
Lecture 13

M/M/1 queues and queueing
networks

Reading: Norris 5.2.1-5.2.6; Grimmett-Stirzaker 11.2, 11.7; Ross 6.6, 8.4

Consider a single-server queueing system in which customers arrive according to a
Poisson process of rate λ and service times are independent Exp(µ). Let Xt denote the
length of the queue at time t including any customer that is currently served. This is the
setting of Exercise A.4.2 and from there we recall that

• An invariant distribution exists if and only if λ < µ, and is given by

ξn = (λ/µ)n(1 − λ/µ) = ρn(1 − ρ), n ≥ 0.

where ρ = λ/µ is called the traffic intensity. Cleary λ < µ ⇐⇒ ρ < 1. By the
ergodic theorem, the server is busy a (long-term) proportion ρ of the time.

• ξn can be best obtained by solving the detailed balance equations. By Proposition
57, X is reversible in equilibrium.

• The embedded “jump chain” (Mn)n≥0, Mn = XTn
, has a different invariant distri-

bution η 6= ξ since the holding times are Exp(λ+µ) everywhere except in 0, where
they are Exp(λ), hence rather longer, so that X spends “more time” in 0 than M .
Hence η puts higher weight on 0, again by the ergodic theorem, now in discrete
time. Let us state more explicitly the two ergodic theorems. They assert that we
can obtain the invariant distributions as almost sure limits as n → ∞

1

Tn

∫ Tn

0

1{Xs=i}ds =
1

Tn

n−1∑

k=0

Zk1{Mk=i} → ξi

1

n

n−1∑

k=0

1{Mk=i} → ηi,

for all i ≥ 0, actually in the first case more generally, as t → ∞ where t replaces
the special choice t = Tn. Note how the holding times change the proportions as
weights in the sums, Tn = Z0 + . . . + Zn−1 being just the sum of the weights.

• During any Exp(µ) service time, a geom(λ/(λ + µ)) number of customers arrives.
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13.1 M/M/1 queues and the departure process

Define D0 = 0 and successive departure times

Dn+1 = inf{t > Dn : Xt − Xt− = −1} n ≥ 0.

Let us study the process Vn = XDn
, n ≥ 0, i.e. the process of queue lengths after depar-

tures. By the lack of memory property of Exp(λ), the geometric random variables Nn,
n ≥ 1, that record the number of new customers between Dn−1 and Dn, are independent.
Therefore, (Vn)n≥0 is a Markov chain, with transition probabilities

dk,k−1+m =

(
λ

λ + µ

)m
µ

λ + µ
, k ≥ 1, m ≥ 0.

For k = 0, we get d0,m = d1,m, m ≥ 0, since the next service only begins when a new
customer enters the system.

Proposition 98 V has invariant distribution ξ.

Proof: A simple calculation shows that with ρ = λ/µ and q = λ/(λ + µ)

∑

k∈N

ξkdk,n = ξ0d0,n +

n+1∑

k=1

ξkdk,n = (1 − ρ)qn(1 − q) + (1 − ρ)(1 − q)qn+1

n+1∑

k=1

(
ρ

q

)k

= ξn,

after bringing the partial geometric progression into closed form and appropriate cancel-
lations. 2

Note that the conditional distribution of Dn+1 − Dn given Vn = k is the distribution
of a typical service time G ∼ Exp(µ) if k ≥ 1 and the distribution of Y + G, where
Y ∼ Exp(λ) is a typical interarrival time, if k = 0 since we have to wait for a new customer
and his service. We can also calculate the unconditional distribution of Dn+1 − Dn, at
least if V is in equilibrium.

Proposition 99 If X (and hence V ) is in equilibrium, then the Dn+1 −Dn are indepen-
dent Exp(λ) distributed.

Proof: Let us first study D1. We can calculate its moment generating function by
Proposition 7 a), conditioning on V0, which has the stationary distribution ξ:

E(eγD1) = E(eγD1 |V0 = 0)P(V0 = 0) +

∞∑

k=1

E(eγD1 |V0 = k)P(V0 = k)

=
λ

λ − γ

µ

µ − γ

(
1 −

λ

µ

)
+

µ

µ − γ

λ

µ

=
λ

µ − γ

µ − λ + λ − γ

λ − γ
=

λ

λ − γ

and identify the Exp(λ) distribution.
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For independence of V1 and D1 we have to extend the above calculation and check
that

E(eγD1αV1) =
λ

λ − γ

µ − λ

µ − αλ
,

because the second ratio is the probability generating function of the geom(λ/µ) station-
ary distribution ξ. To do this, condition on V0 ∼ ξ and then on D1:

E(eγD1αV1) =

∞∑

k=0

ξkE(eγD1αV1 |V0 = k)

and use the fact that given V1 = k ≥ 1, V1 = k+N1−1, where N1 ∼ Poi(λx) conditionally
given D1 = x, because N1 is counting Poisson arrivals in an interval of length D1 = x:

E(eγD1αV1 |V0 = k) = αk−1

∫ ∞

0

E(eγD1αN1|V0 = k, D1 = x)fD1
(x)dx

= αk−1

∫ ∞

0

eγx exp{−λx(1 − α)}fD1
(x)dx

= αk−1
E(e(γ−λ(1−α)D1)) = αk−1 µ

µ − γ + λ(1 − α)
.

For k = 0, we get the same expression without αk−1 and with a factor λ/(λ − γ),
because D1 = Y + G, where no arrivals occur during Y , and N1 is counting those during
G ∼ Exp(µ). Putting things together, we get

E(eγD1αV1) = (1 − ρ)

(
λ

λ − γ
+

ρ

1 − ρα

)
µ

µ − γ + λ(1 − α)
,

which simplifies to the expression claimed.

Now an induction shows Dn+1−Dn ∼ Exp(λ), and they are independent, because the
strong Markov property at Dn makes the system start afresh conditionally independently
of the past given Vn. Since D1, . . . , Dn −Dn−1 are independent of Vn, they are then also
independent of the whole post-Dn process. 2

The argument is very subtle, because the post-Dn process is actually not independent
of the whole pre-Dn process, just of the departure times. The result, however, is not
surprising since we know that X is reversible, and the departure times of X are the
arrival times of the time-reversed process, which form a Poisson process of rate λ.

In the same way, we can study A0 = 0 and successive arrival times

An+1 = inf{t > An : Xt − Xt− = 1}, n ≥ 0.

Clearly, these also have Exp(λ) increments, since the arrival process is a Poisson process
with rate λ. We study XAt

in the next lecture in a more general setting.
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13.2 Tandem queues

The simplest non-trivial network of queues is a so-called tandem system that consists
of two queues with one server each, having independent Exp(µ1) and Exp(µ2) service
times, respectively. Customers join the first queue according to a Poisson process of rate
λ, and on completing service immediately enter the second queue. Denote by X

(1)
t the

length of the first queue at time t and by X
(2)
t the length of the second queue at time t.

Proposition 100 The queue length process X = (X(1), X(2)) is a continuous-time Markov
chain with state space S = N2 and non-zero transition rates

q(i,j),(i+1,j) = λ, q(i+1,j),(i,j+1) = µ1, q(i,j+1),(i,j) = µ2, i, j ∈ N.

Proof: Just note that in state (i + 1, j + 1), three exponential clocks are ticking, that
lead to transitions at rates as described. Similarly, there are fewer clocks for (0, j + 1),
(i+1, 0) and (0, 0) since one or both servers are idle. The lack of memory property makes
the process start afresh after each transition. Standard reasoning completes the proof.

2

Proposition 99 yields that the departure process of the first queue, which is now also
the arrival process of the second queue, is a Poisson process with rate λ, provided that
the queue is in equilibrium. This can be achieved if λ < µ1.

Proposition 101 X is positive recurrent if and only if ρ1 := λ/µ1 < 1 and ρ2 := λ/µ2 <
1. The unique stationary distribution is then given by

ξ(i,j) = ρi
1(1 − ρ1)ρ

j
2(1 − ρ2)

i.e. in equilibrium, the lengths of the two queues at any fixed time are independent.

Proof: As shown in Exercise A.4.3, ρ1 ≥ 1 would prevent equilibrium for X(1), and
expected return times for X and X(1) then clearly satisfy m(0,0) ≥ m

(1)
0 = ∞. If ρ1 < 1

and X(1) is in equilibrium, then by Proposition 99, the arrival process for the second queue
is a Poisson process at rate λ, and ρ2 ≥ 1 would prevent equilibrium for X(2). Specifically,
if we assume m0,0 < ∞, then we get the contradiction ∞ = m

(2)
0 ≤ m(0,0) < ∞.

