
Lecture 1

Introduction: Poisson processes,
generalisations and applications

Reading: Part A Probability; Grimmett-Stirzaker 6.1, 6.8 up to (10)
Further reading: Ross 4.1, 5.3; Norris Introduction, 1.1, 2.4

This course is, in the first place, a course for 3rd year undergraduates who did Part
A Probability in their second year. Other students from various M.Sc.’s are welcome
as long as they are aware of the prerequisites of the course. These are essentially an
introductory course in probability not based on measure theory. It will be an advantage
if this included the central aspects of discrete-time Markov chains, by the time we get to
Lecture 5 in week 3.

The aim of Lecture 1 is to give a brief overview of the course. To do this at an
appropriate level, we begin with a review of Poisson processes that were treated at the
very end of the Part A syllabus. The parts most relevant to us in today’s lecture are
again included here, and some more material is on the first assignment sheet.

This is a mathematics course. “Applied probability” means that we apply probability,
but not so much Part A Probability but further probability building on Part A and not
covered there, so effectively, we will be spending a lot of our time developing theory as
required for certain examples and applications.

For the rest of the course, let N = {0, 1, 2, . . .} denote the natural numbers including
zero. Apart from very few exceptions, all stochastic processes that we consider in this
course will have state space N (or a subset thereof). However, most results in the theory
of Markov chains will be treated for any at most countable state space S, which does not
pose any complications as compared with N, since one can always enumerate all states
in S and hence give them labels in N. For uncountable state spaces, however, several
technicalities arise that are beyond the scope of this course, at least in any reasonable
generality – we will naturally come across a few examples of Markov processes in R

towards the end of the course.
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1.1 Poisson processes

There are many ways to define Poisson processes. We choose an elementary definition
that happens to be the most illustrative since it allows to draw pictures straight away.

Definition 1 Let (Zn)n≥1 be a sequence of independent exponential random variables
Zn ∼ Exp(λ) for a parameter (inverse mean) λ ∈ (0,∞), T0 = 0, Tn =

∑n

k=1 Zk, n ≥ 1.
Then the process X = (Xt)t≥0 defined by

Xt = #{n ≥ 1 : Tn ≤ t}

is called Poisson process with rate λ.

Note that (Xt)t≥0 is not just a family of (dependent!) random variables but indeed
t 7→ Xt is a random right-continuous function. This view is very useful since it is the
formal justification for pictures of “typical realisations” of X.

Think of Tn as arrival times of customers (arranged in increasing order). Then Xt is
counting the numbers of arrivals up to time t for all t ≥ 0 and we study the evolution of
this counting process. Instead of customers, one might be counting particles detected by
a Geiger counter or cars driving through St. Giles, etc. Something more on the link and
the important distinction between real observations (cars in St. Giles) and mathematical
models (Poisson process) will be included in Lecture 2. For the moment we have a
mathematical model, well specified in the language of probability theory. Starting from a
simple sequence of independent random variables (Zn)n≥1 we have defined a more complex
object (Xt)t≥0, that we call Poisson process.

Let us collect some properties that, apart from some technical details, can serve as
an alternative definition of the Poisson process.

Remark 2 A Poisson process X with rate λ has the following properties

i) Xt ∼ Poi(λt) for all t ≥ 0, where Poi refers to the Poisson distribution with mean
λ.

ii) X has independent increments, i.e. for all t0 ≤ . . . ≤ tn, Xtj − Xtj−1
, j = 1, . . . , n,

are independent.

iii) X has stationary increments, i.e. for all s ≤ t, Xt+s − Xt ∼ Xs, where ∼ means
“has the same distribution as”.

To justify i), just calculate

E
(
qXt
)

=

∞∑

n=0

qn
P(Xt = n) =

∞∑

n=0

qn
P(Tn ≤ t, Tn+1 > t)

=

∞∑

n=0

qn (P(Tn ≤ t) − P(Tn+1 ≤ t)) = 1 −

∞∑

j=1

qj−1(1 − q)P(Tj ≤ t)

= 1 −

∫ t

0

∞∑

j=1

qj−1(1 − q)
λj

(j − 1)!
zj−1e−λzdz

= 1 −

∫ t

0

(1 − q)λe−λz+λqzdz = e−λt(1−q)
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and it is easily checked that this is the probability generating function of the Poisson
distribution with parameter λt. We conclude by the Uniqueness Theorem for probability
generating functions. Note that we interchanged summation and integration. This may
be justified by an expansion of e−λz into a power series and using uniform convergence
of power series twice.

ii)-iii) can be derived from the following Proposition 3.

