Lévy processes and indicate some of their applications. By doing so, we will review some
results from BS3a Applied Probability and B10 Martingales and Financial Mathematics.

1.1 Definition of Lévy processes

Stochastic processes are collections of random variables Xt, t ≥ 0 (meaning t ∈ [0,∞)
as opposed to n ≥ 0 by which means n ∈ N = {0, 1, 2, . . .}). For us, all Xt, t ≥ 0, take
values in a common state space, which we will choose specifically as R (or [0,∞) or Rd

for some d ≥ 2). We can think of Xt as the position of a particle at time t, changing as
t varies. It is natural to suppose that the particle moves continuously in the sense that
t 7→ Xt is continuous (with probability 1), or that it has jumps for some t ≥ 0:

∆Xt = Xt+ −Xt− = lim
ε↓0

Xt+ε − lim
ε↓0

Xt−ε.

We will usually suppose that these limits exist for all t ≥ 0 and that in fact Xt+ = Xt,
i.e. that t 7→ Xt is right-continuous with left limits Xt− for all t ≥ 0 almost surely. The
path t 7→ Xt can then be viewed as a random right-continuous function.

Definition 1 (Lévy process) A real-valued (or Rd-valued) stochastic process X =
(Xt)t≥0 is called a Lévy process if

(i) the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent for all n ≥ 1
and 0 ≤ t0 < t1 < . . . < tn(independent increments),

(ii) Xt+s −Xt has the same distribution as Xs for all s, t ≥ 0 (stationary increments),

(iii) the paths t 7→ Xt are right-continuous with left limits (with probability 1).

It is implicit in (ii) that P(X0 = 0) = 1 (choose s = 0).

1
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Figure 1.1: Variance Gamma process and a Lévy process with no positive jumps

Here the independence of n random variables is understood in the following sense:

Definition 2 (Independence) Let Y (j) be an Rdj -valued random variable for j =
1, . . . , n. The random variables Y (1), . . . , Y (n) are called independent if, for all (Borel
measurable) C(j) ⊂ Rdj

P(Y (1) ∈ C(1), . . . , Y (n) ∈ C(n)) = P(Y (1) ∈ C(1)) . . .P(Y (n) ∈ C(n)). (1)

An infinite collection (Y (j))j∈J is called independent if Y (j1), . . . , Y (jn) are independent for

every finite subcollection. Infinite-dimensional random variables (Y
(1)
i )i∈I1, . . . , (Y

(n)
i )i∈In

are called independent if (Y
(1)
i )i∈F1, . . . , (Y

(n)
i )i∈Fn are independent for all finite Fj ⊂ Ij .

It is sufficient to check (1) for rectangles of the form C(j) = (a
(j)
1 , b

(j)
1 ] × . . .× (a

(j)
dj
, b

(j)
dj

].

1.2 First main example: Poisson process

Poisson processes are Lévy processes. We recall the definition as follows. An N(⊂ R)-
valued stochastic process X = (Xt)t≥0 is called a Poisson process with rate λ ∈ (0,∞) if
X satisfies (i)-(iii) and

(iv)Poi P(Xt = k) = (λt)k

k!
e−λt, k ≥ 0, t ≥ 0 (Poisson distribution).

The Poisson process is a continuous-time Markov chain. We will see that all Lévy pro-
cesses have a Markov property. Also recall that Poisson processes have jumps of size 1
(spaced by independent exponential random variables Zn = Tn+1−Tn, n ≥ 0, with param-
eter λ, i.e. with density λe−λs, s ≥ 0). In particular, {t ≥ 0 : ∆Xt 6= 0} = {Tn, n ≥ 1}
and ∆XTn = 1 almost surely (short a.s., i.e. with probability 1). We can define more
general Lévy processes by putting

Ct =
Xt∑

k=1

Yk, t ≥ 0,

for a Poisson process (Xt)t≥0 and independent identically distributed Yk, k ≥ 1. Such
processes are called compound Poisson processes. The term “compound” stems from the
representation Ct = S ◦ Xt = SXt for the random walk Sn = Y1 + . . . + Yn. You may
think of Xt as the number of claims up to time t and of Yk as the size of the kth claim.
Recall (from BS3a) that its moment generating function, if it exists, is given by

E(exp{γCt}) = exp{λt(E(eγY1 − 1))}.
This will be an important building block of a general Lévy process.
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Figure 1.2: Poisson process and Brownian motion

1.3 Second main example: Brownian motion

Brownian motion is a Lévy process. We recall (from B10b) the definition as follows. An
R-valued stochastic process X = (Xt)t≥0 is called Brownian motion if X satisfies (i)-(ii)
and

(iii)BM the paths t 7→ Xt are continuous almost surely,

(iv)BM P(Xt ≤ x) =
∫ x
−∞

1√
2πt

exp
{
−y2

2t

}
dy, x ∈ R, t > 0. (Normal distribution).

The paths of Brownian motion are continuous, but turn out to be nowhere differentiable
(we will not prove this). They exhibit erratic movements at all scales. This makes
Brownian motion an appealing model for stock prices. Brownian motion has the scaling
property (

√
cXt/c)t≥0 ∼ X where “∼” means “has the same distribution as”.

Brownian motion will be the other important building block of a general Lévy process.
The canonical space for Brownian paths is the space C([0,∞),R) of continuous real-

valued functions f : [0,∞) → R which can be equipped with the topology of locally
uniform convergence, induced by the metric

d(f, g) =
∑

k≥1

2−k min{dk(f, g), 1}, where dk(f, g) = sup
x∈[0,k]

|f(x) − g(x)|.

This metric topology is complete (Cauchy sequences converge) and separable (has a
countable dense subset), two attributes important for the existence and properties of
limits. The bigger space D([0,∞),R) of right-continuous real-valued functions with left
limits can also be equipped with the topology of locally uniform convergence. The space
is still complete, but not separable. There is a weaker metric topology, called Skorohod’s
topology, that is complete and separable. In the present course we will not develop
this and only occasionally use the familiar uniform convergence for (right-continuous)
functions f, fn : [0, k] → R, n ≥ 1:

sup
x∈[0,k]

|fn(x) − f(x)| → 0, as n→ ∞,

which for stochastic processes X,X(n), n ≥ 1, with time range t ∈ [0, T ] takes the form

sup
t∈[0,T ]

|X(n)
t −Xt| → 0, as n→ ∞,

and will be as a convergence in probability or as almost sure convergence (from BS3a or
B10a) or as L2-convergence, where Zn → Z in the L2-sense means E(|Zn − Z|2) → 0.
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1.4 Markov property

The Markov property is a consequence of the independent increments property (and the
stationary increments property):

Proposition 3 (Markov property) Let X be a Lévy process and t ≥ 0 a fixed time,
then the pre-t process (Xr)r≤t is independent of the post-t process (Xt+s−Xt)s≥0, and the
post-t process has the same distribution as X.

Proof: By Definition 2, we need to check the independence of (Xr1, . . . , Xrn) and (Xt+s1−
Xt, . . . , Xt+sm −Xt). By property (i) of the Lévy process, we have that increments over
disjoint time intervals are independent, in particular the increments

Xr1, Xr2 −Xr1 , . . . , Xrn −Xrn−1 , Xt+s1 −Xt, Xt+s2 −Xt+s1 , . . . , Xt+sm −Xt+sm−1 .

Since functions (here linear transformations from increments to marginals) of independent
random variables are independent, the proof of independence is complete. Identical
distribution follows first on the level of single increments from (ii), then by (i) and linear
transformation also for finite-dimensional marginal distributions. 2

1.5 Some applications

Example 4 (Insurance ruin) A compound Poisson process (Zt)t≥0 with positive jump
sizes Ak, k ≥ 1, can be interpreted as a claim process recording the total claim amount
incurred before time t. If there is linear premium income at rate r > 0, then also the
gain process rt− Zt, t ≥ 0, is a Lévy process. For an initial reserve of u > 0, the reserve
process u+ rt− Zt is a shifted Lévy process starting from a non-zero initial value u.

Example 5 (Financial stock prices) Brownian motion (Bt)t≥0 or linear Brownian mo-
tion σBt +µt, t ≥ 0, was the first model of stock prices, introduced by Bachelier in 1900.
Black, Scholes and Merton studied geometric Brownian motion exp(σBt + µt) in 1973,
which is not itself a Lévy process but can be studied with similar methods. The Economics
Nobel Prize 1997 was awarded for their work. Several deficiencies of the Black-Scholes
model have been identified, e.g. the Gaussian density decreases too quickly, no variation
of the volatility σ over time, no macroscopic jumps in the price processes. These deficien-
cies can be addressed by models based on Lévy processes. The Variance gamma model
is a time-changed Brownian motion BTs by an independent increasing jump process, a
so-called Gamma Lévy process with Ts ∼ Gamma(αs, β). The process BTs is then also a
Lévy process itself.

Example 6 (Population models) Branching processes are generalisations of birth-
and-death processes (see BS3a) where each individual in a population dies after an ex-
ponentially distributed lifetime with parameter µ, but gives birth not to single children,
but to twins, triplets, quadruplet etc. To simplify, it is assumed that children are only
born at the end of a lifetime. The numbers of children are independent and identically
distributed according to an offspring distribution q on {0, 2, 3, . . .}. The population size
process (Zt)t≥0 can jump downwards by 1 or upwards by an integer. It is not a Lévy
process but is closely related to Lévy processes and can be studied with similar meth-
ods. There are also analogues of processes in [0,∞), so-called continuous-state branching
processes that are useful large-population approximations.



Lecture 2

Lévy processes and random walks

Reading: Kingman Section 1.1, Grimmett and Stirzaker Section 3.5(4)
Further reading: Sato Section 7, Durrett Sections 2.8 and 7.6, Kallenberg Chapter 15

Lévy processes are the continuous-time analogues of random walks. In this lecture we
examine this analogy and indicate connections via scaling limits and other limiting results.
We begin with a first look at infinite divisibility.

2.1 Increments of random walks and Lévy processes

Recall that a random walk is a stochastic process in discrete time

S0 = 0, Sn =

n∑

j=1

Aj, n ≥ 1,

for a family (Aj)j≥1 of independent and identically distributed real-valued (or Rd-valued)
random variables. Clearly, random walks have stationary and independent increments.
Specifically, the Aj , j ≥ 1, themselves are the increments over single time units. We refer
to Sn+m − Sn as an increment over m time units, m ≥ 1.

While every distribution may be chosen for Aj , increments over m time units are sums
ofm independent and identically distributed random variables, and not every distribution
has this property. This is not a deep observation, but it becomes important when moving
to Lévy processes. In fact, the increment distribution of Lévy processes is restricted: any
increment Xt+s −Xt, or Xs for simplicity, can be decomposed, for every m ≥ 1,

Xs =

m∑

j=1

(Xjs/m −X(j−1)s/m)

into a sum of m independent and identically distributed random variables.

Definition 7 (Infinite divisibility) A random variable Y is said to have an infinitely
divisible distribution if for every m ≥ 1, we can write

Y ∼ Y
(m)
1 + . . .+ Y (m)

m

for some independent and identically distributed random variables Y
(m)
1 , . . . , Y

(m)
m .

We stress that the distribution of Y
(m)
j may vary as m varies, but not as j varies.

5
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The argument just before the definition shows that increments of Lévy processes are
infinitely divisible. Many known distributions are infinitely divisible, some are not.

Example 8 The Normal, Poisson, Gamma and geometric distributions are infinitely
divisible. This often follows from the closure under convolutions of the type

Y1 ∼ Normal(µ, σ2), Y2 ∼ Normal(ν, τ 2) ⇒ Y1 + Y2 ∼ Normal(µ+ ν, σ2 + τ 2)

for independent Y1 and Y2 since this implies by induction that for independent

Y
(m)
1 , . . . , Y (m)

m ∼ Normal(µ/m, σ2/m) ⇒ Y
(m)
1 + . . .+ Y (m)

m ∼ Normal(µ, σ2).

The analogous arguments (and calculations, if necessary) for the other distributions are
left as an exercise. The geometric(p) distribution here is P(X = n) = pn(1 − p), n ≥ 0.

Example 9 The Bernoulli(p) distribution, for p ∈ (0, 1), is not infinitely divisible. As-
sume that you can represent a Bernoulli(p) random variable X as Y1+Y2 for independent
identically distributed Y1 and Y2. Then

P(Y1 > 1/2) > 0 ⇒ 0 = P(X > 1) ≥ P(Y1 > 1/2, Y2 > 1/2) > 0

is a contradiction, so we must have P(Y1 > 1/2) = 0, but then

P(Y1 > 1/2) = 0 ⇒ p = P(X = 1) = P(Y1 = 1/2)P(Y2 = 1/2) ⇒ P(Y1 = 1/2) =
√
p.

Similarly,

P(Y1 < 0) > 0 ⇒ 0 = P(X < 0) ≥ P(Y1 < 0, Y2 < 0) > 0

is a contradiction, so we must have P(Y1 < 0) = 0 and then

1 − p = P(X = 0) = P(Y1 = 0, Y2 = 0) ⇒ P(Y1 = 0) =
√

1 − p > 0.

This is impossible for several reasons. Clearly,
√
p+

√
1 − p > 1, but also

0 = P(X = 1/2) ≥ P(Y1 = 0)P(Y2 = 1/2) > 0.

2.2 Central Limit Theorem and Donsker’s theorem

Theorem 10 (Central Limit Theorem) Let (Sn)n≥0 be a random walk with E(S2
1) =

E(A2
1) <∞. Then, as n→ ∞,

Sn − E(Sn)√
Var(Sn)

=
Sn − nE(A1)√
nVar(A1)

→ Normal(0, 1) in distribution.

This result as a result for one time n→ ∞ can be extended to a convergence of pro-
cesses, a convergence of the discrete-time process (Sn)n≥0 to a (continuous-time) Brownian
motion, by scaling of both space and time. The processes

S[nt] − [nt]E(A1)√
nVar(A1)

, t ≥ 0,

where [nt] ∈ Z with [nt] ≤ nt < [nt]+1 denotes the integer part of nt, are scaled versions
of the random walk (Sn)n≥0, now performing n steps per time unit (holding time 1/n),
centred and each only a multiple 1/

√
nVar(A1) of the original size. If E(A1) = 0, you

may think that you look at (Sn)n≥0 from further and further away, but note that space
and time are scaled differently, in fact so as to yield a non-trivial limit.
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Figure 2.1: Random walk converging to Brownian motion

Theorem 11 (Donsker) Let (Sn)n≥0 be a random walk with E(S2
1) = E(A2

1) < ∞.
Then, as n→ ∞,

S[nt] − [nt]E(A1)√
nVar(A1)

→ Bt locally uniformly in t ≥ 0,

“in distribution”, for a Brownian motion (Bt)t≥0.

Proof: [only for A1 ∼ Normal(0, 1)] This proof is a coupling proof. We are not going to
work directly with the original random walk (Sn)n≥0, but start from Brownian motion
(Bt)t≥0 and define a family of embedded random walks

S
(n)
k := Bk/n, k ≥ 0, n ≥ 1.

Then note using in particular E(A1) = 0 and Var(A1) = 1 that

S
(n)
1 ∼ Normal(0, 1/n) ∼ S1 − E(A1)√

nVar(A1)
,

and indeed
(
S

(n)
[nt]

)

t≥0
∼
(
S[nt] − [nt]E(A1)√

nVar(A1)

)

t≥0

.

To show convergence in distribution for the processes on the right-hand side, it suffices to
establish convergence in distribution for the processes on the left-hand side, as n→ ∞.

To show locally uniform convergence we take an arbitrary T ≥ 0 and show uniform
convergence on [0, T ]. Since (Bt)0≤t≤T is uniformly continuous (being continuous on a
compact interval), we get a.s.

sup
0≤t≤T

∣∣∣S(n)
[nt] − Bt

∣∣∣ ≤ sup
0≤s≤t≤T :|s−t|≤1/n

|Bs −Bt| → 0

as n→ ∞. This establishes a.s. convergence, which “implies” convergence in distribution
for the embedded random walks and for the original scaled random walk. This completes
the proof for A1 ∼ Normal(0, 1). 2

Note that the almost sure convergence only holds for the embedded random walks
(S

(n)
k )k≥0, n ≥ 1. Since the identity in distribution with the rescaled original random

walk only holds for fixed n ≥ 1, not jointly, we cannot deduce almost sure convergence in
the statement of the theorem. Indeed, it can be shown that almost sure convergence will
fail. The proof for general increment distribution is much harder and will not be given in
this course. If time permits, we will give a similar coupling proof for another important
special case where P(A1 = 1) = P(A1 = −1) = 1/2, the simple symmetric random walk.
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2.3 Poisson limit theorem

The Central Limit Theorem for Bernoulli random variables A1, . . . , An says that for large
n, the number of 1s in the sequence is well-approximated by a Normal random variable.
In practice, the approximation is good if p is not too small. If p is small, the Bernoulli
random variables count rare events, and a different limit theorem is relevant:

Theorem 12 (Poisson limit theorem) Let Wn be binomially distributed with param-
eters n and pn = λ/n (or if npn → λ, as n→ ∞). Then we have

Wn → Poi(λ), in distribution, as n→ ∞.

Proof: Just calculate that, as n→ ∞,
(
n

k

)
pkn(1 − pn)

n−k =
n(n− 1) . . . (n− k + 1)

k!

(npn)
k

nk

(
1 − npn

n

)n

(1 − pn)
k

→ λk

k!
e−λ.

2

Theorem 13 Suppose that S
(n)
k = A

(n)
1 + . . . + A

(n)
k , k ≥ 0, is the sum of independent

Bernoulli(pn) random variables for all n ≥ 1, and that npn → λ ∈ (0,∞). Then

S
(n)
[nt] → Nt “in the Skorohod sense” as functions of t ≥ 0,

“in distribution” as n→ ∞, for a Poisson process (Nt)t≥0 with rate λ.

The proof of so-called finite-dimensional convergence for vectors (S
(n)
[nt1], . . . , S

(n)
[ntm]) is

not very hard but not included here. One can also show that the jump times (T
(n)
m )m≥1

of (S
(n)
[nt])t≥0 converge to the jump times of a Poisson process. E.g.

P(T
(n)
1 > t) = (1 − pn)

[nt] =

(
1 − [nt]pn

[nt]

)[nt]

→ exp{−λt},

since [nt]/n → t (since (nt − 1)/n → t and nt/n = t) and so [nt]pn → tλ. The general
statement is hard to make precise and prove, certainly beyond the scope of this course.

2.4 Generalisations

Infinitely divisible distributions and Lévy processes are precisely the classes of limits that
arise for random walks as in Theorems 10 and 12 (respectively 11 and 13) with different
step distributions. Stable Lévy processes are ones with a scaling property (c1/αXt/c)t≥0 ∼
X for some α ∈ R. These exist, in fact, for α ∈ (0, 2]. Theorem 10 (and 11) for suitable
distributions of A1 (depending on α and where E(A2

1) = ∞ in particular) then yield
convergence in distribution

Sn − nE(A1)

n1/α
→ stable(α) for α ≥ 1, or

Sn
n1/α

→ stable(α) for α ≤ 1.

Example 14 (Brownian ladder times) For a Brownian motion B and a level r > 0,
the distribution of Tr = inf{t ≥ 0 : Bt > r} is 1/2-stable, see later in the course.

Example 15 (Cauchy process) The Cauchy distribution with density a/(π(x2 + a2)),
x ∈ R, for some parameter c ∈ R is 1-stable, see later in the course.



Lecture 3

Spatial Poisson processes

Reading: Kingman 1.1 and 2.1, Grimmett and Stirzaker 6.13, Kyprianou Section 2.2
Further reading: Sato Section 19

We will soon construct the most general nonnegative Lévy process (and then general
real-valued ones). Even though we will not prove that they are the most general, we
have already seen that only infinitely divisible distributions are admissible as increment
distributions, so we know that there are restrictions; the part missing in our discussion
will be to show that a given distribution is infinitely divisible only if there exists a Lévy
process X of the type that we will construct such that X1 has the given distribution.
Today we prepare the construction by looking at spatial Poisson processes, objects of
interest in their own right.

3.1 Motivation from the study of Lévy processes

Brownian motion (Bt)t≥0 has continuous sample paths. It turns out that (σBt + µt)t≥0

for σ ≥ 0 and µ ∈ R is the only continuous Lévy process. To describe the full class of
Lévy processes (Xt)t≥0, it is vital to study the process (∆Xt)t≥0 of jumps.

Take e.g. the Variance Gamma process. In Assignment 1.2.(b), we introduce this
process as Xt = Gt −Ht, t ≥ 0, for two independent Gamma Lévy processes G and H .
But how do Gamma Lévy processes evolve? We could simulate discretisations (and will
do!) and get some feeling for them, but we also want to understand them mathematically.
Do they really exist? We have not shown this. Are they compound Poisson processes?
Let us look at their moment generating function (cf. Assignment 2.4.):

E(exp{γGt}) =

(
β

β − γ

)αt
= exp

{
αt

∫ ∞

0

(eγx − 1)
1

x
e−βxdx

}
.