If ρ1 < 1 and ρ2 < 1, ξ as given in the statement of the proposition is an invariant
distribution, it is easily checked that the (i + 1, j + 1) entry of ξQ = 0 holds:

ξ(i,j+1)q(i,j+1),(i+1,j+1) + ξ(i+2,j)q(i+2,j),(i+1,j+1) + ξ(i+1,j+2)q(i+1,j+2),(i+1,j+1)

+ ξ(i+1,j+1)q(i+1,j+1),(i+1,j+1) = 0

for i, j ∈ N, and similar equations for states (0, j + 1), (i + 1, 0) and (0, 0). It is unique
since X is clearly irreducible (we can find paths between any two states in N2). 2

We stressed that queue lengths are independent at fixed times. In fact, they are not
independent in a stronger sense, e.g. (X

(1)
s , X

(1)
t ) and (X

(2)
s , X

(2)
t ) for s < t turn out to

be dependent. More specifically, consider X
(1)
s − X

(2)
t = n for big n, then it is easy to

see that 0 < P(X
(2)
t = 0|X

(1)
s −X

(1)
t = n) → 0 as n → ∞, since at least n customers will

then have been served by server 2 also.
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13.3 Closed and open migration networks

More general queueing systems are obtained by allowing customers to move in a system of
m single-server queues according to a Markov chain on {1, . . . , m}. For a single customer,
no queues ever occur, since he is simply served where he goes. If there are r customers in
the system with no new customers arriving or existing customers departing, the system
is called a closed migration network. If at some (or all) queues, also new customers arrive
according to a Poisson process, and at some (or all) queues, customers served may leave
the system, the system is called an open migration network.

The tandem queue is an open migration network with m = 2, where new customers
only arrive at the first queue and existing customers only leave the system after service
from the second server. The Markov chain is deterministic and sends each customer
from state 1 to state 2: π12 = 1. Customers then go into an absorbing exit state 0, say,
π2,0 = 1, π0,0 = 1.

Fact 102 If service times are independent Exp(µk) at server k ∈ {1, . . . , m}, arrivals
occur according to independent Poisson processes of rates λk, k = 1, . . . , m, and depar-
tures are modelled by transitions to another server or an additional state 0, according
to transition probabilities πk,ℓ, then the queue-lengths process X = (X(1), . . . , X(m)) is
well-defined and a continuous-time Markov chain. Its transition rates can be given as

qx,x+ek
= λk, qx,x−ek+eℓ

= µkπkℓ, qx,x−ek
= µkπk0

for all k, ℓ ∈ {1, . . . , m}, x = (x1, . . . , xm) ∈ N
m such that xk ≥ 1 for the latter two,

ek = (0, . . . , 0, 1, 0, . . . , 0) is the kth unit vector.

Fact 103 If X = (X(1), . . . , X(m)) models a closed migration network with irreducible

migration chain, then the total number of customers X
(1)
t + . . . + X

(2)
t remains constant

over time, and for any such constant r, say, X has a unique invariant distribution given
by

ξx = Br

m∏

k=1

ηxk

k , for all x ∈ Nm such that x1 + . . . + xm = r,

where η is the invariant distribution of the continuous-time migration chain and Br is a
normalising constant.

Note that ξ has a product form, but the queue lengths at servers k = 1, . . . , m
under the stationary distribution are not independent, since the admissible x-values are
constrained by x1 + . . . + xm = r.
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Lecture 14

M/G/1 and G/M/1 queues

Reading: Norris 5.2.7-5.2.8; Grimmett-Stirzaker 11.1; 11.3-11.4; Ross 8.5, 8.7
Further reading: Grimmett-Stirzaker 11.5-11.6

The M/M/1 queue is the simplest queueing model. We have seen how it can be ap-
plied/modified in queueing networks, with several servers etc. These were all continuous-
time Markov chains. It was always the exponential distribution that described interarrival
times as well as service times. In practice, this assumption is often unrealistic. If we keep
exponential distributions for either interarrival times or service times, but allow more gen-
eral distributions for the other, the model can still be handled using Markov techniques
that we have developed.

We call M/G/1 queue a queue with Markovian arrivals (Poisson process of rate λ), a
General service time distribution (we also use G for a random variable with this general
distribution on (0,∞)), and 1 server.

We call G/M/1 queue a queue with a General interarrival distribution and Markovian
service times (exponential with rate parameter µ), and 1 server.

There are other queues that have names in this formalism. We have seen M/M/s
queues (Example 30), and also M/M/∞ (queues with an infinite number of servers) –
this model is the same as the immigration-death model that we formulated at the end of
Example 58.