1.2 The Markov property

Let S be a countable state space, typically S = N. Let Π = (πrs)r,s∈S be a Markov
transition matrix on S. For every s0 ∈ S this specifies the distribution of a Markov chain
(Mn)n≥0 starting from s0 (under Ps0

, say), by

Ps0
(M1 = s1, . . . , Mn = sn) = P(M1 = s1, . . . , Mn = sn|M0 = s0) =

n∏

j=1

πsj−1,sj

We say that (Mn)n≥0 is a Markov chain with transition matrix Π starting from s0. There
are several formulations of the Markov property:

• For all paths s0, . . . , sn+1 ∈ S of positive probability, we have

P(Mn+1 = sn+1|M0 = s0, . . . , Mn = sn) = P(Mn+1 = sn+1|Mn = sn) = πsn,sn+1

• For all s ∈ S and events {(M0, . . . , Mn) ∈ A} and {(Mn, Mn+1, . . .) ∈ B}, we have:
if P(Mn = s, (Mj)0≤j≤n ∈ A) > 0, then

P((Mn+k)k≥0 ∈ B|Mn = s, (Mj)0≤j≤n ∈ A) = P((Mn+k)k≥0 ∈ B|Mn = s).

• (Mj)0≤j≤n and (Mn+k)k≥0 are conditionally independent given Mn = s, for all s ∈ S.
Furthermore, given Mn = s, (Mn+k)k≥0 is a Markov chain with transition matrix Π
starting from s.

Informally: no matter how we got to a state, the future behaviour of the chain is as if
we were starting a new chain from that state. This is one reason why it is vital to study
Markov chains not starting from one initial state but from any state in the state space.

In analogy, we will here study Poisson processes X starting from initial states X0 =
k ∈ N (under Pk), by which we just mean that we consider Xt = k + X̃t, t ≥ 0, where X̃
is a Poisson process starting from 0 as in the above definition.

Proposition 3 (Markov property) Let X be a Poisson process with rate λ and t ≥ 0
a fixed time. Then the following hold.

i) For all k ∈ N and events {(Xr)r≤t ∈ A} and {(Xt+s)s≥0 ∈ B}, we have: if P(Xt =
k, (Xr)r≤t ∈ A) > 0, then

P((Xt+s)s≥0 ∈ B|Xt = k, (Xr)r≤t ∈ A) = P((Xt+s)s≥0 ∈ B|Xt = k) = Pk((Xs)s≥0 ∈ B).
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ii) Given Xt = k, (Xr)r≤t and (Xt+s)s≥0 are independent, and the conditional distri-
bution of (Xt+s)s≥0 is the same as the distribution of X given X0 = k.

iii) (Xt+s − Xt)s≥0 is also a Poisson process with rate λ, independent of (Xr)r≤t.

We will prove a more general Proposition 17 in Lecture 4. Also, in Lecture 2, we will
revise and push further the notion of conditioning. For this lecture we content ourselves
with the formulation of the Markov property and proceed to the overview of the course.

Markov models (models that have the Markov property) are useful in a wide range of
applications, e.g. price processes in Mathematical Finance, evolution of genetic material
in Mathematical Biology, evolutions of particles in space in Mathematical Physics. The
Markov property is a property that makes the model somewhat simple (not easy, but it
could be much less tractable). We will develop tools that support this statement.

1.3 Brief summary of the course

Two generalisations of the Poisson process and several applications make up this course.

• The Markov property of Proposition 3ii) can be used as a starting point to a bigger
class of processes, so-called continuous-time Markov chains. They are analogues
of discrete-time Markov chains, and they are often better adapted to applications.
On the other hand, new aspects arise that did not arise in discrete time, and
connections between the two will be studied. Roughly, the first half of this course
is concerned with continuous-time Markov chains. Our main reference book will be
Norris’s book on Markov Chains.