This is almost of the form of a compound Poisson process of rate λ with non-negative
jump sizes Yj, j ≥ 1, that have a probability density function h(x) = hY1(x), x > 0:

E(exp{γCt}) = exp{λt
∫ ∞

0

(eγx − 1)h(x)dx}

To match the two expressions, however, we would have to put

λh(x) = λ0h
(0)(x) =

α

x
e−βx, x > 0,

9
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and h(0) cannot be a probability density function, because α
x
e−βx is not integrable at

x ↓ 0. What we can do is e.g. truncate at ε > 0 and specify

λεh
(ε)(x) =

α

x
e−βx, x > ε, h(ε)(x) = 0, x ≤ ε.

In order for h(ε) to be a probability density, we just put λε =
∫∞
ε

α
x
e−βxdx, and notice

that λε → ∞ as ε ↓ 0. But λε is the rate of the Poisson process driving the compound
Poisson process, so jumps are more and more frequent as ε ↓ 0. On the other hand, the
average jump size, the mean of the distribution with density h(ε) tends to zero, so most
of these jumps are very small. In fact, we will see that

Gt =
∑

s≤t
∆Gs,

as an absolutely convergent series of infinitely (but clearly countably) many positive jump
sizes, where (∆Gs)s≥0 is a Poisson point process with intensity g(x) = α

x
e−βx, x > 0, the

collection of random variables

N((a, b] × (c, d]) = #{t ∈ (a, b] : ∆Gt ∈ (c, d]}, 0 ≤ a < b, 0 < c < d

a Poisson counting measure (evaluated on rectangles) with intensity function λ(t, x) =
g(x), x > 0, t ≥ 0; the random countable set {(t,∆Gt) : t ≥ 0 and ∆Ct 6= 0} a spatial
Poisson process with intensity λ(t, x). Let us now formally introduce these notions.

3.2 Poisson counting measures

The essence of one-dimensional Poisson processes (Nt)t≥0 is the set of arrival (“event”)
times Π = {T1, T2, T3, . . .}, which is a random countable set. The increment N((s, t]) :=
Nt − Ns counts the number of points in Π ∩ (s, t]. We can generalise this concept to
counting measures of random countable subsets on other spaces, say Rd. Saying directly
what exactly (the distribution of) random countable sets is, is quite difficult in general.
Random counting measures are a way to describe the random countable sets implicitly.

Definition 16 (Spatial Poisson process) A random countable subset Π ⊂ Rd is called
a spatial Poisson process with (constant) intensity λ if the random variables N(A) =
#Π∩A, A ⊂ Rd (Borel measurable, always, for the whole course, but we stop saying this
all the time now), satisfy

(a) for all n ≥ 1 and disjoint A1, . . . , An ⊂ Rd, the random variables N(A1), . . . , N(An)
are independent,

hom(b) N(A) ∼ Poi(λ|A|), where |A| denotes the volume (Lebesgue measure) of A.

Here, we use the convention that X ∼ Poi(0) means P(X = 0) = 1 and X ∼ Poi(∞)
means P(X = ∞) = 1. This is consistent with E(X) = λ for X ∼ Poi(λ), λ ∈ (0,∞).
This convention captures that Π does not have points in a given set of zero volume a.s.,
and it has infinitely many points in given sets of infinite volume a.s.

In fact, the definition fully specifies the joint distributions of the random set function
N on subsets of Rd, since for any non-disjoint B1, . . . , Bm ⊂ Rd we can consider all
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intersections of the form Ak = B∗
1 ∩ . . . ∩ B∗

m, where each B∗
j is either B∗

j = Bj or B∗
j =

Bc
j = Rd \ Bj . They form n = 2m disjoint sets A1, . . . , An to which (a) of the definition

applies. (N(B1), . . . , N(Bm)) is a just a linear transformation of (N(A1), . . . , N(An)).
Grimmett and Stirzaker collect a long list of applications including modelling stars in

a galaxy, galaxies in the universe, weeds in the lawn, the incidence of thunderstorms and
tornadoes. Sometimes the process in Definition 16 is not a perfect description of such a
system, but useful as a first step. A second step is the following generalisation:

Definition 16 (Spatial Poisson process, continued) A random countable subset Π ⊂
D ⊂ Rd is called a spatial Poisson process with (locally integrable) intensity function
λ : D → [0,∞), if N(A) = #Π ∩ A, A ⊂ D, satisfy

(a) for all n ≥ 1 and disjoint A1, . . . , An ⊂ D, the random variables N(A1), . . . , N(An)
are independent,

inhom(b) N(A) ∼ Poi
(∫

A
λ(x)dx

)
.

Definition 17 (Poisson counting measure) A set function A 7→ N(A) that satisfies
(a) and inhom(b) is referred to as a Poisson counting measure with intensity function λ(x).

It is sufficient to check (a) and (b) for rectangles Aj = (a
(j)
1 , b

(j)
1 ] × . . .× (a

(j)
d , b

(j)
d ].

The set function Λ(A) =
∫
A
λ(x)dx is called the intensity measure of Π. Definitions

16 and 17 can be extended to measures that are not integrals of intensity functions.
Only if Λ({x}) > 0, we would require P(N({x}) ≥ 2) > 0 and this is incompatible with
N({x}) = #Π ∩ {x} for a random countable set Π, so we prohibit such “atoms” of Λ.

Example 18 (Compound Poisson process) Let (Ct)t≥0 be a compound Poisson pro-
cess with independent jump sizes Yj, j ≥ 1 with common probability density h(x), x > 0,
at the times of a Poisson process (Xt)t≥0 with rate λ > 0. Let us show that

N((a, b] × (c, d]) = #{t ∈ (a, b] : ∆Ct ∈ (c, d]}
defines a Poisson counting measure. First note N((a, b]× (0,∞)) = Xb−Xa. Now recall

Thinning property of Poisson processes: If each point of a Poisson pro-
cess (Xt)t≥0 of rate λ is of type 1 with probability p and of type 2 with prob-
ability 1 − p, independently of one another, then the processes X(1) and X(2)

counting points of type 1 and 2, respectively, are independent Poisson processes
with rates pλ and (1 − p)λ, respectively.

Consider the thinning mechanism, where the jth jump is of type 1 if Yj ∈ (c, d]. Then,
the process counting jumps in (c, d] is a Poisson process with rate λP(Y1 ∈ (c, d]), and so

N((a, b] × (c, d]) = X
(1)
b −X(1)

a ∼ Poi((b− a)λP(Y1 ∈ (c, d])).

We identify the intensity measure Λ((a, b] × (c, d]) = (b− a)λP(Y1 ∈ (c, d]).
For the independence of counts in disjoint rectangles A1, . . . , An, we cut them into

smaller rectangles Bi = (ai, bi]×(ci, di], 1 ≤ i ≤ m such that for any two Bi and Bj either
(ci, di] = (cj , dj] or (ci, di] ∩ (cj, dj] = ∅. Denote by k the number of different intervals
(ci, di], w.l.o.g. (ci, di] for 1 ≤ i ≤ k. Now a straightforward generalisation of the thinning
property to k types splits (Xt)t≥0 into k independent Poisson processes X(i) with rates
λP(Y1 ∈ (ci, di]), 1 ≤ i ≤ k. Now N(B1), . . . , N(Bm) are independent as increments of
independent Poisson processes or of the same Poisson process over disjoint time intervals.
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3.3 Poisson point processes

In Example 18, the intensity measure is of the product form Λ((a, b] × (c, d]) = (b −
a)ν((c, d]) for a measure ν on D0 = (0,∞). Take D = [0,∞)×D0 in Definition 16. This
means, that the spatial Poisson process is homogeneous in the first component, the time
component, like the Poisson process.

Proposition 19 If Λ((a, b]×A0) = (b− a)
∫
A0
g(x)dx for a locally integrable function g

on D0 (or = (b− a)ν(A0) for a locally finite measure ν on D0), then no two points of Π
share the same first coordinate.

Proof: If ν is finite, this is clear, since then Xt = N([0, t] × D0), t ≥ 0, is a Poisson
process with rate ν(D0). Let us restrict attention to D0 = R∗ = R \ {0} for simplicity
– this is the most relevant case for us. The local integrability condition means that we
can find intervals (In)n≥1 such that

⋃
n≥1 In = D0 and ν(In) < ∞, n ≥ 1. Then the

independence of N((tj−1, tj ]×In), j = 1, . . . , m, n ≥ 1, implies that X
(n)
t = N([0, t]×In),

t ≥ 0, are independent Poisson processes with rates ν(In), n ≥ 1. Therefore any two of

the jump times (T
(n)
j , j ≥ 1, n ≥ 1) are jointly continuously distributed and take different

values almost surely:

P(T
(n)
j = T

(m)
i ) =

∫ ∞

0

∫ x

x

f
T

(n)
j

(x)f
T

(m)
i

(y)dydx = 0 for all n 6= m.

[Alternatively, show that T
(n)
j − T

(m)
i has a continuous distribution and hence does not

take a fixed value 0 almost surely].
Finally, there are only countably many pairs of jump times, so almost surely no two

jump times coincide. 2

Let Π be a spatial Poisson process with intensity measure Λ((a, b] × (c, d]) = (b −
a)
∫ d
c
g(x)dx for a locally integrable function g on D0 (or = (b − a)ν((c, d]) for a locally

finite measure ν on D0), then the process (∆t)t≥0 given by

∆t = 0 if Π ∩ {t} ×D0 = ∅, ∆t = x if Π ∩ {t} ×D0 = {(t, x)}
is a Poisson point process in D0 ∪ {0} with intensity function g on D0 in the sense of the
following definition.

Definition 20 (Poisson point process) Let g be locally integrable onD0 ⊂ Rd−1\{0}
(or ν locally finite). A process (∆t)t≥0 in D0 ∪ {0} such that

N((a, b] × A0) = #{t ∈ (a, b] : ∆t ∈ A0}, 0 ≤ a < b,A0 ⊂ D0 (measurable),

is a Poisson counting measure with intensity Λ((a, b] × A0) = (b − a)
∫
A0
g(x)dx (or

Λ((a, b] × A0) = (b − a)ν(A0)), is called a Poisson point process with intensity g (or
intensity measure ν).

Note that for every Poisson point process, the set Π = {(t,∆t) : t ≥ 0,∆t 6= 0}
is a spatial Poisson process. Poisson random measure and Poisson point process are
representations of this spatial Poisson process. Poisson point processes as we have defined
them always have a time coordinate and are homogeneous in time, but not in their spatial
coordinates.

In the next lecture we will see how one can do computations with Poisson point
processes, notably relating to

∑
∆t.



Lecture 4

Spatial Poisson processes II

Reading: Kingman Sections 2.2, 2.5, 3.1; Further reading: Williams Chapters 9 and 10

In this lecture, we construct spatial Poisson processes and study sums
∑

s≤t f(∆s) over
Poisson point processes (∆t)t≥0. We will identify

∑
s≤t∆s as Lévy process next lecture.

4.1 Series and increasing limits of random variables

Recall that for two independent Poisson random variables X ∼ Poi(λ) and Y ∼ Poi(µ)
we have X + Y ∼ Poi(λ+ µ). Much more is true. A simple induction shows that

Xj ∼ Poi(µj), 1 ≤ j ≤ m, independent ⇒ X1 + . . .+Xm ∼ Poi(µ1 + . . .+ µm).

What about countably infinite families with µ =
∑

m≥1 µm < ∞? Here is a general
result, a bit stronger than the convergence theorem for moment generating functions.

Lemma 21 Let (Zm)m≥1 be an increasing sequence of [0,∞)-valued random variables.
Then Z = limm→∞ Zm exists a.s. as a [0,∞]-valued random variable. In particular,

E(eγZm) → E(eγZ) = M(γ) for all γ 6= 0.

We have

P(Z <∞) = 1 ⇐⇒ lim
γ↑0

M(γ) = 1

and P(Z = ∞) = 1 ⇐⇒ M(γ) = 0 for all (one) γ < 0.

Proof: Limits of increasing sequences exist in [0,∞]. Hence, if a random sequence
(Zm)m≥1 is increasing a.s., its limit Z exists in [0,∞] a.s. Therefore, we also have
eγZm → eγZ ∈ [0,∞] with the conventions e−∞ = 0 and e∞ = ∞. Then (by mono-
tone convergence) E(eγZm) → E(eγZ).

If γ < 0, then eγZ = 0 ⇐⇒ Z = ∞, but E(eγZ) is a mean (weighted average) of
nonnegative numbers (write out the definition in the discrete case), so P(Z = ∞) = 1 if
and only if E(eγZ) = 0. As γ ↑ 0, we get e−γZ ↑ 1 if Z <∞ and e−γZ = 0 → 0 if Z = ∞,
so (by monotone convergence)

E(eγZ) ↑ E(1{Z<∞}) = P(Z <∞)

and the result follows. 2

13
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Example 22 For independent Xj ∼ Poi(µj) and Zm = X1 + . . . + Xm, the random
variable Z = limm→∞ Zm exists in [0,∞] a.s. Now

E(eγZm) = E((eγ)Zm) = e(e
γ−1)(µ1+...+µm) → e−(1−eγ)µ

shows that the limit is Poi(µ) if µ =
∑

m→∞ µm < ∞. We do not need the lemma for
this, since we can even directly identify the limiting moment generating function.

If µ = ∞, the limit of the moment generating function vanishes, and by the lemma, we
obtain P(Z = ∞) = 1. So we still get S ∼ Poi(µ) within the extended range 0 ≤ µ ≤ ∞.

4.2 Construction of spatial Poisson processes

The examples of compound Poisson processes are the key to constructing spatial Poisson
processes with finite intensity measure. Infinite intensity measures can be decomposed.

Theorem 23 (Construction) Let Λ be an intensity measure on D ⊂ Rd and suppose
that there is a partition (In)n≥1 of D into regions with Λ(In) <∞. Consider independently

Nn ∼ Poi(Λ(In)), Y
(n)
1 , Y

(n)
2 , . . . ∼ Λ(In ∩ ·)

Λ(In)
, i.e. P(Y

(n)
j ∈ A) =

Λ(In ∩A)

Λ(In)

and define Πn = {Y (n)
j : 1 ≤ j ≤ Nn}. Then Π =

⋃
n≥1 Πn is a spatial Poisson process

with intensity measure Λ.

Proof: First fix n and show that Πn is a spatial Poisson process on In
Thinning property of Poisson variables: Consider a sequence of inde-
pendent Bernoulli(p) random variables (Bj)j≥1 and independent X ∼ Poi(λ).
Then the following two random variables are independent:

X1 =

X∑

j=1

Bj ∼ Poi(pλ) and X2 =

X∑

j=1

(1 −Bj) ∼ Poi((1 − p)λ).

To prove this, calculate the joint probability generating function

E(rX1sX2) =

∞∑

n=0

P(X = n)E(rB1+...+Bnsn−B1−...−Bn)

=

∞∑

n=0

λn

n!
e−λ

n∑

k=0

(
n

k

)
pk(1 − p)n−krksn−k

=
∞∑

n=0

λn

n!
e−λ(pr + (1 − p)s)n = e−λp(1−r)e−λ(1−p)(1−s),

so the probability generating function factorises giving independence and we
recognise the Poisson distributions as claimed.

For A ⊂ In, consider X = Nn and the thinning mechanism, where Bj = 1{Y (n)
j ∈A} ∼

Bernoulli(P(Y
(n)
j ∈ A)), then we get property (b):

Nn(A) = X1 is Poisson distributed with parameter P(Y
(n)
j ∈ A)Λ(In) = Λ(A).
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For property (a), disjoint sets A1, . . . , Am ⊂ In, we apply the analogous thinning

property for m + 1 types Y
(n)
j ∈ Ai i = 0, . . . , m, where A0 = In \ (A1 ∪ . . . ∪ Am) to

deduce the independence of Nn(A1), . . . , Nn(Am). Thus, Πn is a spatial Poisson process.

Now for N(A) =
∑

n≥1Nn(A∩ In), we add up infinitely many Poisson variables and,
by Example 22, obtain a Poi(µ) variable, where µ =

∑
n≥1 Λ(A∩In) = Λ(A), i.e. property

(b). Property (a) also holds, since Nn(Aj ∩ In), n ≥ 1, j = 1, . . . , m, are all independent,
and N(A1), . . . , N(Am) are independent as functions of independent random variables.

2

4.3 Sums over Poisson point processes

Recall that a Poisson point process (∆t)t≥0 with intensity function g : D0 → [0,∞) –
focus on D0 = (0,∞) first but this can then be generalised – is a process such that

N((a, b] × (c, d]) = #{a < t ≤ b : ∆t ∈ (c, d]} ∼ Poi

(
(b− a)

∫ d

c

g(x)dx

)
,

0 ≤ a < b, (c, d] ⊂ D0, defines a Poisson counting measure on D = [0,∞) × D0. This
means that

Π = {(t,∆t) : t ≥ 0 and ∆t 6= 0}

is a spatial Poisson process. Thinking of ∆s as a jump size at time s, let us study
Xt =

∑
0≤s≤t∆s, the process performing all these jumps. Note that this is the situation

for compound Poisson processes X; in Example 18, g : (0,∞) → [0,∞) is integrable.

Theorem 24 (Exponential formula) Let (∆t)t≥0 be a Poisson point process with lo-
cally integrable intensity function g : (0,∞) → [0,∞). Then for all γ ∈ R

E

(
exp

{
γ
∑

0≤s≤t
∆s

})
= exp

{
t

∫ ∞

0

(eγx − 1)g(x)dx

}
.

Proof: Local integrability of g on (0,∞) means in particular that g is integrable on
In = (2n, 2n+1], n ∈ Z. The properties of the associated Poisson counting measure N
immediately imply that the random counting measures Nn counting all points in In,
n ∈ Z, defined by

Nn((a, b] × (c, d]) = {a < t ≤ b : ∆t ∈ (c, d] ∩ In}, 0 ≤ a < b, (c, d] ⊂ (0,∞),

are independent. Furthermore, Nn is the Poisson counting measure of jumps of a com-
pound Poisson process with (b−a)

∫ d
c
g(x)dx = (b−a)λnP(Y

(n)
1 ∈ (c, d]) for 0 ≤ a < b and

(c, d] ⊂ In (cf. Example 18), so λn =
∫
In
g(x)dx and (if λn > 0) jump density hn = λ−1

n g
on In, zero elsewhere. Therefore, we obtain

E

(
exp

{
γ
∑

0≤s≤t
∆(n)
s

})
= exp

{
t

∫

In

(eγx − 1)g(x)dx

}
, where ∆(n)

s =

{
∆s if ∆s ∈ In
0 otherwise
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Now we have

Zm =
m∑

n=−m

∑

0≤s≤t
∆(n)
s ↑

∑

0≤s≤t
∆s as m→ ∞,

and (cf. Lemma 21 about finite or infinite limits), the associated moment generating
functions (products of individual moment generating functions) converge as required:

m∏

n=−m
exp

{
t

∫ 2n+1

2n

(eγx − 1)g(x)dx

}
→ exp

{
t

∫ ∞

0

(eγx − 1)g(x)dx

}
.

2

4.4 Martingales (from B10a)

A discrete-time stochastic process (Mn)n≥0 in R is called a martingale if for all n ≥ 0

E(Mn+1|M0, . . . ,Mn) = Mn, i.e. if E(Mn+1|M0 = x0, . . . ,Mn = xn) = xn for all xj .

This is the principle of a fair game. What can I expect from the future if my current state
is Mn = xn? No gain and no loss, on average, whatever the past. The following important
rules for conditional expectations are crucial to establish the martingale property

• If X and Y are independent, then E(X|Y ) = E(X).

• If X = f(Y ), then E(X|Y ) = E(f(Y )|Y ) = f(Y ) for functions f : R → R for which
the conditional expectations exist.

• Conditional expectation is linear E(αX1 +X2|Y ) = αE(X1|Y ) + E(X2|Y ).

• More generally: E(g(Y )X|Y ) = g(Y )E(X|Y ) for functions g : R → R for which the
conditional expectations exist.

These are all not hard to prove for discrete random variables. The full statements (con-
tinuous analogues) are harder. Martingales in continuous time can also be defined, but
(formally) the conditioning needs to be placed on a more abstract footing. Denote by Fs

the “information available up to time s ≥ 0”, for us just the process (Mr)r≤s up to time
s – this is often written Fs = σ(Mr, r ≤ s). Then the four bullet point rules still hold for
Y = (Mr)r≤s or for Y replaced by Fs.

We call (Mt)t≥0 a martingale if for all s ≤ t

E(Mt|Fs) = Ms.

Example 25 Let (Ns)s≥0 be a Poisson process with rate λ. Then Ms = Ns − λs is a
martingale: by the first three bullet points and by the Markov property (Proposition 3)

E(Nt − λt|Fs) = E(Ns + (Nt −Ns) − λt|Fs) = Ns + (t− s)λ− λt = Ns − λs.

Also Es = exp{γNs− λs(eγ − 1)} is a martingale since by the first and last bullet points
above, and by the Markov property

E(Et|Fs) = E(exp{γNs + γ(Nt −Ns) − λt(eγ − 1)}|Fs)

= exp{γNs − λt(eγ − 1)}E(exp{γ(Nt −Ns)})
= exp{γNs − λt(eγ − 1)} exp{−λ(t− s)(eγ − 1)} = Es.