14.1 M/G/1 queues

An M/G/1 queue has independent and identically distributed service times with any
distributions on (0,∞), but independent Exp(λ) interarrival times. Let Xt be the queue
length at time t. X is not a continuous-time Markov chain, since the service distribution
does not have the lack of memory property (unless it is exponential which brings us back
to M/M/1). This means that after an arrival, we have a nasty residual service distribu-
tion. However, after departures, we have exponential residual interarrival distributions:
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Proposition 104 The process of queue lengths Vn = XDn
at successive departure times

Dn, n ≥ 0, is a Markov chain with transition probabilities

dk,k−1+m = E

(
(λG)m

m!
e−λG

)
, k ≥ 1, m ≥ 0,

and d0,m = d1,m, m ≥ 0. Here G is a (generic) service time.

Proof: The proof is not hard since we recognise the ingredients. Given G = t the
number N of arrivals during the service times has a Poisson distribution with parameter
λt. Therefore, if G has density g

P(N = m) =

∫ ∞

0

P(N = m|G = t)g(t)dt

=

∫ ∞

0

(λt)m

m!
e−λtg(t)dt

= E

(
(λG)m

m!
e−λG

)
.

If G is discrete, a similar argument works. The rest of the proof is the same as for M/M/1
queues (cf. the discussion before Proposition 98). In particular, when the departing
customer leaves an empty system behind, there has to be an arrival, before the next
service time starts. 2

For the M/M/1 queue, we defined the traffic intensity ρ = λ/µ, in terms of the arrival
rate λ = 1/E(Y ) and the (potential) service rate µ = 1/E(G) for a generic interarrival
time Y ∼ Exp(λ) and service time G ∼ Exp(µ). We say “potential” service rate, because
in the queueing system, the server may have idle periods (empty system), during which
there is no service. Indeed, a main reason to consider traffic intensities is to describe
whether there are idle periods, i.e. whether the queue length is a recurrent process.

If G is not exponential, we can interpret “service rate” as asymptotic rate. consider a
renewal process N with interrenewal times distributed as G. By the strong law of renewal
theory Nt/t → 1/E(G). It is therefore natural, for the M/G/1 queue, to define the traffic
intensity as ρ = λE(G).

Proposition 105 Let ρ = λE(G) be the traffic intensity of an M/G/1 queue. If ρ < 1,
then V has a unique invariant distribution ξ. This ξ has probability generating function

∑

k∈N

ξks
k = (1 − ρ)(1 − s)

1

1 − s/E(eλ(s−1)G)
.

Proof: We define ξ via its probability generating function

φ(s) =
∑

k∈N

ξks
k := (1 − ρ)(1 − s)

1

1 − s/E(eλ(s−1)G)
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and note that ξ0 = φ(0) = 1 − ρ. To identify ξ as solution of

ξj =

j+1∑

i=0

ξidi,j, j ≥ 0,

we can check the corresponding equality of probability generating functions. The prob-
ability generating function of the left-hand side is φ(s). To calculate the probability
generating function of the right-hand side, calculate first

∑

m∈N

dk+1,k+msm =
∑

m∈N

E

(
(sλG)m

m!
e−λG

)
= E(e(s−1)λG).

and then we have to check that the following sum is equal to φ(s):

∑

j∈N

j+1∑

i=0

ξidi,js
j =

∑

j∈N

ξ0d0,js
j +
∑

k∈N

∑

m∈N

ξk+1dk+1,k+msk+m

= E(e(s−1)λG)

(
ξ0 +

∞∑

k∈N

ξk+1s
k

)

= E(e(s−1)λG)s−1 (φ(s) − (1 − ρ)(1 − s)) ,

but this follows using the definition of φ(s). This completes the proof since uniqueness
follows from the irreducibility of V . 2

14.2 Waiting times in M/G/1 queues

An important quantity in queueing theory is the waiting time of a customer. Here we have
to be specific about the service discipline. We will assume throughout that customers
queue and are served in their order of arrival. This discipline is called FIFO (First In
First Out). Other disciplines like LIFO (Last In First Out) with or without interruption
of current service can also be studied.

Clearly, under the FIFO discipline, the waiting time of a given customer depends on
the service times of customers in the queue when he arrives. Similarly, all customers in
the system when a given customer leaves, have arrived during his waiting and service
times.

Proposition 106 If X is such that V is in equilibrium, then the waiting time of any
customer has distribution given by

E(eγW ) =
(1 − ρ)γ

λ + γ − λE(eγG)
.
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Proof: Unfortunately, we have not established equilibrium of X at the arrival times
of customers. Therefore, we have to argue from the time when a customer leaves. Due
to the FIFO discipline, he will leave behind all those customers that arrived during his
waiting time W and his service time G. Given T = W + G = t, their number N has a
Poisson distribution with parameter λt so that

E(sN ) =

∫ ∞

0

E(sN |T = t)fT (t)dt =

∫ ∞

0

eλt(s−1)fT (t)dt

= E(eλT (s−1)) = E(eλ(s−1)W )E(eλ(s−1)G).