• The Poisson process is the prototype of a counting process. For the Poisson process,
“everything” can be calculated explicitly. In practice, though, this is often only
helpful as a first approximation. E.g. in insurance applications, the Poisson process
is used for the arrival of claims. However, there is empirical evidence that inter-
arrival times are neither exponentially distributed nor independent nor identically
distributed. The second approximation is to relax exponentiality of inter-arrival
times but keep their independence and identical distribution. This class of counting
processes is called renewal processes. Since exact calculations are often impossible
or not helpful, the most important results of renewal theory are limiting results.
Our main reference book will be Grimmett and Stirzaker’s book on Probability and
Random Processes.

• Many applications that we discuss are in queueing theory. The easiest, so-called
M/M/1 queue consists of a server and customers arriving according to a Poisson
process. Independently of the arrival times, each customer has an exponential
service time for which he will occupy the server, when it is his turn. If the server
is busy, customers queue until being served. Everything has been designed so that
the queue length is a continuous-time Markov chain, and various quantities can be
studied or calculated (equilibrium distribution, lengths of idle periods, waiting time
distributions etc.). More complicated queues arise if the Poisson process is replaced
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by a renewal process or the exponential service times by any other distribution.
There are also systems with k = 2, 3, . . . ,∞ servers. The abstract queueing systems
can be more concretely applied in telecommunication, computing networks, etc.

• Some other applications include insurance ruin and propagation of diseases.
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Lecture 2

Conditioning and stochastic
modelling

Reading: Grimmett-Stirzaker 3.7, 4.6
Further reading: CT4 Unit 1

This lecture consolidates the ideas of conditioning and modelling preparing a more
varied range of applications and a less mechanical use of probability than what was the
focus of Part A. Along the way, we explain the meaning of statements such as the Markov
properties in Lecture 1.

2.1 Modelling of events

Much of probability theory is about events and probabilities of events. Informally, this
is an easy concept. Events like A1 =“the die shows an even number” and A2 =“the first
customer arrives before 10am” make perfect sense in real situations. When it comes to
assigning probabilities, things are less clear. We seem to be able to write down some
(P(A1) = 0.5?) probabilities directly without much sophistication (still making implicit
assumptions about the fairness of the die and the conduct of the experiment). Others
(P(A2)) definitely require a mathematical model.

Hardly any real situations involve genuine randomness. It is rather our incomplete
perception/information that makes us think there was randomness. In fact, assuming a
specific random model in our decision-making can be very helpful and lead to decisions
that are sensible/good/beneficial in some sense.

Mathematical models always make assumptions and reflect reality only partially.
Quite commonly, we have the following phenomenon: the better a model represents real-
ity, the more complicated it is to analyse. There is a trade-off here. In any case, we must
base all our calculations on the model specification, the model assumptions. Translating
reality into models is a non-mathematical task. Analysing a model is purely mathemat-
ical. Models have to be consistent, i.e. not contain contradictions. This statement may
seem superfluous, but there are models that have undesirable features that cannot be
easily removed, least by postulating the contrary. E.g., you may wish to specify a model
for customer arrival where arrival counts over disjoint time intervals are independent,

7
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arrival counts over time intervals of equal lengths have the same distribution (cf. Remark
2 ii)-iii)), and times between two arrivals have a nonexponential distribution. Well, such
a model does not exist (we won’t prove this statements, it’s hard). On the other hand,
within a consistent model, all properties that were not specified in the model assumptions
have to be derived from these. Otherwise it must be assumed that the model may not
have the property.

Suppose we are told that a shop opens at 9.30am, and on average, there are 10
customers per hour. One model could be to say, that a customer arrives exactly every
six minutes. Another model could be to say, customers arrive according to a Poisson
process at rate λ = 10 (time unit=1 hour). Whichever model you prefer, fact is, you can
“calculate” P(A2), and it is not the same in the two models, so we should reflect this in
our notation. We don’t want it to be A2 that changes, so it must be P, and we may wish
to write P̃ for the second model. P should be thought of as defining the randomness.
Similarly, we can express dependence on a parameter by P

(λ), dependence on an initial
value by Pk. Informally, for a Poisson process model, we set Pk(A) = P(A|X0 = k) for
all events A (formally you should wonder whether P(X0 = k) > 0).