We will review relevant martingale theory when this becomes relevant.



Lecture 5

The characteristics of subordinators

Reading: Kingman Section 8.4

We have done the leg-work. We can now harvest the fruit of our efforts and proceed to
a number of important consequences. Our programme for the next couple of lectures is:

• We construct Lévy processes from their jumps, first the most general increasing
Lévy process. As linear combinations of independent Lévy processes are Lévy
processes (Assignment A.1.2.(a)), we can then construct Lévy processes such as
Variance Gamma processes of the form Zt = Xt − Yt for two increasing X and Y .

• We have seen martingales associated with Nt and exp{Nt} for a Poisson process N .
Similar martingales exist for all Lévy processes (cf. Assignment A.2.3.). Martin-
gales are important for finance applications, since they are the basis of arbitrage-free
models (more precisely, we need equivalent martingale measures, but we will as-
sume here a “risk-free” measure directly to avoid technicalities).

• Our rather restrictive first range of examples of Lévy processes was obtained from
known infinitely divisible distributions. We can now model using the intensity func-
tion of the Poisson point process of jumps to get a wider range of examples.

• We can simulate these Lévy processes, either by approximating random walks based
on the increment distribution, or by constructing the associated Poisson point pro-
cess of jumps, as we have seen, from a collection of independent random variables.

5.1 Subordinators and the Lévy-Khintchine formula

We will call (weakly) increasing Lévy processes “subordinators”. Recall “ν(dx)=̂g(x)dx”.

Theorem 26 (Construction) Let a ≥ 0, and let (∆t)t≥0 be a Poisson point process
with intensity measure ν on (0,∞) such that

∫

(0,∞)

(1 ∧ x)ν(dx) <∞,

then the process Xt = at +
∑

s≤t ∆s is a subordinator with moment generating function
E(exp{γXt}) = exp{tΨ(γ)}, where

Ψ(γ) = aγ +

∫

(0,∞)

(eγx − 1)ν(dx).

17
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Proof: Clearly (at)t≥0 is a deterministic subordinator and we may assume a = 0 in
the sequel. Now the Exponential formula gives the moment generating function of Xt =∑

s≤t ∆s. We can now use Lemma 21 to check whether Xt <∞ for t > 0:

P(Xt <∞) = 1 ⇐⇒ E (exp {γXt}) = exp

{
t

∫ ∞

0

(eγx − 1)ν(dx)

}
→ 1 as γ ↑ 0.

This happens, by monotone convergence, if and only if for some (equivalently all) γ < 0
∫ ∞

0

(1 − eγx)ν(dx) <∞ ⇐⇒
∫ ∞

0

(1 ∧ x)ν(dx) <∞.

It remains to check that (Xt)t≥0 is a Lévy process. Fix 0 ≤ t0 < t1 < . . . < tn. Since
(∆s)s≥0 is a Poisson point process, the processes (∆s)tj−1≤s<tj , j = 1, . . . , n, are inde-
pendent (consider the restrictions to disjoint domains [tj−1, tj) × (0,∞) of the Poisson
counting measure

N((a, b] × (c, d]) = {a ≤ t < b : ∆t ∈ (c, d]}, 0 ≤ a < b, 0 < c < d),

and so are the sums
∑

tj−1≤s<tj ∆s as functions of independent random variables. Fix

s < t. Then the process (∆s+r)r≥0 has the same distribution as (∆s)s≥0. In particular,∑
0≤r≤t ∆s+t ∼

∑
0≤r≤t ∆r. The process t 7→

∑
s≤t∆s is right-continuous with left limits,

since it is a random increasing function where for each jump time T , we have

lim
t↑T

∑

s≤t
∆s = lim

t↑T

∑

s<T

∆s1{s≤t} =
∑

s<T

∆s and lim
t↓T

∑

s≤t
∆s = lim

t↓T

∑

s≤T+1

∆s1{s≤t} =
∑

s≤T
∆s,

by monotone convergence, because each of the terms ∆s1{s≤t} in the sums converges. 2

Note also that, due to the Exponential formula, P(Xt < ∞) > 0 already implies
P(Xt < ∞) = 1. We shall now state but not prove the Lévy-Khintchine formula for
nonnegative random variables.

Theorem 27 (Lévy-Khintchine) A nonnegative random variable Y has an infinitely
divisible distribution if and only if there is a pair (a, ν) such that for all γ ≤ 0

E(exp{γY }) = exp

{
aγ +

∫

(0,∞)

(eγx − 1)ν(dx)

}
, (1)

where a ≥ 0 and ν is such that
∫
(0,∞)

(1 ∧ x)ν(dx) <∞.

Corollary 28 Given a nonnegative random variable Y with infinitely divisible distribu-
tion, there exists a subordinator (Xt)t≥0 with X1 ∼ Y .

Proof: Let Y have an infinitely divisible distribution. By the Lévy-Khintchine theorem,
its moment generating function is of the form (1) for parameters (a, ν). Theorem 26
constructs a subordinator (Xt)t≥0 with X1 ∼ Y . 2

This means that the class of subordinators can be parameterised by two parameters,
the nonnegative “drift parameter” a ≥ 0, and the “Lévy measure” ν, or its density, the
“Lévy density” g : (0,∞) → [0,∞). The parameters (a, ν) are referred to as the “Lévy-
Khintchine characteristics” of the subordinator (or of the infinitely divisible distribution).
Using the Uniqueness theorem for moment generating functions, it can be shown that a
and ν are unique, i.e. that no two sets of characteristics refer to the same distribution.
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5.2 Examples

Example 29 (Gamma process) The Gamma process, where Xt ∼ Gamma(αt, β), is
an increasing Lévy process. In Assignment A.2.4. we showed that

E (exp {γXt}) =

(
β

β − γ

)αt
= exp

{
t

∫ ∞

0

(eγx − 1)αx−1e−βxdx

}
, γ < β.

We read off the characteristics a = 0 and g(x) = αx−1e−βx, x > 0.

Example 30 (Poisson process) The Poisson process, where Xt ∼ Poi(λt), has

E (exp {γXt}) = exp {tλ(eγ − 1)}
This corresponds to characteristics a = 0 and ν = λδ1, where δ1 is the discrete unit point
mass in (jump size) 1.

Example 31 (Increasing compound Poisson process) The compound Poisson pro-
cess Ct = Y1 + . . .+YXt , for a Poisson process X and independent identically distributed
nonnegative Y1, Y2, . . . with probability density function h(x), x > 0, satisfies

E (exp {γCt}) = exp

{
t

∫ ∞

0

(eγx − 1)λh(x)dx

}
,

and we read off characteristics a = 0 and g(x) = λh(x), x > 0. We can add a drift and

consider C̃t = ãt+ Ct for some ã > 0 to get a compound Poisson process with drift.

Example 32 (Stable subordinator) The stable subordinator is best defined in terms
of its Lévy-Khintchine characteristics a = 0 and g(x) = x−α−1. This gives for γ ≤ 0

E (exp {γXt}) = exp

{
t

∫ ∞

0

(eγx − 1)x−α−1dx

}
= exp

{
t
Γ(1 − α)

α
(−γ)α

}
.

Note that E(exp{γc1/αXt/c}) = E(exp{γXt}), so that (c1/αXt/c)t≥0 ∼ X. More generally,
we can also consider e.g. tempered stable processes with g(x) = x−α−1 exp{−ρx}, ρ > 0.

Figure 5.1: Examples: Poisson process, Gamma process, stable subordinator

5.3 Aside: nonnegative Lévy processes

It may seem obvious that a nonnegative Lévy process, i.e. one whereXt ≥ 0 a.s. for all t ≥
0, is automatically increasing, since every increment Xs+t−Xs has the same distribution
Xt and is hence also nonnegative. Let us be careful, however, and remember that there
is a difference between something never happening at a fixed time and something never
happening at any time. We have e.g. for a (one-dimensional) Poisson process (Nt)t≥0

P(∆Nt 6= 0) =
∑

n≥1

P(Tn = t) = 0 for all t ≥ 0, but P(∃t : ∆Nt 6= 0) = 1.



20 Lecture Notes – MS3b Lévy Processes and Finance – Oxford HT 2010

Here we can argue that if f(t) < f(s) for some s < t and a right-continuous function,
then there are also two rational numbers s0 < t0 for which f(t0) < f(s0), so

P(∃s, t ∈ (0,∞), s < t : Xt −Xs < 0) > 0 ⇒ P(∃s0, t0 ∈ (0,∞) ∩ Q : Xt0 −Xs0 < 0) > 0

However, the latter can be bounded above (by subadditivity P(
⋃
nAn) ≤

∑
n P(An))

P(∃s0, t0 ∈ (0,∞) ∩ Q : Xt0 −Xs0 < 0) ≤
∑

s0,t0∈(0,∞)∩Q

P(Xt0−s0 < 0) = 0.

Another instance of such delicate argument is the following: if Xt ≥ 0 a.s. for one
t > 0 and a subordinator X, then Xt ≥ 0 a.s. for all t ≥ 0. It is true, but to say if
P(Xs < 0) > 0 for some s < t then P(Xt < 0) > 0 may not be all that obvious. It
is, however, easily justified for s = t/m, since then P(Xt < 0) ≥ P(Xtj/m − Xt(j−1)/m <
0 for all j = 1, . . . , m) > 0. We have to apply a similar argument to get P(Xtq < 0) = 0
for all rational q > 0. Then we use again right-continuity to see that a function that is
nonnegative at all rationals cannot take a negative value at an irrational either, so we
get

P(∃s ∈ [0,∞) : Xs < 0) = P(∃s ∈ [0,∞) ∩ Q : Xs < 0) ≤
∑

s∈[0,∞)∩Q

P(Xs < 0) = 0.

5.4 Applications

Subordinators have found a huge range of applications, but are not directly models for
a lot of real world phenomena. We can now construct more general Lévy processes of
the form Zt = Xt − Yt for two subordinators X and Y . Let us here indicate some
subordinators as they are used/arise in connection with other Lévy processes.

Example 33 (Subordination) For a Lévy process X and an independent subordinator
T , the process Ys = XTs, s ≥ 0, is also a Lévy process (we study this later in the course).
The rough argument is that (XTs+u−XTs)u≥0 is independent of (Xr)r≤Ts and distributed
as X, by the Markov property. Hence XTs+r

−XTs is independent of XTs and distributed
as XTr . A rigorous argument can be based on calculations of joint moment generating
functions. Hence, subordinators are a useful tool to construct Lévy processes, e.g. from
Brownian motion X. Many models of financial markets are of this type. The operation
Ys = XTs is called subordination – this is where subordinators got their name from.

Example 34 (Level passage) Let Zt = at − Xt where a = E(X1). It can be shown
that τs = inf{t ≥ 0 : Zt > s} < ∞ a.s. for all s ≥ 0 (from the analogous random walk
result). It turns out (cf. later in the course) that (τs)s≥0 is a subordinator.

Example 35 (Level set) Look at the zero set Z = {t ≥ 0 : Bt = 0} for Brownian
motion (or indeed any other centred Lévy process) B. Z is unbounded since B crosses
zero at arbitrarily large times so as to pass beyond all s and −s. Recall that (tB1/t)t≥0

is also a Brownian motion. Therefore, Z also has an accumulation point at t = 0, i.e.
crosses zero infinitely often at arbitrarily small times. In fact, it can be shown that
Z is the closed range {Xr, r ≥ 0}cl of a subordinator (Xr)r≥0. The Brownian scaling
property (

√
cBt/c)t≥0 ∼ B shows that {Xr/c, r ≥ 0}cl ∼ Z, and so X must have a scaling

property. In fact, X is a stable subordinator of index 1/2. Similar results, with different
subordinators, hold not just for all Lévy processes but even for most Markov processes.



Lecture 6

Lévy processes with no negative
jumps

Reading: Kyprianou 2.1, 2.4, 2.6, Schoutens 2.2; Further reading: Williams 10-11

Subordinators X are processes with no negative jumps. We get processes that can de-
crease by adding a negative drift at for a < 0. Also, Brownian motion B has no negative
jumps. A guess might be that Xt + at + σBt is the most general Lévy process with
no negative jumps, but this is false. It turns out that even a non-summable amount of
positive jumps can be incorporated, but we will have to look at this carefully.

6.1 Bounded and unbounded variation

The (total) variation of a right-continuous function f : [0, t] → R with left limits is

||f ||TV := sup

{
n∑

j=1

|f(tj) − f(tj−1)| : 0 = t0 < t1 < . . . < tn = t, n ∈ N

}
.

Clearly, for an increasing function with f(0) = 0 this is just f(t) and for a difference
f = g−h of two increasing functions with g(0) = h(0) = 0 this is at most g(t)+h(t) <∞,
so all differences of increasing functions are of bounded variation. There are, however,
functions of infinite variation, e.g. Brownian paths: they have finite quadradic variation

2n∑

j=1

|Btj2−n − Bt(j−1)2−n |2 → t in the L2 sense

since

E

(
2n∑

j=1

|Btj2−n − Bt(j−1)2−n |2
)

= 2nE(B2
t2−n) = t

and

E



(

2n∑

j=1

|Btj2−n − Bt(j−1)2−n |2 − t

)2

 = Var

(
2n∑

j=1

|Btj2−n − Bt(j−1)2−n |2
)

≤ 2n(2−nt)2Var(B2
1) → 0,

21
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but then assuming finite total variation with positive probability, the uniform continuity
of the Brownian path implies

2n∑

j=1

|Btj2−n − Bt(j−1)2−n |2 ≤
(

sup
j=1,...,2n

|Btj2−n − Bt(j−1)2−n |
) 2n∑

j=1

|Btj2−n −Bt(j−1)2−n | → 0

with positive probability, but this is incompatible with convergence to t, so the assump-
tion of finite total variation must have been wrong.

Here is how jumps influence total variation:

Proposition 36 Let f be a right-continuous function with left limits and jumps (∆fs)0≤s≥t.
Then

||f ||TV ≥
∑

0≤s≤t
|∆fs|

Proof: Enumerate the jumps in decreasing order of size by (Tn,∆fTn)n≥0. Fix N ∈ N

and δ > 0. Choose ε > 0 so small that
⋃

[Tn − ε, Tn] is a disjoint union and such that
|f(Tn− ε)− f(Tn−)| < δ/N . Then for {Tn− ε, Tn : n = 1, . . . , N} = {t1, . . . , t2N+1} such
that 0 = t0 < t1 < . . . < t2N+1 < t2N+2 = t, we have

2N+2∑

j=1

|f(tj) − f(tj−1)| ≥
N∑

n=1

∆f(Tn) − δ.

Since N and δ were arbitrary, this completes the proof, whether the right-hand side is
finite or infinite. 2

6.2 Martingales (from B10a)

Three martingale theorems are of central importance. We will require in this lecture
just the maximal inequality, but we formulate all three here for easier reference. They
all come in several different forms. We present the L2-versions as they are most easily
formulated and will suffice for us.

A stopping time is a random time T such that for every s ≥ 0 the information Fs

allows to decide whether T ≤ s. More formally, if the event {T ≤ s} can be expressed
in terms of (Mr, r ≤ s) (is measurable with respect to Fs). The prime example of a
stopping time is the first entrance time TA = inf{t ≥ 0 : Mt ∈ A}. Note that

{T ≤ s} = {Mr 6∈ A for all r ≤ s}
(and at least for closed sets A we can drop the irrational r ≤ s and see measurability,
then approximate open sets.)

Theorem 37 (Optional stopping) Let (Mt)t≥0 be a martingale and T a stopping time.
If supt≥0 E(M2

t ) <∞, then E(MT ) = E(M0).

Theorem 38 (Convergence) Let (Mt)t≥0 be a martingale such that supt≥0 E(M2
t ) <

∞, then Mt →M∞ almost surely.

Theorem 39 (Maximal inequality) Let (Mt)t≥0 be a martingale. Then E(sup{M2
s :

0 ≤ s ≤ t}) ≤ 4E(M2
t ).
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6.3 Compensation

Let g : (0,∞) → [0,∞) be the intensity function of a Poisson point process (∆t)t≥0. If
g is not integrable at infinity, then #{0 ≤ s ≤ t : ∆s > 1} ∼ Poi(

∫∞
1
g(x)dx) = Poi(∞),

and it is impossible for a right-continuous function with left limits to have accumulation
points in the set of such jumps (lower and upper points of a sequence of jumps will then
have different limit points). If however g is not integrable at zero, we have to investigate
this further.

Proposition 40 Let (∆t)t≥0 be a Poisson point process with intensity measure ν on
(0,∞).

(i) If
∫∞
0
xν(dx) <∞, then

E

(
∑

s≤t
∆s

)
= t

∫ ∞

0

xν(dx).

(ii) If
∫∞
0
x2ν(dx) <∞, then

Var

(
∑

s≤t
∆s

)
= t

∫ ∞

0

x2ν(dx).

Proof: These are the two leading terms in the expansion with respect to γ of the Expo-
nential formula: the first moment can always be obtained from the moment generating
function by taking ∂

∂γ
|γ=0, here

∂

∂γ
exp

{
t

∫ ∞

0

(eγx − 1)ν(dx)

}∣∣∣∣
γ=0

= t

∫ ∞

0

xeγxν(dx)

∣∣∣∣
γ=0

= t

∫ ∞

0

xν(dx),

and the second moment follows from the second derivative in the same way. 2

Consider compound Poisson processes, with a drift that turns them into martingales

Zε
t =

∑

s≤t
∆s1{ε<∆s≤1} − t

∫ 1

ε

xν(dx) (1)

We have deliberately excluded jumps in (1,∞). These are easier to handle separately.
What integrability condition on ν do we need for Zε

t to converge as ε ↓ 0?

Lemma 41 Let (∆t)t≥0 be a Poisson point process with intensity measure ν on (0, 1).

With Zε defined in (1), Zε
t converges in L2 if

∫ 1

0
x2ν(dx) <∞.

Proof: We only do this for ν(dx) = g(x)dx. Note that for 0 < δ < ε < 1, by Proposition
40(ii) applied to gδ,ε(x) = g(x)1{δ≤x<ε},

E(|Zε
t − Zδ

t |2) = t

∫ ε

δ

x2g(x)dx

so that (Zε
t )0<ε<1 is a Cauchy family as ε ↓ 0, for the L2-distance d(X, Y ) =

√
E((X − Y )2).

By completeness of L2-space, there is a limiting random variable Zt as required. 2

We can slightly tune this argument to establish a general existence theorem:

Theorem 42 (Existence) There exists a Lévy process whose jumps form a Poisson
point process with intensity measure ν on (0,∞) if and only if

∫
(0,∞)

(1 ∧ x2)ν(dx) <∞.
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Proof: The “only if” statement is a consequence of a Lévy-Khintchine type characteri-
sation of infinitely divisible distributions on R, cf. Theorem 44, which we will not prove.
Let us prove the “if” part in the case where ν(dx) = g(x)dx.

By Proposition 40(i), E(Zε
t −Zδ

t ) = 0. By Assignment A.2.3.(c), the procecss Zε
t −Zδ

t

is a martingale, and the maximal inequality (Theorem 39) shows that

E

(
sup

0≤s≤t

∣∣Zε
t − Zδ

t

∣∣
)

≤ 4E(|Zε
t − Zδ

t |2) = 4t

∫ ε

δ

x2g(x)dx

so that (Zε
s , 0 ≤ s ≤ t)0<ε<1 is a Cauchy family as ε ↓ 0, for the uniform L2-distance

d[0,t](X, Y ) =
√

E(sup0≤s≤t |Xs − Ys|2). By completeness of L2-space, there is a limiting

process (Z
(1)
s )0≤s≤t, which as the uniform limit (in L2) of (Zε

s )0≤s≤t is right-continuous
with left limits. Also consider the independent compound Poisson process

Z
(2)
t =

∑

s≤t
∆s1{∆s>1} and set Z = Z(1) + Z(2).

It is not hard to show that Z is a Lévy process that incorporates all jumps (∆s)0≤s≤t. 2

Example 43 Let us look at a Lévy density g(x) = |x|−5/2, x ∈ [−3, 0). Then the

compensating drifts
∫ 3

ε
xg(x)dx take values 0.845, 2.496, 5.170 and 18.845 for ε = 1,

ε = 0.3, ε = 0.1 and ε = 0.01. In the simulation, you see that the slope increases (to
infinity, actually as ε ↓ 0), but the picture begins to stabilise and converge to a limit.

Figure 6.1: Approximation of a Lévy process with no positive jumps – compensating drift
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General Lévy processes and
simulation

Reading: Schoutens Sections 8.1, 8.2, 8.4

For processes with no negative jumps, we compensated jumps by a linear drift and incor-
porated more and more smaller jumps while letting the slope of the linear drift tend to
negative infinity. We will now construct the most general real-valued Lévy process as the
difference of two such processes (and a Brownian motion). For explicit marginal distribu-
tions, we can simulate Lévy processes by approximating random walks. In practice, we
often only have explicit characteristics (drift coefficient, Brownian coefficient and Lévy
measure). We will also simulate Lévy processes based on the characteristics.

7.1 Construction of Lévy processes

The analogue of Theorem 27 for real-valued random variables is as follows.