From Proposition 105 we take E(sN), and putting γ = λ(s − 1), we deduce the formula
required by rearrangement. 2

Corollary 107 In the special case of M/M/1, the distribution of W is given by

P(W = 0) = 1 − ρ and P(W > w) = ρe−(µ−λ)w, w ≥ 0.

Proof: We calculate the moment generating function of the proposed distribution

eγ0(1 − ρ) +

∫ ∞

0

eγtρ(µ − λ)e−(µ−λ)tdt =
µ − λ

µ
+

λ

µ

µ − λ

µ − λ − γ
=

µ − λ

µ

µ − γ

µ − λ − γ
.

From the preceding proposition we get for our special case

E(eγW ) =
γ(µ − λ)/µ

λ + γ − λµ/(µ − γ)
=

µ − λ

µ

(µ − γ)γ

(λ + γ)(µ − γ) − λµ

and we see that the two are equal. We conclude by the Uniqueness Theorem for moment
generating functions. 2

14.3 G/M/1 queues

For G/M/1 queues, the arrival process is a renewal process. Clearly, by the renewal
property and by the lack of memory property of the service times, the queue length
process X starts afresh after each arrival, i.e. Ũn = XAn

, n ≥ 0, is a Markov chain on
{1, 2, 3, . . .}, where An is the nth arrival time. It is actually more natural to consider the

Markov chain Un = Ũn − 1 = XAn− on N.

It can be shown that for M/M/1 queues the invariant distribution of U is the same
as the invariant distribution of V and of X. For general G/M/1 queues we get

Proposition 108 Let ρ = 1/(µE(A1)) be the traffic intensity. If ρ < 1, then U has a
unique invariant distribution given by

ξk = (1 − q)qk, k ∈ N,

where q is the smallest positive root of q = E(eµ(q−1)A1).
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Proof: First note that given an interarrival time Y = y, a Poi(µy) number of customers
are served, so U has transition probabilities

ai,i+1−j = E

(
(µY )j

j!
e−µY

)
, j = 0, . . . , i; ai,0 = 1 −

i∑

j=0

ai,i+1−j.

Now for any geometric ξ, we get, for k ≥ 1, from Tonelli’s theorem,
∞∑

i=k−1

ξiaik =

∞∑

j=0

ξj+k−1aj+k−1,j

=
∞∑

j=0

(1 − q)qj+k−1
E

(
(µY )j

j!
e−µY

)

= (1 − q)qk−1
E
(
e−µY (1−q)

)
,

and clearly this equals ξk = (1 − q)qk if and only if q = E(eµ(q−1)Y ) =: f(q), as required.
Note that both sides are continuously differentiable on [0, 1) and on [0, 1] if and only if
limits q ↑ 1 are finite, f(0) > 0, f(1) = 1 and f ′(1) = E(µY ) = 1/ρ, so there is a solution
if ρ < 1, since then f(1 − ε) < 1 − ε for ε small enough. The solution is unique, since
there is at most one stationary distribution for the irreducible Markov chain U . The case
k = 0 can be checked by a similar computation, so ξ is indeed a stationary distribution.

2

Proposition 109 The waiting time W of a customer arriving in equilibrium has distri-
bution

P(W = 0) = 1 − q, P(W > w) = qe−µ(1−q)w, w ≥ 0.

Proof: In equilibrium, an arriving customer finds a number N ∼ ξ of customers in the
queue in front of him, each with a service of Gj ∼ Exp(µ). Clearly P(W = 0) = ξ0 = 1−q.
Also since the conditional distribution of N given N ≥ 1 is geometric with parameter q
and geometric sums of exponential random variables are exponential, we have that W
given N ≥ 1 is exponential with parameter µ(1 − q). 2

Alternatively, we can write this proof in formulas as a calculation of P(W > y) by
conditioning on N .

P(W > w) =
∞∑

n=0

P(N = n)P(W > w|N = n)

= 0 +

∞∑

n=1

qn(1 − q)

∫ ∞

w

µn

(n − 1)!
xn−1e−µxdx

=

∫ ∞

w

e−µxqµ(1 − q)

∞∑

n=1

µn−1

(n − 1)!
qn−1xn−1dx

= q

∫ ∞

w

µ(1 − q) exp{−µx + µqx}dx = q exp{−µ(1 − q)y},

where we used that the sum of n independent identically exponentially distributed ran-
dom variables is Gamma distributed.
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