Aside: Formally, there is a way to define random variables as functions Xt : Ω → N,
Zn : Ω → [0,∞) etc. Pk can then be defined as a measure on Ω for all k, and this measure
is compatible with our distributional assumptions which claim that

the probability that Xt = k + j is
(λt)j

j!
e−λt

in that

Pk(Xt = j + k) = Pk({ω ∈ Ω : Xt(ω) = j + k}) =
(λt)j

j!
e−λt.

In the mathematical sense, the set Aj+k := {Xt = j +k} := {ω ∈ Ω : Xt(ω) = j +k} ⊂ Ω
is called an event. Technically1, we cannot call all subsets of Ω events if Ω is uncountable, but

we will not worry about this, since it is very hard to find examples of non-measurable sets. ω

should be thought of as a scenario, a realisation of all the randomness. Ω collects the possibilities

and P tells us how likely each event is to occur. If we denote the set of all events by A, then

(Ω,A, P) is called a stochastic basis. Its form is usually irrelevant. It is important that it exists

for all our purposes to make sure that the random objects we study exist. We will assume that

all our random variables can be defined as (measurable) functions on Ω. This existence can be

proved for all our purposes, using measure theory. In fact, when we express complicated families

of random variables such as a Poisson process(Xt)t≥0 in terms of a countable family (Zn)n≥1

of independent random variables, we do this for two reasons. The first should be apparent:

countable families of independent variables are conceptually easier than uncountable families

of dependent variables. The second is that a result in measure theory says that there exists

a stochastic basis on which we can define countable families of independent variables whereas

1The remainder of this paragraph is in a smaller font. This means (now and whenever something is
in small font), that it can be skipped on first reading, and the reader may or may not want to get back
to it at a later stage.
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any more general result for uncountable families or dependent variables requires additional

assumptions or other caveats.

It is very useful to think about random variables Zn as functions Zn(ω), because it
immediately makes sense to define a Poisson process Xt(omega) as in Definition 1, by
defining new functions in terms of old functions. When learning probability, it is usual
to first apply analytic rules to calculate distributions of functions of random variables
(transformation formula for densities, expectation of a function of a random variable in
terms of its density or probability mass function). Here we are dealing more explicitly
with random variables and events themselves, operating on them directly.

This course is not based on measure theory, but you should be aware that some
of the proofs are only mathematically complete if based on measure theory. Ideally,
this only means that we apply a result from measure theory that is intuitive enough to
believe without proof. In a few cases, however, the gap is more serious. Every effort
will be made to point out technicalities, but without drawing attention away from the
probabilistic arguments that constitute this course and that are useful for applications.

B10a Martingales Through Measure Theory provides as pleasant an introduction to
measure theory as can be given. That course nicely complements this course in providing
a formal basis for probability theory in general and this course in particular.

2.2 Conditional probabilities, densities and expecta-

tions

Conditional probabilities were introduced in Part A (or even Mods) as

P(B|A) =
P(B ∩ A)

P(A)
,

where we require P(A) > 0.

Example 4 Let X be a Poisson process. Then

P(Xt = k + j|Xs = k) =
P(Xt − Xs = j, Xs = k)

P(Xs = k)
= P(Xt − Xs = j) = P(Xt−s = j),

by the independence and stationarity of increments, Remark 2 ii)-iii).

Conditional densities were introduced as

fS|T (s|t) = fS|T=t(s) =
fS,T (s, t)

fT (t)
.

Example 5 Let X be a Poisson process. Then, for t > s,

fT2|T1=s(t) =
fT1,T2

(s, t)

fT1
(s)

=
fZ1,Z2

(s, t − s)

fZ1
(s)

= fZ2
(t − s),

by the transformation formula for bivariate densities to relate fT1,T2
to fZ1,Z2

, and inde-
pendence of Z1 and Z2.
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Conditioning has to do with available information. Many models are stochastic only
because the detailed deterministic structure is too complex. E.g. the counting process
of natural catastrophies (hurricanes, earthquakes, volcanic eruptions, spring tide) etc. is
genuinely deterministic. Since we cannot observe and model precisely weather, tectonic
movements etc. it is much more fruitful to write down a stochastic model, e.g. a Poisson
process, as a first approximation. We observe this process over time, and we can update
the stochastic process by its realisation. Suppose we know the value of the intensity
parameter λ ∈ (0,∞). (If we don’t, any update will lead to a new estimate of λ, but
we do not worry about this here). If the first arrival takes a long time to happen, this
gives us information about the second arrival time T2, simply since T2 = T1 + Z2 > T1.
When we eventually observe T1 = s, the conditional density of T2 given T1 = s takes into
account this observation and captures the remaining stochastic properties of T2. The
result of the formal calculation to derive the conditional density is in agreement with the
intuition that if T1 = s, T2 = T1 + Z2 ought to have the distribution of Z2 shifted by s.