Theorem 44 (Lévy-Khintchine) A real-valued random variable X has an infinitely
divisible distribution if there are parameters a ∈ R, σ2 ≥ 0 and a measure ν on R \ {0}
with

∫∞
−∞(1 ∧ x2)ν(dx) <∞ such that E(eiλX) = e−ψ(λ), where

ψ(λ) = −iaλ +
1

2
σ2λ2 −

∫ ∞

−∞
(eiλx − 1 − iλx1{|x|≤1})ν(dx), λ ∈ R.

Lévy processes are parameterised by their Lévy-Khintchine characteristics (a, σ2, ν),
where we call a the drift coefficient, σ2 the Brownian coefficient and ν the Lévy measure
or jump measure. ν(dx) will often be of the form g(x)dx, and we then refer to g as the
Lévy density or jump density.

Theorem 45 (Existence) Let (a, σ2, ν) be Lévy-Khintchine characteristics, (Bt)t≥0 a
standard Brownian motion and (∆t)t≥0 an independent Poisson point process of jumps
with intensity measure ν. Then there is a Lévy process

Zt = at+ σBt +Mt + Ct, where Ct =
∑

s≤t
∆s1{|∆s|>1},

25
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is a compound Poisson process (of big jumps) and

Mt = lim
ε↓0

(
∑

s≤t
∆s1{ε<|∆s|≤1} − t

∫

{x∈R:ε<|x|≤1}
xν(dx)

)

is a martingale (of small jumps – compensated by a linear drift).

Proof: The construction of Mt = Pt −Nt can be made from two independent processes
Pt and Nt with no negative jumps as in Theorem 42. Nt will be built from a Poisson point
process with intensity measure ν((c, d]) = ν([−d,−c)), 0 < c < d ≤ 1 (or g(y) = g(−y),
0 < y < 1).

We check that the characteristic function of Zt = at + σBt + Pt − Nt + Ct is of
Lévy-Khintchine type with parameters (a, σ, ν). We have five independent components.
Evaluate at t = 1 to get

E(eγa) = eγa

E(eγσB1) = exp{1

2
γ2σ2}

E(eγP1) = exp

{∫ 1

0

(eγx − 1 − γx)ν(dx)

}

E(e−γN1) = exp

{∫ 1

0

(e−γy − 1 + γy)ν(dy)

}
= exp

{∫ 0

−1

(eγx − 1 − γx)ν(dx)

}

E(eiλC1) = exp

{∫

|x|>1

(eiλx − 1)ν(dx)

}
.

The last formula is checked in analogy with the moment generating function computation
of Assignment A.1.3 (in general, the moment generating function will not be well-defined
for this component). For the others, now “replace” γ by iλ. A formal justification can
be obtained by analytic continuation, since the moment generating functions of these
components are entire functions of γ as a complex parameter. Now the characteristic
function of Z1 is the product of characteristic functions of the independent components,
and this yields the formula required. 2

We stress in particular, that every Lévy process is the difference of two processes with
only positive jumps. In general, these processes are not subordinators, but of the form
in Theorem 42 plus a Brownian motion component. They can then both take positive
and negative values.

Example 46 (Variance Gamma process) We introduced the Variance Gamma pro-
cess as difference X = G − H of two independent Gamma subordinators G and H .
We can generalise the setting of Exercise A.1.2.(b) and allow G1 ∼ Gamma(α+, β+) and
H1 ∼ Gamma(α−, β−). The moment generating function of the Variance Gamma process
is

E(eγXt) = E(eγGt)E(e−γHt) =

(
β+

β+ − γ

)α+t( β−
β− + γ

)α−t

= exp

{
t

∫ ∞

0

(eγx − 1)α+x
−1e−β+xdx

}
exp

{
t

∫ ∞

0

(e−γy − 1)α−y
−1e−β−ydy

}

= exp

{
t

∫ ∞

0

(eγx − 1)α+|x|−1e−β+|x|dx+ t

∫ 0

−∞
(eγx − 1)α−|x|−1e−β−|x|dx

}
.
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and this is in Lévy-Khintchine form with ν(dx) = g(x)dx with

g(x) =

{
α+|x|−1e−β+|x| x > 0
α−|x|−1e−β−|x| x < 0

The process (∆Xt)t≥0 is a Poisson point process with intensity function g.

Example 47 (CGMY process) Theorem 45 encourages to specify Lévy processes by
their characteristics. As a natural generalisation of the Variance Gamma process, Carr,
Geman, Madan and Yor (CGMY) suggested the following for financial price processes

g(x) =

{
C+ exp{−G|x|}|x|−Y−1 x > 0
C− exp{−M |x|}|x|−Y−1 x < 0

for parameters C± > 0, G > 0, M > 0, Y ∈ [0, 2). While the Lévy density is a nice
function, the probability density function of an associated Lévy process Xt is not available
in closed form, in general. The CGMY model contains the Gamma model for Y = 0.
When this model is fitted to financial data, there is usually significant evidence against
Y = 0, so the CGMY model is more appropriate than the Variance Gamma model.

We can construct Lévy processes from their Lévy density and will also simulate from
Lévy densities. Note that this way of modelling is easier than searching directly for
infinitely divisible probability density functions.

7.2 Simulation via embedded random walks

“Simulation” usually refers to the realisation of a random variable using a computer.
Most mathematical and statistical packages provide functions, procedures or commands
for the generation of sequences of pseudo-random numbers that, while not random, show
features of independent and identically distributed random variables that are adequate
for most purposes. We will not go into the details of the generation of such sequences,
but assume that we a sequence (Uk)k≥1 of independent Unif(0, 1) random variables.

If the increment distribution is explicitly known, we simulate via time discretisation.

Method 1 (Time discretisation) Let (Xt)t≥0 be a Lévy process so that Xt has prob-
ability density function ft. Fix a time lag δ > 0. Denote Ft(x) =

∫ x
−∞ ft(y)dy and

F−1
t (u) = inf{x ∈ R : Ft(x) > u}. Then the process

X
(1,δ)
t = S[t/δ], where Sn =

n∑

k=1

Yk and Yk = F−1
δ (Uk),

is called the time discretisation of X with time lag δ.

One usually requires numerical approximation for F−1
t , even if ft is available in closed

form. That the approximations converge, is shown in the following proposition.

Proposition 48 As δ ↓ 0, we have X
(1,δ)
t → Xt in distribution.

Proof: We can employ a coupling proof: t is a.s. not a jump time of X, so we have
X[t/δ]δ → Xt a.s., and so convergence in distribution for X

(1,δ)
t ∼ X[t/δ]δ. 2
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Figure 7.1: Simulation of Gamma processes from random walks with Gamma increments

Example 49 (Gamma processes) For Gamma processes, Ft is an incomplete Gamma
function, which has no closed-form expression, and F−1

t is also not explicit, but numerical
evaluations have been implemented in many statistical packages. There are also Gamma
generators based on more uniform random variables. We display a range of parameter
choices. Since for a Gamma(1, 1) process X, the process (β−1Xαt)t≥0 is Gamma(α, β):

E(exp{γβ−1Xαt}) =

(
1

1 − γβ−1

)αt
=

(
β

β − γ

)αt
,

we chose α = β (keeping mean 1 and comparable spatial scale) but a range of parameters
α ∈ {0.1, 1, 10, 100} on a fixed time interval [0, 10]. We “see” convergence to a linear
drift as α → ∞ (for fixed t this is due to the laws of large numbers).
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Figure 7.2: Random walk approximation to a Lévy process, as in Proposition 48
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Example 50 (Variance Gamma processes) We represent the Variance Gamma pro-
cess as the difference of two independent Gamma processes and focus on the sym-
metric case, so achieve mean 0 and fix variance 1 by putting β = α2/2; we consider
α ∈ {1, 10, 100, 1000}. We “see” convergence to Brownian motion as α → ∞ (for fixed t
due to the Central Limit Theorem).
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Figure 7.3: Simulation of Variance Gamma processes as differences of random walks

7.3 R code – not examinable

The following code is posted on the course website as gammavgamma.R.

psum <- function(vector){
b=vector;

b[1]=vector[1];

for (j in 2:length(vector)) b[j]=b[j-1]+vector[j]; b}

gammarw <- function(a,p){
unif=runif(10*p,0,1)

pos=qgamma(unif,a/p,a);

space=psum(pos);

time=(1/p)*1:(10*p);

plot(time,space,

pch=".",

sub=paste("Gamma process with shape parameter",a,"and scale parameter",a))}
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vgammarw <- function(a,p){
unifpos=runif(10*p,0,1)

unifneg=runif(10*p,0,1)

pos=qgamma(unifpos,a*a/(2*p),a);

neg=qgamma(unifneg,a*a/(2*p),a);

space=psum(pos-neg);

time=(1/p)*1:(10*p);

plot(time,space,

pch=".",

sub=paste("Variance Gamma process with shape parameter",a*a/2,

"and scale parameter",a))}

Now you can try various values of parameters a > 0 and steps per time unit p = 1/δ
in gammarw(a,p), e.g.

gammarw(10,100)

vgammarw(10,1000)
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Simulation II

Reading: Ross 11.3, Schoutens Sections 8.1, 8.2, 8.4

In practice, the increment distribution is often not known, but the Lévy characteristics
are, so we have to simulate Poisson point processes of jumps, by “throwing away the small
jumps” and then analyse (and correct) the error committed.

8.1 Simulation via truncated Poisson point processes

Example 51 (Compound Poisson process) Let (Xt)t≥0 be a compound Poisson pro-
cess with Lévy density g(x) = λh(x), where h is a probability density function. Denote
H(x) =

∫ x
−∞ h(y)dy and H−1(u) = inf{x ∈ R : H(x) > u}. Let Yk = H−1(U2k) and

Zk = −λ−1 ln(U2k−1), k ≥ 1. Then the process

X
(2)
t = SNt , where Sn =

n∑

k=1

Yk, Tn =

n∑

k=1

Zk, Nt = #{n ≥ 1 : Tn ≤ t},

has the same distribution as X.

Method 2 (Throwing away the small jumps) Let (Xt)t≥0 be a Lévy process with
characteristics (a, 0, g), where g is not the multiple of a probability density function. Fix
a jump size threshold ε > 0 so that λε =

∫
{x∈R:|x|>ε} g(x)dx > 0, and write

g(x) = λεhε(x), |x| > ε, hε(x) = 0, |x| ≤ ε,

for a probability density function hε. DenoteHε(x) =
∫ x
−∞ hε(y)dy andH−1

ε (u) = inf{x ∈
R : Hε(x) > u}. Let Yk = H−1

ε (U2k) and Zk = −λ−1 ln(U2k−1), k ≥ 1. Then the process

X
(2,ε)
t = SNt − bεt, where Sn =

n∑

k=1

Yk, Tn =

n∑

k=1

Zk, Nt = #{n ≥ 1 : Tn ≤ t},

and bε = a−
∫
{x∈R:ε<|x|≤1} xg(x)dx, is called the process with small jumps thrown away.

For characteristics (a, σ2, g) we can now simulate Lt = σBt +Xt by σB
(1,δ)
t +X

(2,ε)
t .

The following proposition says that such approximations converge as ε ↓ 0 (and δ ↓ 0).
This is illustrated in Figure 6.3.

31
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Proposition 52 As ε ↓ 0, we have X
(2,ε)
t → Xt in distribution.

Proof: For a process with no negative jumps and characteristics (0, 0, g), this is a
consequence of the stronger Lemma 41, which gives a coupling for which convergence
holds in the L2 sense. For a general Lévy process with characteristics (a, 0, g) that
argument can be adapted, or we write Xt = at+ Pt −Nt and deduce the result:

E(exp{iλX(2,ε)
t }) = eiatE(exp{iλP (2,ε)

t })E(exp{−iλN (2,ε)
t })

→ eiatE(exp{iλPt})E(exp{−iλNt}) = E(eiλXt).

2

Example 53 (Symmetric stable processes) Symmetric stable processes X are Lévy
processes with characteristics (0, 0, g), where g(x) = c|x|−α−1, x ∈ R \ {0} for some
α ∈ (0, 2) (cf. Assignment 3.2.). We decompose X = P − N for two independent
processes with no negative jumps and simulate P and N . By doing this, we have

λε =

∫ ∞

ε

g(x)dx =
c

α
ε−α, Hε(x) = 1 − (ε/x)α and H−1

ε (u) = ε(1 − u)−1/α.

For the simulation we choose ε = 0.01. We compare α ∈ {0.5, 1, 1.5, 1.8}. All processes
are centred with infinite variance. Big jumps dominate the plots for small α. Recall that
E(eiλXt) = e−b|λ|

α → e−bλ
2

as α ↑ 2, and we get, in fact, convergence to Brownian motion,
the stable process of index 2.
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Figure 8.1: Simulation of symmetric stable processes from their jumps
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Figure 8.2: Simulation of stable processes with no negative jumps

Example 54 (Stable processes with no negative jumps) For stable processes with
no negative jumps, we have g(x) = c+x

−α−1, x > 0. The subordinator case α ∈ (0, 1)
was discussed in Assignment A.3.1. – Xt =

∑
s≤t ∆s. The case α ∈ [1, 2), where com-

pensation is required, is such that E(X1) = 0, i.e. a = −
∫∞
1
xg(x)dx. We choose ǫ = 0.1

for α ∈ {0.5, 0.8} and ε = 0.01 for α ∈ {1.5, 1.8}.

Strictly speaking, we take as triplet (a, σ2, g) in Theorem 45 g as given, but for

α ∈ (0, 1) we take a =
∫ 1

0
xg(x)dx so that

E(eiλXt) = exp

{
t

∫ ∞

0

(eiλx − 1)g(x)dx

}

= exp

{
−t
(
−iλa−

∫ ∞

0

(eiλx − 1 − iλx1{|x|≤1})g(x)dx

)}
,

since compensation of small jumps is not needed and we obtain a subordinator if we do
not compensate, and for α ∈ (1, 2), we take a = −

∫∞
1
xg(x)dx so that

E(eiλXt) = exp

{
t

∫ ∞

0

(eiλx − 1 − iλx)g(x)dx

}

= exp

{
−t
(
−iλa−

∫ ∞

0

(eiλx − 1 − iλx1{|x|≤1})g(x)dx

)}
,

since we can compensate all jump and achieve E(Xt) = 0. Only with these choices we
obtain the Lévy processes with no negative jumps that satisfy the scaling property.

This discussion shows that the representation in Theorem 45 is artificial and repre-
sentations with different compensating drifts are often more natural.
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8.2 Generating specific distributions

In this course, we will not go into the computational details of simulations. However,
we do point out some principles here that lead to improved simulations, and we discuss
some of the resulting modifications to the methods presented.

Often, it is not efficient to compute the inverse cumulative distribution function. For
a number of standard distributions, other methods have been developed. We will here
look at standard Normal generators. The Gamma distribution is discussed in Assignment
A.4.2.

Example 55 (Box-Muller generator) Consider the following procedure

1. Generate two independent random numbers U ∼ Unif(0, 1) and V ∼ Unif(0, 1).

2. Set X =
√
−2 ln(U) cos(2πV ) and Y =

√
−2 ln(U) sin(2πV ).

3. Return the pair (X, Y ).

The claim is the X and Y are independent standard Normal random variables. The
proof is an exercise on the transformation formula. First, the transformation is clearly
bijective from (0, 1)2 to R2. The inverse transformation can be worked out fromX2+Y 2 =
−2 ln(U) and Y/X = tan(2πV ) as

(U, V ) = T−1(X, Y ) = (e−(X2+Y 2)/2, (2π)−1 arctan(Y/X))

(with an appropriate choice of the branch of arctan, which is not relevant here). The
Jacobian of the inverse transformation is

J =

(
−xe−(x2+y2)/2 −ye−(x2+y2)/2

− 1
2π

y
x2

1
1+y2/x2

1
2π

1
x

1
1+y2/x2

)
⇒ | det(J)| =

1

2π
e−(x2+y2)/2

and so, as required,

fX,Y (x, y) = fU,V (T−1(x, y))| det(J)| =
1

2π
e−(x2+y2)/2.

For a more efficient generation of standard Normal random variables, it turns out
useful to first generate uniform random variables on on the disk of radius 1:

Example 56 (Uniform distribution on the disk) For U1 ∼ Unif(0, 1) and U2 ∼
Unif(0, 1) independent, we have that (V1, V2) = (2U1 − 1, 2U2 − 1) is uniformly dis-
tributed on the square (−1, 1)2 centered at (0, 0), which contains the disk D = {(x, y) ∈
R2 : x2 +y2 < 1}, and we have, in particular P((V1, V2) ∈ D) = π/4. Now, for all A ⊂ R2,
we have

P((V1, V2) ∈ A|(V1, V2) ∈ D) =
area(A ∩D)

π
,

so the conditional distribution of (V1, V2) given (V1, V2) ∈ D is uniform on D. By the
following lemma, this conditioning can be turned into an algorithm by repeated trials:

1. Generate two independent random numbers U1 ∼ Unif(0, 1) and U2 ∼ Unif(0, 1).
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2. Set (V1, V2) = (2U1 − 1, 2U2 − 1).

3. If (V1, V2) ∈ D, go to 4., else go to 1.

4. Return the numbers (V1, V2).

The pair of numbers returned will be uniformly distributed on the disk D.

Lemma 57 (Conditioning by repeated trials) Let X,X1, X2, . . . be independent and
identically distributed d-dimensional random vectors. Also let A ⊂ Rd such that p =
P(X ∈ A) > 0. Denote N = inf{n ≥ 1 : Xi ∈ A}. Then N ∼ geom(p) is independent
of XN , and XN has as its (unconditional) distribution the conditional distribution of X
given X ∈ A, i.e.

P(XN ∈ B) = P(X ∈ B|X ∈ A) for all B ⊂ Rd.

Proof: We calculate the joint distribution

P(N = n,Xn ∈ B) = P(X1 6∈ A, . . . , Xn−1 6∈ A,Xn ∈ A ∩B)

= (1 − p)n−1P(Xn ∈ A ∩B) = (1 − p)n−1pP(Xn ∈ B|Xn ∈ A).

2

We now get the following modification of the Normal generator:

Example 58 (Polar method) The following is a more efficient method to generate two
independent standard Normal random variables:

1. Generate two independent random numbers U1 ∼ Unif(0, 1) and U2 ∼ Unif(0, 1).

2. Set (V1, V2) = (2U1 − 1, 2U2 − 1) and S = V 2
1 + V 2

2 .

3. If S ≤ 1, go to 4., else go to 1.

4. Set P =
√

−2(ln(S))/S

5. Return the pair (X, Y ) = (PV1, PV2).

The gain in efficiency mainly stems from the fact that no sine and cosine need to be com-
puted. The method works because in polar coordinates (V1, V2) = (R cos(Θ), R sin(Θ),
we have independent S = R2 ∼ Unif(0, 1) and Θ ∼ Unif(0, 2π) (as is easily checked), so
we can choose U = S and 2πV = Θ in the Box-Muller generator.
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8.3 R code – not examinable

The following code is posted on the course website as stable.R.

stableonesided <- function(a,c,eps,p){
f=c*eps^(-a)/a;

n=rpois(1,10*f);

t=runif(n,0,10);

y=(eps^(-a)-a*f*runif(n,0,1)/c)^(-1/a);

ytemp=1:n;res=(1:(10*p))/100;{
for (k in 1:(10*p)){{for (j in 1:n){
if(t[j]<=k/p)ytemp[j]<-y[j] else ytemp[j]<-0}}; res[k]<-sum(ytemp)}};
res}

stable <- function(a,cp,cn,eps,p){
pos=stableonesided(a,cp,eps,p);

neg=stableonesided(a,cn,eps,p);

space=pos-neg;time=(1/p)*1:(10*p);

plot(time,space,

pch=".",

sub=paste("Stable process with index",a,"and cplus=",cp,"and cminus=",cn))}

stableonesidedcomp <- function(a,c,eps,p){
f=(c*eps^(-a))/a;

n=rpois(1,10*f);

t=runif(n,0,10);

y=(eps^(-a)-a*f*runif(n,0,1)/c)^(-1/a);

ytemp=1:n;

res=(1:(10*p))/100;{ for (k in 1:(10*p)){{if (n!=0)for (j in 1:n){
if(t[j]<=k/p)ytemp[j]<-y[j] else ytemp[j]<-0}};{
if (n!=0)res[k]<-sum(ytemp)-(c*k/(p*(a-1)))*(eps^(1-a))

else res[k]<--c*k/(p*(a-1))*(eps^(1-a))}}};
res}
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Simulation III

Reading: Ross 11.3, Schoutens Sections 8.1, 8.2, 8.4; Further reading: Kyprianou
Section 3.3

9.1 Applications of the rejection method

Lemma 57 can be used in a variety of ways. A widely applicable simulation method
is the rejection method. Suppose you have an explicit probability density function f ,
but the inverse distribution function is not explicit. If h ≥ cf , for some c < 1 is a
probability density function whose inverse distribution function is explicit (e.g. uniform
or exponential) or from which we can simulate by other means, then the procedure

1. Generate a random variable X with density h.

2. Generate an independent uniform variable U .

3. If Uh(X) ≤ cf(X), go to 4., else go to 1.

4. Return X.

Proposition 59 The procedure returns a random variable with density f .

Proof: Denote p = P(Uh(X) ≤ cf(X)). By Lemma 57 (applied to the vector (X,U)),
the procedure returns a random variable with distribution

P(X ≤ x|Uh(X) ≤ cf(X)) =
P(X ≤ x, Uh(X) ≤ cf(X))

p

=
1

p

∫ x

−∞
h(z)P(U ≤ cf(z)/h(z))dz =

c

p

∫ x

−∞
f(z)dz,

and letting x→ ∞ shows c = p. 2

Example 60 (Gamma distribution) Note that the Gamma density for α > 1 satisfies

1

Γ(α)
βαxα−1e−βx ≤ βα−1

Γ(α)
βe−βx

so we can apply the procedure with f(x) = βe−βx and c = Γ(α)/βα−1.

37
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It is important that c is not too small, since otherwise lots of iterations are needed until
the random variable is returned. The number of iterations is geometrically distributed
(first success in a sequence of independent Bernoulli trials) with success parameter c, so
on average 1/c trials are required.

For the simulation via Poisson point processes (with truncation at ε, say), we can use
properties of Poisson point processes to simulate separately jumps of sizes in intervals
In, n = 1, . . . , n0 and can choose intervals In so that the intensity function g is almost
constant.

Example 61 (Distribution on In) Suppose that we simulate a Poisson point process
on a bounded spatial interval In = (a, b], with some intensity function g : In → [0,∞).
Then we can take uniform

h(x) = 1/(b− a) and c =

∫ b
a
g(x)dx

(b− a) max{g(x) : a < x ≤ b} .

and simulate Exp(
∫ b
a
g(x)dx)-spaced times Tn and spatial coordinates ∆Tn by the rejection

method with h and c as given.

9.2 “Errors increase in sums of approximated terms.”

Methods 1 and 2 are based on sums of many, mostly small, independent identically
distributed random variables. As δ ↓ 0 or ε ↓ 0, these are more and more smaller and
smaller random variables. If each is affected by a small error, then adding up these errors
makes the approximations worse whereas the precision should increase.

For Method 1, this can often be prevented by suitable conditioning, e.g. on the
terminal value:

Example 62 (Poisson process) A Poisson process with intensity λ on the time inter-
val [0, 1] can be generated as follows:

1. Generate a Poisson random variable N with parameter λ.

2. Given N = n, generate n independent Unif(0, 1) random variables U1, . . . , Un.

3. Return Xt = #{1 ≤ i ≤ N : Ui ≤ t}.

Clearly, this process is a Poisson process, since Xs (and indeed (Xt1 , . . . , Xtn−tn−1)) is
obtained from X1 ∼ Poi(λ) by thinning as in Section 4.2.

This is not of much practical use since we would usually simulate a Poisson random
variable by evaluating a unit rate Poisson process (simulated from standard exponential
interarrival times) at λ. In the case of Brownian motion (and the Gamma process, see
Assignment A.4.3.), however, such conditioning is very useful and can then be iterated,
e.g. in a dyadic scheme:

Example 63 (Brownian motion) Consider the following method to generate Brown-
ian motion on the time interval [0, 1].
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1. Set X0 = 0 and generate X1 ∼ Normal(0, 1) hence specifying Xk2−n for n = 0,
k = 0, . . . , 2n.

2. For k = 1, . . . , 2n, conditionally given X(k−1)2−n = x and Xk2−n = z, generate

X(2k−1)2−n−1 ∼ Normal

(
x+ z

2
, 2−n−2

)

3. If the required precision has been reached, stop, else increase n by 1 and go back
to 2.

This process is Brownian motion, since the following lemma shows that Brownian motion
has these conditional distributions. Specifically, the n = 0, k = 1 case of 2. is obtained
directly for s = 1/2, t = 1. For n ≥ 1, k = 1, . . . , 2n, note that X(2k−1)2−n−1 −X(k−1)2−n

is independent of X(k−1)2−n and so, we are really saying that for Brownian motion

X(2k−1)2−n−1 −X(k−1)2−n ∼ Normal

(
z − x

2
, 2−n−2

)
,

conditionally given Zk2−n − Z(k−1)2−n = z − x, which is equivalent to the specification in
2.

A further advantage of this method is that δ = 2−n can be decreased without having
to start afresh. Previous less precise simulations can be refined.

Lemma 64 Let (Xt)t≥0 be Brownian motion and 0 < s < t. Then, the conditional
distribution of Xs given Xt = z is Normal(zs/t, s(t− s)/t).

Proof: Note that Xs ∼ Normal(0, s) and Xt −Xs ∼ Normal(0, t− s) are independent.
By the transformation formula (Xs, Xt) has joint density

fXs,Xt(x, z) =
1

2π
√
s(t− s)

exp

{
−x

2

2s
− (z − x)2

2(t− s)

}
,

and so the conditional density is

fXs|Xt=z(x) =
fXs,Xt(x, z)

fXt(z)
=

1√
2π
√
s(t− s)/t

exp

{
−x

2

2s
− (z − x)2

2(t− s)
+
z2

2t

}

=
1√

2π
√
s(t− s)/t

exp

{
−(x− zs/t)2

2s(t− s)/t

}
.

2

For Method 2, we can achieve similar improvements by simulating (∆t)t≥0 in stages.
Choose a strictly decreasing sequence ∞ = a0 > a1 > a2 > . . . > 0 of jump size thresholds
with an ↓ 0 as n→ ∞

∆
(k)
t = ∆t1{ak≤∆t<ak−1}, ∆

(−k)
t = ∆t1{−ak≥∆t>−ak−1}, k ≥ 1, t ≥ 0.

Simulate the Poisson counting processes N (k) associated with ∆(k) as in Example 62 and
otherwise construct

Z
(k)
t =

∑

s≤t
∆(k)
s − t

∫ ak−1

ak

x1{0<x<1}g(x)dx

as in Method 2 and include so many k = ±1,±2, . . . as precision requires.
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9.3 Approximation of small jumps by Brownian mo-

tion

Theorem 65 (Asmussen-Rosinski) Let (Xt)t≥0 be a Lévy process with characteristics
(a, 0, g). Denote

σ2(ε) =

∫ ε

−ε
x2g(x)dx

If σ(ε)/ε→ ∞ as ε ↓ 0, then

Xt −X
(2,ε)
t

σ(ε)
→ Bt in distribution as ε ↓ 0

for an independent Brownian motion (Bt)t≥0

If σ(ε)/ε→ ∞, it is well-justified to adjust Method 2 to set

X
(2+,ε)
t = X

(2,ε)
t + σ(ε)Bt

for an independent Brownian motion. In other words, we may approximate the small
jumps by an independent Brownian motion.

Example 66 (CGMY process) The CGMY process is a popular process in Mathe-
matical Finance. It is defined via its characteristics (0, 0, g), where

g(x) = C exp{−G|x|}|x|−Y−1, x < 0, g(x) = C exp{−M |x|}|x|−Y−1, x > 0.

for some C ≥ 0, G > 0, M > 0 and Y < 2. Let (Xt)t≥0 be a CGMY process. We
calculate

σ2(ε) =

∫ ε

−ε
x2g(x)dx ≤ C

∫ ε

−ε
|x|1−Y dx =

2C

2 − Y
ε2−Y

and for every given δ > 0 and all ε > 0 small enough, the same quantity with C replaced
by C − δ is a lower bound, so that

σ(ε)

ε
∼
√

2C

2 − Y
ε−Y/2 → ∞ ⇐⇒ Y > 0

Hence an approximation of the small jumps of size (−ε, ε) thrown away by a Brownian
motion σ(ε)Bt is appropriate if and only if Y > 0. In fact, for Y < 0, the process has
finite jump intensity, so all jumps can be simulated. Therefore, only the case Y = 0 is
problematic. This is the Variance Gamma process (and its asymmetric companions).

Whether or not we can approximate small jumps by a Brownian motion, we have
to decide what value of ε to choose. By the independence properties of Poisson point
processes, the remainder term that Xt − X2,ε

t is a (zero mean, for ε < 1) Lévy process
with intensity function g on [−ε, ε] and variance

σ2(ε) = Var(Xt −X
(2,ε)
t )

(let δ ↓ 0 in the proof of Lemma 41). We can choose ε so that the accuracy of X
(2,ε)
t

is within an agreed deviation h, i.e. e.g. 2σ(ε) = h. In the setting of Theorem 65, this

means that a deviation of Xt from X
(2,ε)
t by more than h would happen with probability

about 0.05.
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9.4 Appendix: Consolidation on Poisson point pro-

cesses

This section and and the next should not be necessary this year, because the relevant
material has been included in earlier lectures. They may still be useful as a reminder of
key concepts.

We can consider Poisson point processes (∆t)t≥0 in very general spaces, e.g. (topo-
logical) spaces (E,O) where we have a collection/notion of open sets O ∈ O (and an
associated Borel σ-algebra B = σ(O), the smallest σ-algebra that contains all open sets,
for which we also require that {x} ∈ B for all x ∈ E and G = {(x, x) : x ∈ E} ∈ B ⊗ B).
We just require that (∆t)t≥0 is a family of ∆t ∈ E ∪ {0} such that there is an intensity
(Borel) measure ν on E with ν({x}) = 0 for all x ∈ E,

(a) for disjoint A1 = (a1, b1] × O1, . . . , An = (an, bn] × On, Oi ∈ O, the counts

N(Ai) = N((a1, b1] × Oi) = #{t ∈ (ai, bi] : ∆t ∈ Oi}, i = 1, . . . , n

are independent random variables and

inhom(b) N(Ai) ∼ Poi((bi − ai)ν(Oi)).

For us, E = R \ {0} is the space of jump sizes, and ν(Oi) = ν((ci, di)) =
∫ di

ci
g(x)dx

for an intensity function g : R \ {0} → [0,∞). Property (a) for all open sets is then
equivalent to property (a) for all measurable sets or all half-open intervals or all closed
intervals etc. (all that matters is that the collection generates the Borel σ-algebra). It is
an immediate consequence of the definition (and this discussion) that for (measurable)
disjoint B1, B2, . . . ⊂ R \ {0}, the “restricted” processes

∆
(i)
t = ∆t1{∆t∈Bi}, t ≥ 0,

are also Poisson point processes with the restriction of g to Bi as intensity function,
and they are independent. We used this fact crucially and repeatedly in two forms.
Firstly, for B1 = (0,∞) and B2 = (−∞, 0) (and B3 = B4 = . . . = ∅), we consider
Poisson point processes of positive points (jump sizes) and of negative points (jump
sizes). We constructed from them independent Lévy processes. Secondly, for a sequence
∞ = a0 > a1 > a2 > . . ., we considered Bi = [ai, ai−1), i ≥ 1, so as to simulate separately
independent Lévy processes (in fact compound Poisson processes with linear drift) with
jump sizes only in Bi.

9.5 Appendix: Consolidation on the compensation

of jumps

The general Lévy process requires compensation of small jumps in its approximation by
processes with no jumps in (−ε, ε), as ε ↓ 0. This is reflected in its characteristic function
of the form

E(eiλXt) = e−tψ(λ), ψ(λ) = −ia1λ+
1

2
σ2λ2−

∫ ∞

−∞
(eiλx−1−iλx1{|x|≤1})ν(dx), λ ∈ R, (1)
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where usually ν(dx) = g(x)dx. This is a parametrisation by (a1, σ
2, ν) or (a1, σ

2, g),
where we require the (weak) integrability condition

∫∞
−∞(1 ∧ x2)ν(dx) <∞.

The first class of Lévy processes that we constructed systematically were subordina-
tors, where no compensation was necessary. We parametrised them by parameters a2 ≥ 0
and g : (0,∞) → [0,∞) (or ν measure on (0,∞)) so that the moment generating function
is of the form

E(eγXt) = etΨ(γ), Ψ(γ) = a2γ +

∫ ∞

0

(eγx − 1)ν(dx), γ ≤ 0. (2)

We required the stronger integrability condition
∫∞
0

(1 ∧ x)ν(dx) < ∞. Similarly, for
differences of subordinators, we have a characteristic function

E(eiλXt) = e−tψ(λ), ψ(λ) = −ia2λ+
1

2
σ2λ2 −

∫ ∞

−∞
(eiλx − 1)ν(dx), (3)

under the stronger integrability condition
∫∞
−∞(1 ∧ |x|)ν(dx) < ∞. Compensation in (1)

is only done for small jumps. This is, because, in general the indicator 1{|x|≤1} cannot be
omitted. However, if

∫∞
−∞(x ∧ x2)ν(dx) <∞, then we can also represent

E(eiλXt) = e−tψ(λ), ψ(λ) = −ia3λ+
1

2
σ2λ2 −

∫ ∞

−∞
(eiλx − 1 − iλx)ν(dx). (4)

Equations (1), (3) and (4) are compatible whenever any two integrability conditions are
fulfilled, since the linear (in λ) terms under the integral can be added to a1 to give

a2 = a1 +

∫

{|x|≤1}
xν(dx) and a3 = a1 −

∫

{|x|>1}
xν(dx).

Note that then (by differentiation at λ = 0), we get a3 = E(X1). If a3 = 0, then (Xt)t≥0

is a martingale. On the other hand, for processes with finite jump intensity, i.e. under
the even stronger integrability condition

∫∞
−∞ g(x)dx < ∞, we get a1 as the slope of the

paths of X between the jumps. Both a1 and a3 are therefore natural parameterisations,
but not available, in general. a2 is available in general, but does not have such a natural
interpretation.

We use characteristic functions for similar reasons: in general, moment generat-
ing functions do not exist. If they do, i.e. under a strong integrability condition∫∞
1
eγxν(dx) <∞ for some γ > 0 or

∫ −1

−∞ eγxν(dx) <∞ for some γ < 0, we get

E(eγXt) = etΨ(γ), Ψ(γ) = a1γ +
1

2
σ2γ2 +

∫ ∞

−∞
(eγx − 1 − γx1{|x|≤1})g(x)dx. (5)

Moment generating functions are always defined on an interval I possibly including end
points γ− ∈ [−∞, 0] and/or γ+ ∈ [0,∞], we always have 0 ∈ I, but maybe γ− = γ+ = 0.
If 1 ∈ I and a1 is such that Ψ(1) = 0, then (eXt)t≥0 is a martingale.



Lecture 10

Lévy markets and incompleteness

Reading: Schoutens Chapters 3 and 6

10.1 Arbitrage-free pricing (from B10b)

By Donsker’s Theorem, Brownian motion is the scaling limit of most random walks and
in particular of the simple symmetric random walk Rn = X1 + . . .+Xn where X1, X2, . . .
are independent with P(Xi = 1) = P(Xi = −1) = 1/2.

Corollary 67 For simple symmetric random walk (Rn)n≥0, we have eR[nt]/
√
n → eBt ,

geometric Brownian motion, in distribution as n→ ∞.

Proof: First note that E(X1) = 0 and Var(X1) = 1. Now for all x > 0

P(eR[nt]/
√
n ≤ x) = P(R[nt]/

√
n ≤ ln(x)) → P(Bt ≤ ln(x)) = P(eBt ≤ x),

by the Central Limit Theorem. 2

This was convergence of for fixed t. Stronger convergence, locally uniformly in t can also
be shown. Note that (Rn)n≥0 is a martingale, and so is (Bt)t≥0. However,

E(eRn) =

(
1

2
e−1 +

1

2
e

)n
→ ∞

Proposition 68 For non-symmetric simple random walk (Rn)n≥0 with P(Xi = 1) = p,
the process (eRn)n≥0 is a martingale if and only if p = 1/(1 + e).

Proof: By the fourth and first rules for conditional expectations, we have

E(eRn+1 |eR0 , . . . , eRn) = E(eRneXn+1 |eR0 , . . . , eRn) = eRnE(eXn+1)

and so, (eRn)n≥0 is a martingale if and only if

1 = E(eXn+1) = pe+ (1 − p)e−1 ⇐⇒ p(e− 1/e) = 1 − 1/e ⇐⇒ p = 1/(e+ 1). 2

The argument works just assuming that Rn = X1 + . . .+Xn, n ≥ 0, satisfies P(|Xn+1| =
1|R0 = r0, . . . , Rn = rn) = 1. Among all joint distributions, the non-symmetric exponen-
tiated random walk with p = 1/(1 + e) is the only martingale.

The concept of arbitrage-free pricing in binary models is leaving aside any randomness.
We will approach the Black-Scholes model from discrete models.

43
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Suppose we have a risky asset with random price process S per unit and a risk-free
asset with deterministic value function A per unit. Consider portfolios (U, V ) of U units
of the risky asset and V units of the risk-free asset. We allow that (Ut, Vt) depends on
the performance of (Ss)0≤s<t but not on (Ss)s≥t. We denote the value of the portfolio at
time t by Wt = UtSt+VtAt. The composition of the portfolio may change with time, but
we consider only self-financing ones, for which any risky asset bought is paid for from
the risk-free asset holdings and vice versa. We say that arbitrage opportunities exist if
there is a self-financing portfolio process (U, V ) and a time t so that P(W0 = 0) = 1,
P(Wt ≥ 0) = 1 and P(Wt > 0) > 0. We will be interested in models where no arbitrage
opportunities exist.

Example 69 (One-period model) There are two scenarios “up” and “down” (to which
we may later assign probabilities p ∈ (0, 1) and 1 − p). The model consists of (S0, S1)
only, where S0 changes to S1(up) or S1(down) < S1(up) after one time unit. The risk-free
asset will evolve from A0 to A1. At time 0, we have W0 = U0S0 + V0A0. At time 1, the
value will change to either

W1(up) = U0S1(up) + V0A1 or W1(down) = U0S1(down) + V0A1. (1)

It is easily seen that arbitrage opportunities occur if and only if A1/A0 ≥ S1(up)/S0 or
S1(down)/S0 ≥ A1/A0, i.e. if one asset is uniformly preferable to the other.

A derivative security (or contingent claim) with maturity t is a contract that provides
the owner with a payoff Wt dependent on the performance of (Ss)0≤s≤t. If there is a
self-financing portfolio process (U, V ) with value Wt at time t, then such a portfolio
process is called a hedging portfolio process replicating the contingent claim. The value
W0 = U0S0 + V0A0 of the hedging portfolio at time 0 is called the arbitrage-free price of
the derivative security. It is easily seen that there would be an arbitrage opportunity, if
the derivative security was available to buy and sell at any other price (as an additional
asset in the model). In general, not all contingent claims can be hedged.

Example 69 (One-period model, continued) Consider any contingent claim, i.e. a
payoff of W1(up) or W1(down) according to whether scenario “up” or “down” take place.
Equations (1) can now be used to set up a hedging portfolio (U0, V0) and calculate the
unique arbitrage-free price. Note that the arbitrage-free price is independent of proba-
bilities p ∈ (0, 1) and 1− p that we may assign to the two scenarios as part of our model
specification. Because of the linearity of (1), there is a unique q ∈ (0, 1) such that for all
contingent claims W1 : {up, down} → R

W0 = qW1(up) + (1 − q)W1(down).

If we refer to q and 1−q as probabilities of “up” and “down”, then W0 is the expectation
of W1 under this distribution. If A0 = A1 = 1, S0 = 1, S1(up) = e, S1(down) = e−1, then
we identify (for W1 = S1 and hence (U0, V0) = (1, 0)) that q = 1/(1 + e).

The property that every contingent claim can be hedged by a self-financing portfolio
process is called completeness of the market model.
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Example 70 (n-period model) Each of n periods has two scenarios, “up” and “down”,
as is the case for the model Sk = eRk for a simple random walk (Rk)0≤k≤n. Then there
are 2n different combinations of “up” (Xk = 1) and “down” (Xk = −1). A contingent
claim at time n is now any function Wn assigning a payoff to each of these combina-
tions. By a backward recursion using the one-period model as induction step, we can
work out hedging portfolios (Uk, Vk) and the value Wk of the derivative security at times
k = n − 1, n − 2, . . . , 0, where in each case, (Uk, Vk) and Wk will depend on previous
“up”s and “down”s X1, . . . , Xk, so this is a specification of 2k values each. W0 will be
the unique arbitrage-free price for the derivative security. The induction also shows that,
for A0 = A1 = . . . = An = 1, it can be worked out as

W0 = E(Wn(X1, . . . , Xn)), where Xk independent with P(Xk = 1) = 1/(1 + e),

and that (Wk)0≤k≤n is a martingale with Wk = E(Wn|X1, . . . , Xk), e.g. (Sk)0≤k≤n. If
Ak = (1 + i)k = eδk, we get an arbitrage-free model if and only if −1 < δ < 1, and then

W0 = e−δnE(Wn), where Xk independent with P(Xk = 1) = (e1+δ − 1)/(e2 − 1),

where now (e−δkWk)0≤k≤n is a martingale. In particular, the n-period model is complete.