Example 6 Conditional probabilities and conditional densities are compatible in that

P(S ∈ B|T = t) =

∫

B

fS|T=t(s)ds = lim
ε↓0

P(S ∈ B|t ≤ T ≤ t + ε)

provided only that fT is right-continuous. To see this, write the right hand side as

P(S ∈ B|t ≤ T ≤ t + ε) =
P(S ∈ B, t ≤ T ≤ t + ε)

P(t ≤ T ≤ t + ε)
=

1
ε

∫ t+ε

t

∫
B

fS,T (s, u)dsdu
1
ε
P(t ≤ T ≤ t + ε)

and under the continuity condition (and by dominated convergence), this tends to
∫

B
fS,T (s, t)ds

fT (t)
=

∫

B

fS|T=t(s)ds = P(S ∈ B|T = t).

Similarly, we can also define

P(X = k|T = t) = lim
ε↓0

P(X = k|t ≤ T ≤ t + ε)

One can define conditional expectations in analogy with unconditional expections, e.g.
in the latter case by

E(X|T = t) =

∞∑

j=0

jP(X = j|T = t).

Proposition 7 a) If X and Y are (dependent) discrete random variables in N, then

E(X) =
∞∑

n=0

E(X|Y = n)P(Y = n).

If b) X and T are jointly continuous random variables in (0,∞) or c) if X is discrete
and T is continuous, and if T has a right-continuous density, then

E(X) =

∫ ∞

0

E(X|T = t)fT (t)dt.
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Proof: c) We start at the right-hand side

∫ ∞

0

E(X|T = t)fT (t)dt =

∫ ∞

0

∞∑

j=0

jP(X = j|T = t)fT (t)dt

and calculate

P(X = j|T = t) = lim
ε↓0

P(X = j, t ≤ T ≤ t + ε)

P(t ≤ T ≤ t + ε)

= lim
ε↓0

1
ε
P(t ≤ T ≤ t + ε|X = j)P(X = j)

1
ε
P(t ≤ T ≤ t + ε)

=
fT |X=j(t)P(X = j)

fT (t)

so that we get on the right-hand side

∫ ∞

0

∞∑

j=0

jP(X = j|T = t)fT (t)dt =

∞∑

j=0

jP(X = j)

∫ ∞

0

fT |X=j(t)dt = E(X)

after interchanging summation and integration. This is justified by Tonnelli’s theorem
that we state in Lecture 3.

b) is similar to c).
a) is more elementary and left to the reader. 2

Statement and argument hold for left-continuous densities and approximations from
the left, as well. For continuous densities, one can also approximate {T = t} by {t− ε ≤
T ≤ t + ε} (for ε < t, and normalisation by 2ε, as adequate).

Recall that we formulated the Markov property of the Poisson process as

P((Xt+u)u≥0 ∈ B|Xt = k, (Xr)r≤t ∈ A) = Pk((Xt+u)u≥0 ∈ B)

for all events {(Xr)r≤t ∈ A} such that P(Xt = k, (Xr)r≤t ∈ A) > 0, and {(Xt+u)u≥0 ∈ B}.
For certain sets A with zero probability, this can still be established by approximation.

2.3 Independence and conditional independence

You have defined independence of two random variables as follows. Two discrete random
variables X and Y are independent if

P(X = j, Y = k) = P(X = j)P(Y = k) for all j, k ∈ S.

Two jointly continuous random variables S and T are independent if their joint density
factorises, i.e. if

fS,T (s, t) = fS(s)fT (t) for all s, t ∈ R, where fS(s) =

∫

R

fS,T (s, t)dt.
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You may also know (or can easily check) that this is equivalent, in both cases, to

P(S ≤ s, T ≤ t) = P(S ≤ s)P(T ≤ t) for all s, t ∈ R.