Example 71 (Black-Scholes model) Let St = S0 exp{σBt + (µ− 1
2
σ2)t} for a Brow-

nian motion (Bt)t≥0 and two parameters µ ∈ R and σ2 > 0. Also put At = eδt. It
can be shown that also in this model, every contingent claim can be hedged, i.e. the
Black-Scholes model is complete. Moreover, the pricing of contingent claims Wt can be
carried out using the risk-neutral process

Rt = S0 exp{σBt + (δ − 1
2
σ2))t}, t ≥ 0,

where the drift parameter is δ, not µ. The discounted process Mt = e−δtRt is a martingale
and has analogous uniqueness properties to the martingale for the n-period model, but
they are much more complicated to formulate here.

The arbitrage-free price of Wt = G((Ss)0≤s≤t) is now (for all µ ∈ R)

W0 = e−δtE(G((Rs)0≤s≤t)).

Examples are G((Ss)0≤s≤t) = (St−K)+ for the European call option and G((Ss)0≤s≤t) =
(K − St)

+ for the European put option. We will also consider path-dependent options
such as Up-and-out barrier options with payoff (St−K)+1{St<H}, where St = sup0≤s≤t Ss
and H is the barrier. The option can only be exercised if the stock price does not exceed
the barrier H at any time before maturity.

10.2 Introduction to Lévy markets

The Black-Scholes model is widely used for option pricing in the finance industry, largely
because many options can be priced explicitly and there are computationally efficient
methods also for more complicated derivatives, that can be carried out frequently and for
high numbers of options. However, its model fit is poor and any price that is obtained
from the Black-Scholes model must be adjusted to be realistic. There are several models
based on Lévy processes that offer better model fit, but the Black-Scholes methods for
option pricing do not transfer one-to-one. Lévy processes give a very wide modelling
freedom. For practical applications it is useful to work with parametric subfamilies.
Several such families have been suggested.
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Example 72 (CGMY process) Carr, Geman, Madan and Yor proposed a model with
four parameters (the first letters of their names. It is defined via its intensity

g(x) = C exp{−G|x|}|x|−Y−1, x < 0, g(x) = C exp{−M |x|}|x|−Y−1, x > 0.

Let (Xt)t≥0 be a CGMY process. If M > 1, then a risk-neutral price process can be
modelled as Rt = R0 exp{Xt − t(φ(1) − δ)}. Then the discounted process (e−δtRt)t≥0

is a martingale, and it can be shown that arbitrage-free prices for contingent claims
Wt = G((Rs)0≤s≤t) can be calculated as

W0 = e−δtE(G((Rs)0≤s≤t)).

It can also be shown, however, that this is not the only way to obtain arbitrage-free
prices, and other prices do not necessarily lead to arbitrage opportunities. Also, not
every contingent claim can be hedged, the model is not complete.

10.3 Incomplete discrete financial markets

Essentially, arbitrage-free discrete models are complete only if the number of possible
scenarios ω0, . . . , ωm (for one period) is the same as the number of assets S

(1)
1 , . . . , S

(m)
1 :

Ω = {ω0, . . . , ωm} → R in the model, since this leads to a system of linear equations to
relate a contingent claim W1 : {ω0, . . . , ωm} → R to a portfolio (U (1), . . . , U (m), V )

V0A1 +
m∑

i=1

U
(i)
0 S

(i)
1 (ωj) = W1(ωj), j = 0, . . . , m

that can usually be uniquely solved for (U
(1)
0 , . . . , U

(m)
0 , V0), and we can read off

W0 = V0A0 +

m∑

i=1

U
(i)
0 S

(i)
0 .

If the number of possible scenarios is higher, then the system does not have a solution,
in general (and hedging portfolios will not exist, in general). If the number of possible
scenarios is lower, there will usually be infinitely many solutions.

If the system has no solution in general, the model is incomplete, but this does not
mean that there is no price. It means that there is not a unique price. We can, in
general, get some lower and upper bounds for the price imposed by no-arbitrage. One
way of approaching this is to add a derivative security to the market as a further asset
with an initial price that keeps the no arbitrage property for the extended model. One
can, in fact, add more and more assets until the model is complete. Then there exist
unique probabilities qj = P(ωj), 0 ≤ j ≤ m, that make all discounted assets (A0/A1)S

(j),
1 ≤ j ≤ m (including the ones added to complete the market) martingales.

Example 73 (Ternary model) Suppose there are three scenarios, but only two assets.
The model with S0 = 1 = A0 < A1 = 2, and 1 = S1(ω0) < 2 = S1(ω1) < 3 = S1(ω2)
is easily seen to be arbitrage-free since S1(ω0) < A1 < S1(ω2). The contingent claim
0 = W1(ω0) = W1(ω1) < W1(ω2) = 1 can be hedged if and only if

2V0 + U0 = 0, 2V0 + 2U0 = 0, 2V0 + 3U0 = 1,



Lecture 10: Lévy markets and incompleteness 47

but the first two equations already imply U0 = V0 = 0 and then the third equation is
false. Therefore the contingent claim W1 cannot be hedged. The model is not complete.

For the model (W,S,A) to be arbitrage-free we clearly require W0 > 0 since otherwise
we could make arbitrage with a portfolio (1, 0, 0), just “buying” the security. Its cost at
time zero is nonpositive and its value at time one is nonnegative and positive for scenario
ω2. Now note that (S,A) is arbitrage-free, so any arbitrage portfolio must be of the form
(−1/W0, U0, V0) with zero value −1 + U0 + V0 = 0 at time 0 and values at time 1

U0 + 2V0 = 2 − U0, 2U0 + 2V0 = 2 > 0, −1/W0 + 3U0 + 2V0 = −1/W0 + 2 + U0,

so that we need 2 ≥ U0 ≥ 1/W0 − 2, and this is possible if and only if W0 ≥ 1/4.
Therefore, the range of arbitrage-free prices is W0 ∈ (0, 1/4).

We can get these prices as expectations under martingale probabilities:

1 =
1

2
Eq(S1) =

1

2
q0 + q1 +

3

2
q2, W0 =

1

2
Eq(W1) =

1

2
q2, q0 + q1 + q2 = 1.

This is a linear system for (q0, q1, q2) that we solve to get

q0 = q2 = 2W0, q1 = 1 − 4W0

and this specifies a probability distributon on all three scenarios iff W0 ∈ (0, 1/4). Since
we can express every contingent claim as a linear combination of A1, S1,W1, we can now
price every contingent claim X1 under the martingale probabities as X0 = 1

2
Eq(X1).
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Lecture 11

Lévy markets and time-changes

11.1 Incompleteness and martingale probabilities in

Lévy markets

By a Lévy market we will understand a model (S,A) of a risky asset St = exp{Xt} for
a Lévy process X = (Xt)t≥0 and a deterministic risk-free bank account process, usually
At = eδt, t ≥ 0. We exclude deterministic Xt = µt in the sequel.

Theorem 74 (No arbitrage) A Lévy market allows arbitrage if and only if either Xt−
δt is a subordinator or δt−Xt is a subordinator.

Proof: We only prove that these cases lead to arbitrage opportunities. If Xt − δt is a
subordinator, then the portfolio (1,−1) is an arbitrage portfolio. 2

The other direction of proof is difficult, since we would need technical definitions of
admissible portfolio processes and related quantities.

No arbitrage is closely related (almost equivalent) to the existence of martingale prob-
abilities. Formally, an equivalent martingale measure Q is a probability measure which
has the same sets of zero probability as P, i.e. under which the same things are possi-
ble/impossible as under P, and under which (e−δtSt)t≥0 is a martingale. For simplicity,
we will not bother about this passage to a so-called risk-neutral world that is different
from the physical world. Instead, we will consider models where (e−δtSt)t≥0 is already
a martingale. Prices of the form W0 = e−δtEQ(Wt) are then arbitrage-free prices. The
range of arbitrage-free prices is

{
e−δtEQ(Wt) : Q martingale measure equivalent to P

}
.

The proof of incompleteness is also difficult, but the result is not hard to state:

Theorem 75 (Completeness) A Lévy market is complete if and only if (Xt)t≥0 is
either a multiple of Brownian motion with drift, Xt = µt + σBt or a multiple of the
Poisson process with drift, Xt = at+ bNt (with (a− δ)b < 0 to get no arbitrage).

Completeness is closely related (almost equivalent) to the uniqueness of martingale
probabilities. In an incomplete market, there are infinitely many choices for these mar-
tingale probabilities. This raises the question of how to make the right choice. While
we can determine an arbitrage-free system of prices for all contingent claims, we cannot
hedge the contingent claim, and this presents a risk to someone selling e.g. options.
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11.2 Option pricing by simulation

If we are given a risk-neutral price process (martingale) (St)t≥0, we can price contingent
claims G((Ss)0≤s≤t) as expectations

P = e−δtE(G((Ss)0≤s≤t)).

Often, such expectations are difficult to work out theoretically or numerically, particularly
for path-dependent options such as barrier options. Monte-Carlo simulation always works,
by the strong law of large numbers:

1

n

n∑

k=1

G((S(k)
s )0≤s≤t) → E(G((Ss)0≤s≤t) almost surely,

as n → ∞, where (S
(k)
s )0≤s≤t are independent copies of (Ss)0≤s≤t. By simulating these

copies, we can approximate the expectation on the right to get the price of the option.

Figure 11.1: Option pricing by simulation

11.3 Time changes

Lévy markets are one way to address shortcomings of the Black-Scholes model. Particu-
larly quantities such as one-day return distributions can be fitted well. Other possibilities
include modifications to the Black-Scholes model, where the speed of the market is mod-
elled separately. The rationale behind this is to capture days with increased activity (and
hence larger price movements) by notions of operational versus real time. In operational
time, the price process follows a Brownian motion, but in real time, a busy day corre-
sponds to several days in operational time, while a quiet day corresponds to a fraction of
a day in operational time.

The passage from operational to real time is naturally modelled by a time-change
y 7→ τy, which we will eventually model by a stochastic process built from a Poisson point
process. The price process is then (Bτy)y≥0. This stochastic process cannot be observed
directly in practice, but approximations of quadratic variation permit to estimate the
time change.

The most elementary time change is for τy = f(y), a deterministic continuous strictly
increasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(∞) = ∞. In this case, the
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time-changed process Zy = Xf(y), y ≥ 0, visits the same states as X in the same order as
X, performing the same jumps as X, but travelling at a different speed. Specifically, if
f(y) << y, then, by time y, the process X will have gone toXy, but Z only to Zy = Xf(y).
We say that Z has evolved more slowly than X, and faster if instead f(y) >> y. If f
is differentiable, we can more appropriately make local speed statements according to
whether f ′(y) < 1 or f ′(y) > 1. Note, however, that “speed” really is “relative speed”
when comparing X and Z, since X is not “travelling at unit speed” in a sense of rate
of spatial displacement; jumps and particularly unbounded variation make such notions
useless. We easily calculate

E(eiλZy) = E(eiλXf(y)) = e−f(t)ψ(λ), if E(eiλXt) = e−tψ(λ).

and see that Z is a stochastic process with independent increments and right-continuous
paths with left limits, but will only have stationary increments if f(y) = cy for all y ≥ 0
and some c ∈ (0,∞).

Example 76 (Foreign exchange rates) Suppose that the EUR/USD-exchange rate
today is S0 and you wish to model the exchange rate (St)t≥0 over the next couple of days.
As a first model you might think of

St = S0 exp{σBt − tσ2/2},

where B is a standard Brownian motion σ is a volatility parameter that measures the
magnitude of variation. This magnitude is related to the amount of activity on the
exchange markets and will be much higher for the EUR/USD-exchange rate than e.g.
for the EUR/DKK-exchange rate (DansKe Kroner, Danish crowns are not traded so
frequently in such high volumes. Also, DKK is closely aligned with EUR due to strong
economic ties between Denmark and the Euro countries).

However, in practice, trading activity is not constant during the day. When stock
markets in the relevant countries are open, activity is much higher than when they are
all closed and a periodic function f ′ : [0,∞) → [0,∞) can explain a good deal of this
variability and provide a better model

St = S0 exp{σBf(y) − f(y)σ2/2} = S0 exp{B̃ ef(y) − f̃(y)/2},

where B̃s = σBs/σ2 , s ≥ 0, is also a standard Brownian motion and f̃(y) = f(y)σ2 makes

the parameter σ redundant – the flexibility for f̃ retains all modelling freedom.

If we weaken the requirement of strict monotonicity to weak monotonicity and f(y) =
c, y ∈ [l, r), is constant on an interval, then Zy = Xc, y ∈ [l, r), during this interval.
For a financial market model this can be interpreted as time intervals with no market
activity, when the price will not change.

If we weaken the continuity of f to allow (upward) jumps, then Zy = Xf(y), y ≥ 0,
does not evaluate X everywhere. Specifically, if ∆f(y) > 0 is the only jump of f , then
Z will visit the same points as X in the same order until Xf(y−)− and then skip over
(Xf(y−)+s)0≤s<∆f(y) to directly jump to Xf(y). In general, this is the behaviour at every
jump of f .
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Figure 11.2: piecewise constant volatility

11.4 Quadratic variation of time-changed Brownian

motion

In Section 6.1 we studied quadratic variation of Brownian motion in order to show that
Brownian motion has infinite total variation (and is therefore not the difference of two
increasing processes). Let us here look at quadratic variation of time-changed Brownian
motion Zy = Bf(y) for an increasing function f : [0,∞) → [0,∞):

[Z]t = p− lim
n→∞

[Z]
(n)
t , where [Z]

(n)
t =

[2nt]∑

j=1

(Zj2−n − Z(j−1)2−n)2

and p − lim denotes a limit of random variables in probability. One may expect that
[B]t = t implies that [Z]y = f(y), and this is true under suitable assumptions.

Proposition 77 Let B be Brownian motion and f : [0,∞) → [0,∞) continuous and
increasing with f(0) = 0. Then [Z]y = f(y) for all y ≥ 0.

Proof: The proof (for Z) is the same as for Brownian motion (B) itself, see Section 6.1
and Assignment 6. 2

Quadratic variation is accumulated locally. Under the continuity assumption of Brow-
nian motion and its time change, it is the wiggly local behaviour of Brownian motion
that generates quadratic variation. In Section 6.1 we showed that under the no-jumps
assumption, positive quadratic variation implies infinite total variation. Hence, still un-
der the no-jumps assumption, finite total variation implies zero quadratic variation. But
what is the impact of jumps on quadratic variation? It can be shown as in Proposition
3 that

[f ]y ≥
∑

s≤y
|∆fs|2.

Example 78 Consider a piecewise linear function f : [0,∞) → [0,∞) with slope 0.1
and jumps ∆f2k−1 = 1.8, k ≥ 1. Then f(2k) = 2k, but by Proposition 77

[f ]2k ≥
∑

s≤2k

|∆fs|2 = k(1.8)2 = 3.24k
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and, in fact, this is an equality, since

[f ]
(n)
2k = k(1.8 + 2−n0.1)2 + (2n+1 − 1)k(2−n0.1)2 → k(1.8)2.

Now define Zy = Bf(y) and note that

[Z]
(n)
2k =

k∑

i=1

(
2n−1∑

j=1

(B(2i−2)+j2−n0.1 − B(2i−2)+(j−1)2−n0.1)
2

+(B2i−0.1 − B(2i−2)+0.1−2−n)2

+
2n∑

j=1

(B2i−(j−1)2−n0.1 −B2i−j2−n0.1)
2

)

→ 2k0.1 +
k∑

i=1

(B2i−0.1 − B(2i−2)+0.1)
2,

as n→ ∞, which is actually 0.1(2k)+
∑

s≤2k |∆Zs|2. Note that this is a random quantity.

In general, quadratic variation consists of a continuous part due to Brownian fluctu-
ations and the sum of squared jump sizes.
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Lecture 12

Subordination and stochastic
volatility

Subordination is the operation Xτy , y ≥ 0, for a Lévy (or more general Markov) process
(Xt)t≥0 and a subordinator (τy)y≥0. One distinguishes subordination in the sense of
Bochner, where X and τ are independent and subordination in the wide sense where τy
is a stopping time for all y ≥ 0. These are both special cases of the more general concept
of time change, where (τy)y≥0 does not have to be a subordinator.

12.1 Bochner’s subordination

Theorem 79 (Bochner) Let (Xt)t≥0 be a Lévy process and (τy)y≥0 an independent sub-
ordinator. Then the process Zy = Xτy , y ≥ 0, is a Lévy process, and we have

E(eiλZy) = e−yΦ(ψ(λ)), where E(eiλXt) = e−tψ(λ) and E(e−qτy) = e−yΦ(q).

Proof: First calculate by conditioning on τy (assuming that τy is continuous with prob-
ability density function fτy)

E(exp{iλZy}) = E(exp{γXτy}) =

∫ ∞

0

fτy(t)E(exp{iλXt})dt

=

∫ ∞

0

fτy(t) exp{−tψ(λ)}dt = e−yΦ(ψ(λ)).

Now, for r, s ≥ 0,

E(exp{iλZy + iµ(Zy+x − Zy)})

=

∫ ∞

0

∫ ∞

0

fτy ,τy+x−τy(t, u)E(exp{iλXt + iµ(Xt+u −Xt)})dtdu

=

∫ ∞

0

∫ ∞

0

fτy(t)fτx(u)e
−tψ(λ)e−uψ(µ)dtdu = e−yΦ(ψ(λ))e−xΦ(ψ(µ)),

so that we deduce that Zy and Zy+x − Zy are independent, and that Zy+x − Zy ∼ Zx.
For the right-continuity of paths, note that

lim
ε↓0

Zy+ε = lim
ε↓0

Xτy+ε
= Xτy = Zy,
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since τy + δ := τy+ε ↓ τy and therefore Xτy+δ → Xτy . For left limits, the same argument
applies. 2

Note that ∆Zy = Zy − Zy− = Xτy − Xτy− 6= can be non-zero if either ∆τy 6= 0, or
∆Xτy 6= 0, so Z inherits jumps from τ and from X. We have, with probability 1 for all
y ≥ 0 that

∆Zy = Xτy −Xτy−− =

{
(∆X)τy if (∆X)τy 6= 0,
Xτy −Xτy− if ∆τy 6= 0.

Note that we claim that Xτy− = Xτy−−, i.e. (∆X)τy− 6= 0 if ∆τy 6= 0, for all y ≥ 0
with probability 1. This is due to the fact that the countable set of times {τy−, τy : y ≥
0 and ∆τy 6= 0} is a.s. disjoint from {t ≥ 0 : ∆Xt 6= 0}.

Note also that Xτy = Xτy− is possible with positive probability, certainly in the case
of a compound Poisson process X.

Heuristically, if Xt has density ft and τ Lévy density gτ , then Z will have Lévy density

g(z) :=

∫ ∞

0

ft(z)gτ (t)dt, z ∈ R, (1)

since every jump of τ of size ∆τy = t leads to a jump Xτy − Xτy− ∼ Xt, and the total
intensity of jumps of size z receives contributions from τ -jumps of all sizes t ∈ (0,∞).
We can make this precise as follows:

Proposition 80 Let X be a Lévy process with probability density function ft of Xt,
t ≥ 0, τ a subordinator with Lévy-Khintchine characteristics (0, gτ), then Zy = Xτy has
Lévy-Khintchine characteristics (0, 0, g), where g is given by (1).

Proof: Consider a Poisson point process (∆y)y≥0 with intensity function g, then, by the
Exponential Formula

E

(
exp

{
iλ
∑

s≤y
∆s1{|∆s|>ε}

})

= exp

{
y

∫ ∞

−∞
(eiλz − 1)g(z)1{|z|>ε}dz

}

= exp

{
y

∫ ∞

0

∫ ∞

−∞
(eiλz − 1)ft(z)1{|z|>ε}dzgτ (t)dt

}

→ exp

{
−y
∫ ∞

0

(1 − e−tψ(λ))gτ(t)dt

}
= exp {−yΦ(ψ(λ))} ,

as ε ↓ 0, and this is the same distribution as we established for Zy. 2

Note that we had to prove convergence in distribution as ε ↓ 0, since we have not
studied integrability conditions for g. This is done on Assignment sheet 6.

Corollary 81 If X is Brownian motion and τ has characteristics (b, gτ ), then Zy = Xτy

has characteristics (0, b, g).
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Proof: Denote Φ0(q) = Φ(q) − bq. Then the calculation in the proof of the proposition
does not yield a characteristic exponent Φ(ψ(λ)), but Φ0(ψ(λ)). Note that Φ(ψ(λ)) =
Φ(1

2
λ2) = 1

2
bλ2 + Φ0(ψ(λ)), so we consider

bBt +
∑

s≤t
∆s

for an independent Brownian motion B, which has characteristic exponent as required.
2

Example 82 If we define the Variance Gamma process by subordination of Brownian
motion B by a Gamma(α, θ) subordinator τ with Lévy density gτ (y) = αy−1e−θy, then
we obtain a Lévy density

g(z) =

∫ ∞

0

ft(z)gτ (t)dt =

∫ ∞

0

1√
2πt

e−z
2/(2t)αt−1e−θtdt

and we can calculate this integral to get

g(z) = α|z|−1e−
√

2θ|z|

as Lévy density. The Variance Gamma process as subordinated Brownian motion has
an interesting interpretation when modelling financial price processes. In fact, the stock
price is then considered to evolve according to the Black-Scholes model, but not in real
time, but in operational time τy, y ≥ 0. Time evolves as a Gamma process, with infinitely
many jumps in any bounded interval.

Note that all Lévy processes that we can construct as subordinated Brownian motions
are symmetric. However, not all symmetric Lévy processes are subordinated Brownian
motions,

12.2 Ornstein-Uhlenbeck processes

Example 83 (Gamma-OU process) Let (Nt)t≥0 be a Poisson process with intensity
aλ and jump times (Tk)k≥1, (Xn)n≥1 a sequence of independent Gamma(1, b) random
variables, Y0 ∼ Gamma(a, b), consider the stochastic process

Yt = Y0e
−λt +

Nt∑

k=1

Xne
−λ(t−Tk)

We use this model for the speed of the market and think of an initial speed of Y0 which
slows down exponentially, but at times of a Poisson process, events occur that make the
speed jump up at times Tk, k ≥ 0. Each of these also slow down exponentially. In fact,
there is a strong equilibrium in that

E(e−qYt) = E(e−qe
−λtY0)E

(
exp

{
−q

Nt∑

k=1

Xke
−λ(t−Tk)

})

=

(
b

b+ qe−λt

)a ∞∑

n=0

(λat)n

n!
e−λat

(∫ t

0

1

t

b

b+ qe−λs
ds

)n

=

(
b

b+ qe−λt

)a(
b+ qe−λt

b+ q

)a
=

(
b

b+ q

)a
,



58 Lecture Notes – MS3b Lévy Processes and Finance – Oxford HT 2010

so Yt has the same distribution as Y0. In fact, (Yt)t≥0 is a stationary Markov process.
The process Y is called a Gamma-OU process, since it has the Gamma distribution as
its stationary distribution. The time change process

τy =

∫ y

0

Ysds

associated with speed Y is called integrated Ornstein-Uhlenbeck process. Note that
the stationarity of Y implies that τ has stationary increments, but note that τ does
not have independent increments. The associated stochastic volatility model is now the
time-changed Brownian motion (Bτy)y≥0.

In general, we can define Ornstein-Uhlenbeck processes associated with any subordi-
nator Z or rather its Poisson point process (∆Zt)t≥0 of jumps as

Yt = Y0e
−λt +

∑

s≤t
∆Zse

−λ(t−s),

for any initial distribution for Y0, but a stationary distribution can also be found.
We can always associate a stochastic volatility model (Bτy)y≥0 using the integrated

volatility τy =
∫
y
Ysds as time change. Note that, by the discussion of the last section,

we can actually infer the time change from sums of squared increments for a small time
lag 2−n, even though the actual time change is not observed. In practice, the so-called
market microstructure (piecewise constant prices) destroys model fit for small times, so
we need to choose a moderately small 2−n. In practice, 5 minutes is a good choice.

12.3 Simulation by subordination

Note that we can simulate subordinators using simulation Method 1 (Time discretisa-
tion) or Method 2 (Throwing away the small jumps). The latter consisted essentially in
simulating the Poisson point process of jumps of the subordinator. Clearly, we can apply
this method also to simulate an Ornstein-Uhlenbeck process.

Method 3 (Subordination) Let (τy)y≥0 be an increasing process that we can simulate,
and let (Xt)t≥0 be a Lévy process with cumulative distribution function Ft of Xt. Fix a
time lag δ > 0. Then the process

Z(3,δ)
y = S[y/δ], where Sn =

n∑

k=1

Ak and Ak = F−1
τkδ−τ(k−1)δ

(Uk)

is the time discretisation of the subordinated process Zy = Xτy .

Example 84 We can use Method 3 to simulate the Variance Gamma process, since we
can simulate the Gamma process τ and we can simulate the Ak. Actually, we can use
the Box-Muller method to generate standard Normal random variables Nk and then use

Ãk ∼
√
τkδ − τ(k−1)δNk, k ≥ 1,

instead of Ak, k ≥ 1.



Lecture 13

Level passage problems

Reading: Kyprianou Sections 3.1 and 3.3

13.1 The strong Markov property

Recall that a stopping time is a random time T ∈ [0,∞] such that for every s ≥ 0
the information Fs up to time s allows to decide whether T ≤ s. More formally, if the
event {T ≤ s} can be expressed in terms of (Xr, r ≤ s) (is measurable with respect to
Fs = σ(Xr, r ≤ s)). The prime example of a stopping time is the first entrance time
TI = inf{t ≥ 0 : Xt ∈ I} into a set I ⊂ R. Note that

{T ≤ s} = {there is r ≤ s such that Xr ∈ I}

(for open sets I we can drop the irrational r ≤ s to show measurability.).

We also denote the information FT up to time T . More formally,

FT = {A ∈ F : A ∩ {T ≤ s} ∈ Fs for all s ≥ 0},

i.e. FT contains those events that, if T ≤ s, can be expressed in terms of (Xr, r ≤ s), for
all s ≥ 0.

Recall the simple Markov property which we can now state as follows. For a Lévy pro-
cess (Xt)t≥0 and a fixed time t, the post-t process (Xt+s−Xt)s≥0 has the same distribution
as X and is independent of the pre-t information Ft.

Theorem 85 (Strong Markov property) Let (Xt)t≥0 be a Lévy process and T a stop-
ping time. Then given T < ∞, the post-T process (XT+s − XT )s≥0 has the same distri-
bution as X and is independent of the pre-T information FT .

Proof: Let 0 < s1 < . . . < sm, C1, . . . , Cm ⊂ R closed, A ∈ FT . Then we need to show
that

P(A, T <∞, XT+s1 −XT ≤ c1, . . . , XT+sm −XT ≤ cm)

= P(A, T <∞)P(Xs1 ≤ c1, . . . , Xsm ≤ cm).

59
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First define stopping times Tn = 2−n([2nT ] + 1), n ≥ 1, that only take countably many
values. These are the next dyadic rationals after time T . Note that Tn ↓ T as n → ∞.
Now note that A ∩ {Tn = k2−n} ∈ Fk2−n and the simple Markov property yields

P(A, Tn <∞, XTn+s1 −XTn ≤ c1, . . . , XTn+sm −XTn ≤ cm)

=
∞∑

k=0

P(A, Tn = k2−n, Xk2−n+s1 −Xk2−n ≤ c1, . . . , Xk2−n+sm
−Xk2−n ≤ cm)

=

∞∑

k=0

P(A, Tn = k2−n)P(Xs1 ≤ c1, . . . , Xsm ≤ cm)

= P(A, Tn <∞)P(Xs1 ≤ c1, . . . , Xsm ≤ cm).

Now the right-continuity of sample paths ensures XTn+sj
→ XT+sj

as n → ∞ and we
conclude

P(A, T <∞, XT+s1 −XT ≤ c1, . . . , XT+sm −XT ≤ cm)

= lim
n→∞

P(A, Tn <∞, XTn+s1 −XTn ≤ c1, . . . , XTn+sm −XTn ≤ cm)

= lim
n→∞

P(A, Tn <∞)P(Xs1 ≤ c1, . . . , Xsm ≤ cm)

= P(A, T <∞)P(Xs1 ≤ c1, . . . , Xsm ≤ cm),

for all (c1, . . . , cm) such that P(XT+sj
− XT = cj) = 0, j = 1, . . . , m. Finally note that

(XT+s −XT )s≥0 clearly has right-continuous paths with left limits. 2

13.2 The supremum process

Let X = (Xt)t≥0 be a Lévy process. We denote its supremum process by

X t = sup
0≤s≤t

Xs, t ≥ 0.

We are interested in the joint distribution of (Xt, X t), e.g. for the payoff of a barrier
or lookback option. Moment generating functions are easier to calculate and can be
numerically inverted. We can also take such a transform over the time variable, e.g.

q 7→
∫ ∞

0

e−qtE(eγXt)dt =
1

q − Ψ(γ)
uniquely identifies E(eγXt),

and the distribution of Xt. But q
∫∞
0
e−qtE(eγXt)dt = E(eγXτ ) for τ ∼ Exp(q).

Proposition 86 (Independence) Let X be a Lévy process, τ ∼ Exp(q) an independent
random time. Then Xτ is independent of Xτ −Xτ .

Proof: We only prove the case where G1 = inf{t > 0 : Xt > 0} satisfies P(G1 > 0) = 1.
In this case we can define successive record times Gn = inf{t > Gn−1 : Xt > XGn−1}, n ≥
2, and also set G0 = 0. Note that, by the strong Markov property at the stopping times
Gn we have that XGn > XGn−1 (otherwise the post-Gn−1 process X̃t = XGn−1+t −XGn−1

would have the property G̃1 = 0, but the strong Markov property yields P(G̃1 > 0) =
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P(G1 > 0) = 1). So X can only reach new records by upward jumps, Xτ ∈ {XGn, n ≥ 0}
and more specifically, we will have Xτ = Gn if and only if Gn ≤ τ < Gn+1 so that

E(eβXτ+γ(Xτ−Xτ )) =

∫ ∞

0

qe−qtE(eβXt+γ(Xt−Xt))dt

= qE

( ∞∑

n=0

∫ Gn+1

Gn

e−qteβXt+γ(Xt−Xt)dt

)

= q
∞∑

n=0

E

(
eβXGn e−qGn

∫ Gn+1−Gn

0

e−qse−γ(XGn+s−XGn )ds

)

= q

∞∑

n=0

E
(
e−qGn+βXGn

)
E

(∫ eG1

0

e−qs−γ
eXsds

)

where we applied the strong Markov property atGn to split the expectation in the last row
– note that

∫ Gn+1−Gn

0
e−qs−γ(XGn+s−XGn )ds is a function of the post-Gn process, whereas

e−qGn+βXGn is a function of the pre-Gn process, and the expectation of the product of
independent random variables is the product of their expectations.

This completes the proof, since the last row is a product of a function of β and a
function of γ, which is enough to conclude. More explicitly, we can put β = 0, γ = 0 and
β = γ = 0, respectively, to see that indeed the required identity holds:

E(eβXτ+γ(Xτ−Xτ )) = E(eβXτ )E(eγ(Xτ−Xτ )).

2

13.3 Lévy processes with no positive jumps

Consider stopping times Tx = inf{t ≥ 0 : Xt ∈ (x,∞)}, so-called first passage times. For
Lévy processes with no positive jumps, we must have XTx = x, provided that Tx < ∞.
This observation allows to calculate the moment generating function of Tx. To prepare
this result, recall that the distribution of Xt has moment generating function

E(eγXt) = etΨ(γ), Ψ(γ) = a1γ +
1

2
σ2γ2 +

∫ 0

−∞
(eγx − 1 − γx1{|x|≤1})g(x)dx.

Let us exclude the case where −X is a subordinator, i.e. where σ2 = 0 and a1 −∫ 0

−1
xg(x)dx ≤ 0, since in that case Tx = ∞. Then note that

Ψ′′(γ) = σ2 +

∫ 0

−∞
x2eγxg(x)dx > 0,

so that Ψ is convex and hence has at most two zeros, one of which is Ψ(0) = 0. There is
a second zero γ0 > 0 if and only if Ψ′(0) = E(X1) < 0, since we excluded the case where
−X is a subordinator, and P(Xt > 0) > 0 implies that Ψ(∞) = ∞.

Theorem 87 (Level passage) Let (Xt)t≥0 be a Lévy process with no positive jumps
and Tx the first passage time across level x. Then

E(e−qTx1{Tx<∞}) = e−xΦ(q),

where Φ(q) is the largest γ for which Ψ(γ) = q.
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Proof: We only prove this for the case where P(Tx <∞) = 1, i.e. E(X1) ≥ 0 and γ0 = 0.
By Exercise A.2.3.(a) the processes Mt = eγXt−tΨ(γ) are martingales. We will apply the
Optional stopping theorem to Tx. Note that E(M2

t ) = et(Ψ(2γ)−2Ψ(γ)) is not such that
supt≥0 E(M2

t ) <∞. However, if we put

M
(u)
t = Mt if t ≤ u and M

(u)
t = Mu if t ≥ u,

then (Mu
t )t≥0 is a martingale which satisfies supt≥0 E((M

(u)
t )2) < ∞. Also, Tx ∧ u is a

stopping time, so that for γ ≥ γ0 = 0 (so that Ψ(γ) ≥ 0)

1 = E(M
(u)
Tx∧u) = E(MTx∧u) → E(MTx) = E(eγx−Ψ(γ)Tx), as u→ ∞,

by dominated convergence (MTx∧u ≤ exp{γx − Ψ(γ)Tx} ≤ exp{γx}). We now conclude
that

E(e−Ψ(γ)Tx) = e−γx

which for q = Ψ(γ) and Φ(q) the unique γ ≥ γ0 = 0 with Ψ(γ) = q. 2

Corollary 88 Let X be a Lévy process with no positive jumps and τ ∼ Exp(q) indepen-
dent. Then Xτ ∼ Exp(Φ(q)).

Proof: P(Xτ > x) = P(Tx ≤ τ) =
∫∞
0

P(τ ≥ t)fTx(t)dt = E(e−qTx) = e−Φ(q)x. 2

If we combine this with the Independence Theorem of the previous section we obtain.

Corollary 89 Let X be a Lévy process with no positive jumps and τ ∼ Exp(q) indepen-
dent. Then

E(e−β(Xτ−Xτ )) =
q(Φ(q) − β)

Φ(q)(q − Ψ(β))

Proof: Note that we have from the Independence Theorem that

E(eβXτ )E(e−β(Xτ−Xτ )) = E(eβXτ ) =

∫ ∞

0

qe−qtE(eβXt)dt =
q

q − Ψ(β)

and from the preceding corollary

E(eβXτ ) =
Φ(q)

Φ(q) − β
and so E(e−β(Xτ−Xτ )) =

q

q − Ψ(β)

Φ(q) − β

Φ(q)
.

2

13.4 Application: insurance ruin

Proposition 86 splits the Lévy process at its supremum into two increments. If you turn
the picture of a Lévy process by 180◦, this split occurs at the infimum, and it can be
shown (Exercise A.7.1) that Xτ ∼ Xτ −Xτ . Therefore, Corollary 89 gives E(eβXτ ), also
for q ↓ 0 if E(X1) > 0, since then

E(eβX∞) = lim
q↓0

q(Φ(q) − β)

Φ(q)(q − Ψ(β))
=
βE(X1)

Ψ(β)

since Φ′(0) = 1/Ψ′(0) = 1/E(X1) and note that for an insurance reserve process Rt =
u + Xt, the probability of ruin is r(u) = P(X∞ < −u), the distribution funcion of X∞
which is uniquely identified by E(eβX∞).



Lecture 14

Ladder times and storage models

Reading: Kyprianou Sections 1.3.2 and 3.3

14.1 Case 1: No positive jumps

In Theorem 87 we derived the moment generating function of Tx = inf{t ≥ 0 : Xt > x}
for any Lévy process with no positive jumps. We also indicated the complication that
Tx = ∞ is a possibility, in general. Let us study this is in more detail in our standard
setting

E(eγXt) = etΨ(γ), Ψ(γ) = a1γ +
1

2
σ2γ2 +

∫ 0

−∞
(eγx − 1 − γx1{|x|≤1})g(x)dx.

The important quantity is

E(X1) =
∂

∂γ
E(eγXt)

∣∣∣∣
γ=0

= Ψ′(0) = a1 −
∫ 0

−1

xg(x)dx.

The formula that we derived was

E(e−qTx1{Tx<∞}) = e−xΦ(q)

where for q > 0, Φ(q) > 0 is unique with Ψ(Φ(q)) = q. Letting q ↓ 0, we see that

P(Tx <∞) = lim
q↓0

E(e−qTx1{Tx<∞}) = e−xΦ(0+).

Here the convexity of Ψ that we derived last time implies that Φ(0+) = 0 if and only if
E(X1) = φ′(0) ≥ 0. Therefore, P(Tx <∞) = 1 if and only if E(X1) ≥ 0.

Part of this could also be deduced by the strong (or weak) law of large numbers.
Applied to increments Yk = Xkδ −X(k−1)δ it implies that

Xnδ

nδ
=

1

δ

1

n

n∑

k=1

Yk →
1

δ
E(Y1) =

1

δ
E(Xδ) = E(X1),

almost surely (or in probability) as n → ∞. We can slightly improve this result to a
convergence as t→ ∞ as follows

E(eγXt/t) = etφ(γ/t) → eγφ
′(0) = eγE(X1) ⇒ Xt

t
→ E(X1),
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in probability. We used here that Zt → a in distribution implies Zt → a in probability,
which holds only because a is a constant, not a random variable. Note that indeed for
all ε > 0, as t→ ∞,

P(|Zt − a| > ε) ≤ P(Zt ≤ a− ε) + 1 − P(Zt ≤ a+ ε) → 0 + 1 − 1 = 0.

From this, we easily deduce that Xt → ±∞ (in probability) if E(Xt) 6= 0, but the case
E(Xt) = 0 is not so clear from this method. In fact, it can be shown that all convergences
hold in the almost sure sense, here.

By an application of the Strong Markov property we can show the following.

Proposition 90 The process (Tx)x≥0 is a subordinator.

Proof: Let us here just prove that Tx+y − Tx is independent of Tx and has the same
distribution as Ty. The remainder is left as an exercise.

Note first that XTx = x, since there are no positive jumps. The Strong Markov
property at Tx can therefore be stated as X̃ = (XTx+s − x)s≥0 is independent of FTx and
has the same distribution as X. Now note that

Tx + T̃y = Tx + inf{s ≥ 0 : X̃s > y} = Tx + inf{s ≥ 0 : XTx+s > x+ y}
= inf{t ≥ 0 : Xt > x+ y} = Tx+y

so that Tx+y − Tx = T̃y, and we obtain

P(Tx ≤ s, Tx+y − Tx ≤ t) = P(Tx ≤ s, T̃y ≤ t) = P(Tx ≤ s)P(Ty ≤ t),

since {Tx ≤ s} ∈ FTx . Formally, {Tx ≤ s} ∩ {Tx ≤ r} = {Tx ≤ s ∧ r} ∈ Fr for all r ≥ 0
since Tx is a stopping time. 2

We can understand what the jumps of (Tx)x≥0 are: in fact, X can be split into its
supremum process X t = sup0≤s≤tXs and the bits of path below the supremum. Roughly,
the times

{Tx, x ≥ 0} = {t ≥ 0 : Xt = Xt}

are the times when the supremum increases. Tx − Tx− > 0 if the supremum process
remains constant at height x for an amount of time Tx − Tx−. The process (Tx)x≥0 is
called “ladder time process”. The process (XTx)x≥0 is called ladder height process. In
this case, XTx = x is not very illuminating. Note that (Tx, XTx)x≥0 is a bivariate Lévy
process.

Example 91 (Storage models) Consider a Lévy process of bounded variation, repre-
sented as At − Bt for two subordinators A and B. We interpret At as the amount of
work arriving in [0, t] and Bt as the amount of work that can potentially exit from the
system. Let us focus on the case where A is a compound Poisson process and Bt = t
for a continuously working processor. The quantity of interest is the amount Wt of work
waiting to be carried out and requiring storage, where W0 = w ≥ 0 is an initial amount
of work stored.
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Note that Wt 6= w + At − Bt, in general, since w + At − Bt can become negative,
whereas Wt ≥ 0. In fact, we can describe as follows: if the storage is empty, then no
work exits from the system. Can we see from At − Bt when the storage will be empty?
We can express the first time it becomes empty and the first time it is refilled thereafter
as

L1 = inf{t ≥ 0 : w + At −Bt = 0} and R1 = inf{t ≥ L1 : ∆At > 0}.

On [L1, R1], Xt = Bt−At increases linearly at unit rate from w to w+(R1−L1), whereas
W remains constant equal to zero. In fact,

Wt = w −Xt +

∫ t

L1∧t
1ds = w −Xt +

∫ t

0

1{Xs=Xs≥w}ds = (w ∨X t) −Xt, 0 ≤ t ≤ R1.

An induction now shows that the system is idle if and only if Xt = X t ≥ w, so that
Wt = Xt + (w ∨Xt) for all t ≥ 0.

In this context, (X t−w)+ is the amount of time the system was idle before time t, and
Tx = inf{t ≥ 0 : Xt > x} is the time by which the system has accumulated time x − w
in the idle state, x ≥ w, and we see that (x − w)/Tx ∼ x/Tx → 1/E(T1) = 1/Φ′(0) =
φ′(0) = E(X1) = 1 − E(A1) in probability, if E(A1) ≤ 1.

Example 92 (Dams) Suppose that the storage model refers more particularly to a dam
that releases a steady stream of water at a constant intensity a2. Water is added according
to a subordinator (At)t≥0. The dam will have a maximal capacity of, say, M > 0. Given
an initial water level of w ≥ 0, the water level at time t is, as before

Wt = (w ∨X t) −Xt, where Xt = a2t−At.

The time F = inf{t ≥ 0 : Wt > M}, the first time when the dam overflows, is a quantity
of interest. We do not pursue this any further theoretically, but note that this can be
simulated, since we can simulate X and hence W .

14.2 Case 2: Union of intervals as ladder time set

Proposition 93 If Xt = a2t − Ct for a compound Poisson process (Ct)t≥0 and a drift
a2 ≥ 0 ∨ E(C1), then the ladder time set is a collection of intervals. More precisely,

{t ≥ 0 : Xt = Xt} is the range {σy, y ≥ 0} of a compound Poisson subordinator with pos-
itive drift coefficient.

Proof: Define L0 = 0 and then for n ≥ 0 stopping times

Rn = inf{t ≥ Ln : ∆Ct > 0}, Ln+1 = inf{t ≥ Rn : Xt = X t}.

The strong Markov property at these stopping times show that (Rn−Ln)n≥0 is a sequence
of Exp(λ) random variables where λ =

∫∞
0
g(x)dx is the intensity of positive jumps, and

(Ln − Rn−1)n≥1 is a sequence of independent identically distributed random variables.
Now define Tn = R0 − L0 + . . . + Rn−1 − Ln−1 and (σy)y≥0 to be the compount Poisson
process with unit drift, jump times Tn, n ≥ 1, and jump heights Ln − Rn−1, n ≥ 1. 2
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The ladder height process (Xσy)y≥0 will then also have a positive drift coefficient and

share some jump times with σ (whenever X jumps from below X t− above Xt−, but have
extra jump times when X jumps from X t− upwards, some jump times of (σy)y≥0 are not
jump times of (Xσy)y≥0 – if X reaches X t− again without a jump.)

Example 94 (Storage models) In the context of the previous examples, consider more
general subordinators Bt with unit drift. Interpret jumps of B as unfinished work poten-
tially exiting to be carried out elsewhere. We should be explicit and make a convention
that if the current storage amount Wt is not sufficient for a jump of B, then all remaining
work exits. With this convention, the amount Wt waiting to be carried out is still

Wt = w −Xt +

∫ t

0

1{Xs=Xs≥w}ds t ≥ 0,

but note that the latter integral cannot be expressed in terms of X t so easily, but σy
is still the time by which the system has accumulated time y − w in the idle state, for
y ≥ w, so It = inf{y ≥ 0 : σy > t} is the amount of idle time before t.

14.3 Case 3: Discrete ladder time set

If Xt = a2t−Ct for a compound Poisson process (or indeed bounded variation pure jump
process) (Ct)t≥0 and a drift a2 < 0, then the ladder time set is discrete. We can still think

of {t ≥ 0 : Xt = Xt} as the range {σy, y ≥ 0} of a compound Poisson subordinator with
zero drift coefficient. More naturally, we would define successive ladder times G0 = 0
and Gn+1 = inf{t > Gn : Xt = X t}. By the strong Markov property, Gn+1 −Gn, n ≥ 0,
is a sequence of independent and identically distributed random variables, and for any
intensity λ > 0, we can specify (σy)y≥0 to be a compound Poisson process with rate λ > 0
and jump sizes Gn+1 −Gn, n ≥ 0.

Note that (σy)y≥0 is not unique since we have to choose λ. In fact, once a choice has
been made and q > 0, we have {σy : y ≥ 0} = {σqy, y ≥ 0}, not just here, but also in
Cases 1 and 2. In Cases 1 and 2, however, we identified a natural choice (of q) in each
case.

14.4 Case 4: non-discrete ladder time set and posi-

tive jumps

The general case is much harder. It turns out that we can still express

{t ≥ 0 : Xt = X t} = {σy : y ≥ 0}

for a subordinator (σy)y≥0, but, as in Case 3, there is no natural way to choose this process.
It can be shown that the bivariate process (σy, Xσy)y≥0 is a bivariate subordinator in this
general setting, called the ladder process. There are descriptions of its distribution and
relations between these processes of increasing ladder events and analogous processes of
decreasing ladder events.



Lecture 15

Branching processes

Reading: Kyprianou Section 1.3.4

15.1 Galton-Watson processes

Let ξ = (ξk)k≥0 be (the probability mass function of) an offspring distribution. Consider
a population model where each individual gives birth to independent and identically
distributed numbers of children, starting from Z0 = 1 individual, the common ances-
tor. Then the (n + 1)st generation Zn+1 consists of the sum of numbers of children
Nn,1, . . . , Nn,Zn of the nth generation:

Zn+1 =
Zn∑

i=1

Nn,i, where Nn,i ∼ ξ independent, i ≥ 1, n ≥ 0.

Proposition 95 Let ξ be an offspring distribution, g(s) =
∑

k≥0 ξks
k its generating func-

tion, then

E(sZ1) = g(s), E(sZ2) = g(g(s)), . . . ,E(sZn) = g◦(n)(s),

where g◦(0)(s) = s, g◦(n+1)(s) = g◦(n)(g(s)), n ≥ 0.

Proof: The result is clearly true for n = 0 and n = 1. Now note that

E(sXn+1) = E

(
s

PZn
i=1Nn,i

)
=

∞∑

j=0

P(Zn = j)E
(
s

Pj
i=1Nn,i

)

=

∞∑

j=0

P(Zn = j)(g(s))j = E((g(s))Zn) = g◦(n)(g(s)).

2

Proposition 96 (Zn)n≥0 is a Markov chain whose transition probabilities are given by

pij = P(N1 + . . .+Ni = j), where N1, . . . , Ni ∼ ξ independent.

In particular, if (Z
(1)
n )n≥0 and (Z

(2)
n )n≥0 are two independent Markov chains with tran-

sition probabilities (pij)i,j≥0 starting from population sizes k and l, respectively, then

Z
(1)
n + Z

(2)
n , n ≥ 0, is also a Markov chain with transition probabilities (pij)i,j≥0 starting

from k + l.

67
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Proof: Just note that the independence of (Nn,i)i≥1 and (Nk,i)0≤k≤n−1,i≥1 implies that

P(Zn+1 =j|Z0 = i0, . . . , Zn−1 = in−1, Zn= in) = P(Nn,1 + . . . , Nn,in =j|Z0 = i0, . . . , Zn= in)

= P(Nn,1 + . . . , Nn,in = j) = pinj ,

as required. For the second assertion note that

b(i1,i2),j := P(Z
(1)
n+1 + Z

(2)
n+1 = j|Z(1)

n = i1, Z
(2)
n = i2)

= P(N
(1)
n,1 + . . .+N

(1)
n,i1

+N
(2)
n,1 + . . .+N

(2)
n,i2

= j) = pi1+i2,j

only depends on i1 + i2 (not i1 or i2 separately) and is of the form required to conclude
that

P(Z
(1)
n+1 + Z

(2)
n+1 = j|Z(1)

n + Z(2)
n = i) =

∑i
i1=0 P(Z

(1)
n = i1, Z

(2)
n = i− i1)b(i1,i−i1),j

P(Z
(1)
n + Z

(2)
n = i)

= pij .

2

The second part of the proposition is called the branching property and expresses
the property that the families of individuals in the same generation evolve completely
independently of one another.

15.2 Continuous-time Galton-Watson processes

We can also model lifetimes of individuals by independent exponentially distributed ran-
dom variables with parameter λ > 0. We assume that births happen at the end of a
lifetime. This breaks the generations. Since continuously distributed random variables
are almost surely distinct, we will observe one death at a time, each leading to a jump
of size k − 1 with probability ξk, k ≥ 0. It is customary to only consider offspring distri-
butions with ξ1 = 0, so that there is indeed a jump at every death time. Note that at
any given time, if j individuals are present in the population, the next death occurs at a
time

H = min{L1, . . . , Lj} ∼ Exp(jλ), where L1, . . . , Lj ∼ Exp(λ).

From these observations, one can construct (and simulate!) the associated population
size process (Yt)t≥0 by induction on the jump times.

Proposition 97 (Yt)t≥0 is a Markov process. If Y (1) and Y (2) are independent Markov
processes with these transition probabilities starting from k and l, then Y (1) +Y (2) is also
a Markov process with the same transition probabilities starting from k + l.

Proof: Based on BS3a Applied Probability, the proof is not difficult. We skip it here.
2

(Yt)t≥0 is called a continuous-time Galton-Watson process. In fact, these are the only
Markov processes with the branching property (i.e. satisfying the second statement of
the proposition for all k ≥ 1, l ≥ 1).
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Example 98 (Simple birth-and-death processes) If individuals have lifetimes with
parameter µ and give birth at rate β to single offspring repeatedly during their lifetime,
then we recover the case

λ = µ+ β and ξ0 =
µ

µ+ β
, ξ2 =

β

µ+ β
.

In fact, we have to reinterpret this model by saying each transition is a death, giving
birth to either two or no offspring. These parameters arise since, if only one individual
is present, the time to the next transition is the minimum of the exponential birth time
and the exponential death time.

The fact that all jump sizes are independent and identically distributed is reminiscent
of compound Poisson processes, but for high population sizes j we have high parameters to
the exponential times between two jumps – the process Y moves faster than a compound
Poisson process at rate λ. Note however that for H ∼ Exp(jλ) we have jH ∼ Exp(λ).
Let us use this observation to specify a time-change to slow down Y .

Proposition 99 Let (Yt)t≥0 be a continuous-time Galton-Watson process with offspring
distribution ξ and lifetime distribution Exp(λ). Then for the piecewise linear functions

Jt =

∫ t

0

Yudu, t ≥ 0, ϕs = inf{t ≥ 0 : Jt > s}, 0 ≤ s < J∞,

the process

Xs = Yϕs, 0 ≤ s < J∞,

is a compound Poisson process with jump distribution (ξk+1)k≥−1 and rate λ, run until
the first hitting time of 0.

Proof: Given Y0 = i, the first jump time T1 = inf{t ≥ 0 : Yt 6= i} ∼ Exp(iλ), so

JT1 = iT1 and ϕs = s/i, 0 ≤ s ≤ iT1,

so we identify the first jump of Xs = Ys/i, 0 ≤ s ≤ iT1 at time iT1 ∼ Exp(λ).

Now the strong Markov property (or the lack of memory property of all other life-
times) implies that given k offspring are produced at time T1, the process (YT1+t)t≥0 is
a continuous-time Galton-Watson process starting from j = i + k − 1, independent of
(Yr)0≤r≤T1 . We repeat the above argument to see that T2 − T1 ∼ Exp(jλ), and for j ≥ 1,

JT2 = iT1 + j(T2 − T1) and ϕiT1+s = T1/i+ s/j, 0 ≤ s ≤ j(T2 − T1),

and the second jump of XiT1+s = YT1+s/j, 0 ≤ s ≤ j(T2 − T1), happens at time iT1 +
j(T2 − T1), where j(T2 − T1) ∼ Exp(λ) is independent of iT1. An induction as long as
YTn > 0 shows that X is a compound Poisson process run until the first hitting time of
0. 2
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Corollary 100 Let (Xs)s≥0 be a compound Poisson process starting from l ≥ 1 with jump
distribution (ξk+1)k≥−1 and jump rate λ > 0. Then for the piecewise linear functions

ϕs =

∫ s

0

1

Xv
dv, 0 ≤ s < T{0}, and Jt = inf{s ≥ 0 : ϕs > t}, t ≥ 0,

the process

Yt = XJt , t ≥ 0,

is a continuous-time Galton-Watson process with offspring distribution ξ and lifetime
distribution Exp(λ).

15.3 Continuous-state branching processes

Population-size processes with state space N are natural, but for large populations, it is
often convenient to use continuous approximations and use a state space [0,∞). In view
of Corollary 100 it is convenient to define as follows.

Definition 101 (Continuous-state branching process) Let (Xs)s≥0 be a Lévy pro-
cess with no negative jumps starting from x > 0, with E(exp{−γXs}) = exp{sφ(γ)}.
Then for the functions

ϕs =

∫ s

0

1

Xv

dv, 0 ≤ s < T{0}, and Jt = inf{s ≥ 0 : ϕs > t}, t ≥ 0,

the process

Yt = XJt , t ≥ 0,

is called a continuous-state branching process with branching mechanism φ.

We interpret upward jumps as birth events and continuous downward movement as
(infinitesimal) deaths. The behaviour is accelerated at high population sizes, so fluc-
tuations will be larger. The behaviour is slowed down at small population sizes, so
fluctuations will be smaller.

Example 102 (Pure death process) For Xs = x− cs we obtain

ϕs =

∫ s

0

1

x− cv
dv = −1

c
log(1 − cs/x), and Jt =

x

c
(1 − e−ct),

and so Yt = xe−ct.

Example 103 (Feller diffusion) For φ(γ) = γ2 we obtain Feller’s diffusion. There are
lots of parallels with Brownian motion. There is a Donsker-type result which says that
rescaled Galton-Watson processes converge to Feller’s diffusion. It is the most popular
model in applications. A lot of quantities can be calculated explicitly.

Proposition 104 Y is a Markov process. Let Y (1) and Y (2) be two independent continuous-
state branching processes with branching mechanism φ starting from x > 0 and y > 0.
Then Y (1) + Y (2) is a continuous-state branching process with branching mechanism φ
starting from x+ y.



Lecture 16

The two-sided exit problem

Reading: Kyprianou Chapter 8, Bertoin Aarhus Notes, Durrett Sections 7.5-7.6

16.1 The two-sided exit problem for Lévy processes

with no negative jumps

Let X be a Lévy process with no negative jumps. As we have studied processes with no
positive jumps (such as −X) before, it will be convenient to use compatible notation and
write

E(e−γXt) = etφ(γ), φ(γ) = a−Xγ +
1

2
σ2γ2 +

∫ 0

−∞
(eγx − 1 − γx1{|x|≤1})g−X(x)dx

= −aXγ +
1

2
σ2γ2 −

∫ ∞

0

(1 − e−γx − γx1{|x|≤1})gX(x)dx,

where a−X = −aX and gX(x) = g−X(−x), x > 0. Then we deduce from Section 11.4
that, if E(X1) < 0,

E(e−βX∞) = −βE(X1)

φ(β)
, β ≥ 0. (1)

The two-sided exit problem is concerned with exit from an interval [−a, b], notably the
time

T = T[−a,b]c = inf{t ≥ 0 : Xt ∈ [−a, b]c}

and the probability to exit at the bottom P(XT = −a). Note that an exit from [−a, b]
at the bottom happens necessarily at −a, since there are no negative jumps, whereas an
exit at the top may be due to a positive jump across the threshold b leading to XT > b.

Proposition 105 For any Lévy process X with no negative jumps, all a > 0, b > 0 and
T = T[−a,b]c, we have

P(XT = −a) =
W (b)

W (a+ b)
, where W is such that

∫ ∞

0

e−βxW (x)dx =
1

φ(β)
.
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Proof: We only prove the case E(X1) < 0. By (1), we can identify (the right-continuous
function) W , since

−βE(X1)

φ(β)
= E(e−βX∞) =

∫ ∞

0

e−βxfX∞
(x)dx

=

∫ ∞

0

βe−βxP(X∞) ≤ x)dx,

by partial integration, and so by the uniqueness of moment generating functions, we have
W (x) = cP(X∞ ≤ x), where c = −E(X1) > 0.

Now define τa = inf{t ≥ 0 : Xt < −a} and apply the strong Markov property at τa to

get a post-τa process X̃ = (Xτa+s + a)s≥0 independent of (Xr)r≤τa , in particular of Xτa ,
so that

cW (b) = P(X∞ ≤ b) = P(Xτa ≤ b, X̃∞ ≤ a+ b)

= P(Xτa ≤ b)P(X∞ ≤ a + b) = P(Xτa ≤ b)cW (a+ b),

and the result follows. 2

Example 106 (Stable processes) Let X be a stable process of index α ∈ (1, 2] with
no negative jumps, then we have

∫ ∞

0

e−λxW (x)dx = λ−α ⇒ Γ(α)W (x) = xα−1.

We deduce that

P(XT = −a) =

(
b

a+ b

)α−1

.

16.2 The two-sided exit problem for Brownian mo-

tion

In the Brownian case, we can push the analysis further without too much effort.

Proposition 107 For Brownian motion B, all a > 0, b > 0 and T = T[−a,b]c, we have

E(e−qT |BT = −a) =
Vq(b)

Vq(a + b)
and E(e−qT |BT = b) =

Vq(a)

Vq(a+ b)
,

where

Vq(x) =
sinh(

√
2qx)

x
.
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Proof: We condition on BT and use the strong Markov property of B at T to obtain

e−a
√

2q = E(e−qT{−a})

= P(BT = −a)E(e−qT{−a} |BT = −a) + P(BT = b)E(e−qT{−a}|BT = b)

=
b

a + b
E(e−qT |BT = −a) +

a

a + b
E(e−q(T+ eT{−a−b})|BT = b)

=
b

a + b
E(e−qT |BT = −a) +

a

a + b
E(e−qT |BT = b)e−(a+b)

√
2q

and, by symmetry,

e−b
√

2q =
a

a+ b
E(e−qT |BT = b) +

b

a+ b
E(e−qT |BT = −a)e−(a+b)

√
2q.

These can be written as

b+ a

ab
= a−1E(e−qT |BT = −a)ea

√
2q + b−1E(e−qT |BT = b)e−b

√
2q

b+ a

ab
= a−1E(e−qT |BT = −a)e−a

√
2q + b−1E(e−qT |BT = b)eb

√
2q

and suitable linear combinations give, as required,

2 sinh(a
√

2q)
b+ a

ab
= 2 sinh((a + b)

√
2q)b−1E(e−qT |BT = b)

2 sinh(b
√

2q)
b+ a

ab
= 2 sinh((a + b)

√
2q)a−1E(e−qT |BT = −a).

2

Corollary 108 For Brownian motion B, all a > 0 and T = T[−a,a]c, we have

E(e−qT ) =
1

cosh(a
√

2q)

Proof: Just calculate from the previous proposition

E(e−qT ) =
Vq(a)

Vq(2a)
= 2

e
√

2qa − e−
√

2qa

(e
√

2qa)2 − (e−
√

2qa)2
=

1

cosh(a
√

2q)
.

2

16.3 Appendix: Donsker’s Theorem revisited

We can now embed simple symmetric random walk (SSRW) into Brownian motion B by
putting

T0 = 0, Tk+1 = inf{t ≥ Tk : |Bt −BTk
| = 1}, Sk = BTk

, k ≥ 0,

and for step sizes 1/
√
n modify T

(n)
k+1 = inf{t ≥ T

(n)
k : |Bt − B

T
(n)
k

| = 1/
√
n}.
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Theorem 109 (Donsker for SSRW) For a simple symmetric random walk (Sn)n≥0

and Brownian motion B, we have

S[nt]√
n

→ Bt, locally uniformly in t ≥ 0, in distribution as n→ ∞.

Proof: We use a coupling argument. We are not going to work directly with the original
random walk (Sn)n≥0, but start from Brownian motion (Bt)t≥0 and define a family of
embedded random walks

S
(n)
k := B

T
(n)
k

, k ≥ 0, n ≥ 1, ⇒
(
S

(n)
[nt]

)

t≥0
∼
(
S[nt]√
n

)

t≥0

.

To show convergence in distribution for the processes on the right-hand side, it suffices to
establish convergence in distribution for the processes on the left-hand side, as n→ ∞.

To show locally uniform convergence we take an arbitrary T ≥ 0 and show uniform
convergence on [0, T ]. Since (Bt)0≤t≤T is uniformly continuous (being continuous on a
compact interval), we get in probability

sup
0≤t≤T

∣∣∣S(n)
[nt] −Bt

∣∣∣ = sup
0≤t≤T

∣∣∣∣BT
(n)
[nt]

− Bt

∣∣∣∣ ≤ sup
0≤s≤t≤T :|s−t|≤sup0≤r≤T |T (n)

[nr]
−r|

|Bs − Bt| → 0

as n→ ∞, if we can show (as we do in the lemma below) that sup0≤t≤T |T (n)
[nt] − t| → 0.

This establishes convergence in probability, which “implies” convergence in distribu-
tion for the embedded random walks and for the original scaled random walk. 2

Lemma 110 In the setting of the proof of the theorem, sup0≤t≤T |T
(n)
[nt] − t| → 0 in prob-

ability.

Proof: First for fixed t, we have

E(e
−qT (n)

[nt]) =
(

E(e−qT
(n)
1 )
)[nt]

=
1

(cosh(
√

2q/n))[nt]
→ e−qt,

since cosh(
√

2q/n) ∼ 1 + q/n+ O(1/n). Therefore, in probability T
(n)
[nt] → t. For unifor-

mity, let ε > 0. Let δ > 0. We find n0 ≥ 0 such that for all n ≥ n0 and all tk = kε/2,
1 ≤ k ≤ 2T/ε we have

P(|T (n)
[ntk] − tk| > ε/2) < δε/2T,

then

P

(
sup

0≤t≤T
|T (n)

[nt] − t| > ε

)
≤ P

(
sup

1≤k≤2T/ε

|T (n)
[ntk] − tk| >

ε

2

)
≤

2T/ε∑

k=1

P

(
|T (n)

[ntk] − tk| >
ε

2

)
< δ.

2

We can now describe the recipe for the full proof of Donsker’s Theorem. In fact, we
can embed every standardized random walk ((Sk − kE(S1))/

√
nVarS1)k≥0 in Brownian

motion X, by first exits from independent random intervals [−A(n)
k , B

(n)
k ] so that X

T
(n)
k

∼
(Sk − kE(S1))/

√
nVar(S1), and the embedding time change (T

(n)
[nt])t≥0 can still be shown

to converge uniformly to the identity.