In fact, it is also equivalent to

P(S ∈ A, T ∈ B) = P(S ∈ B)P(T ∈ B) for all (measurable) A, B ⊂ R,

and we define more generally:

Definition 8 Let X and Y be two random variables with values in any, possibly different
spaces X and Y. Then we call X and Y independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all (measurable) A ⊂ X and B ⊂ Y.

We call X and Y conditionally independent given a third random variable Z if for all
z ∈ S (if Z has values in S) or z ∈ [0,∞) (if Z has values in [0,∞)),

P(X ∈ A, Y ∈ B|Z = z) = P(X ∈ A|Z = z)P(Y ∈ B|Z = z).

Remark and Fact 9 2 Condional independence is in many ways like ordinary (uncondi-
tional) independence. E.g., if X is discrete, it suffices to check the condition for A = {x},
x ∈ X. If Y is real-valued, it suffices to consider B = (−∞, y], y ∈ R. If Y is bivariate,
it suffices to consider all B of the form B = B1 × B2.

If X = {f : [0, t] → N right-continuous}, it suffices to consider A = {f ∈ X : f(r1) =
n1, . . . , f(rm) = nm} for all 0 ≤ r1 < . . . < rm ≤ t and n1, . . . , nm ∈ N. This is the basis
for the meaning of Proposition 3ii).

We conclude by a fact that may seem obvious, but does not follow immediately from
the definition. Also the approximation argument only gives some special cases.

Fact 10 Let X be any random variable, and T a real-valued random variable with right-
continuous density. Then, for all (measurable) f : X × [0,∞) → [0,∞), we have

E(f(X, T )|T = t) = E(f(X, t)|T = t).

Furthermore, if X and T are independent and g : X → [0,∞) measurable we have

E(g(X)|T = t) = E(g(X)).

If X takes values in [0,∞) also, example for f are e.g. f(x, t) = 1{x+t>s}, where
1{x+t>s} := 1 if x + t > s and 1{x+t>s} := 0 otherwise; or f(x, t) = eλ(x+t) in which case
the statements are

P(X + T > s|T = t) = P(X + t > s|T = t) and E(eλ(X+T )|T = t) = eλt
E(eλX |T = t),

and the condition {T = t} can be removed on the right-hand sides if X and T are
independent. This can be shown by the approximation argument.

2Facts are results that are true, but that we cannot prove in this course. Note also that there is a
grey zone between facts and propositions, since proofs or partial proofs sometimes appear on assignment
sheets, in the main or optional parts.



Lecture 3

Birth processes and explosion

Reading: Grimmett-Stirzaker 6.8 (11),(18)-(20), Norris 2.3

In this lecture we introduce birth processes in analogy with our definition of Poisson
processes. The common description (also for Markov chains) is always as follows: given
the current state is m, what is the next part of the evolution, and (for the purpose
of an inductive description) how does it depend on the past? (Answer to the last bit:
conditionally independent given the current state, but this can here be expressed in terms
of genuine independence).

3.1 Definition and an example

If we consider the Poisson process as a model for a growing population, it is not always
sensible to assume that new members are born at the same rate regardless what the size
of the population. You would rather expect this rate to increase with size (more births
in larger populations), although some saturation effects may make sense as well.

Also, if the Poisson process is used as a counting process of alpha particle emissions
of a decaying radioactive substance, it makes sense to assume that the rate is decreasing
with the number of emissions, particularly if the half-life time is short.

Definition 11 A stochastic process X = (Xt)t≥0 of the form

Xt = k + #

{
n ≥ 1 :

n∑

j=1

Zj ≤ t

}

is called a simple birth process of rates (λn)n≥0 starting from X0 = k ∈ N, if the inter-
arrival times Zj, j ≥ 1, are independent exponential random variables with parameters
λk+j−1, j ≥ 1. X is called a (k, (λn)n≥0)-birth process.

Note that the parameter λn is attached with height n. The so-called holding time at
height n has an Exp(λn) distribution.

“Simple” refers to the fact that no two births occur at the same time, which one
would call “multiple” births. Multiple birth processes can be studied as well, and, given

13
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certain additional assumptions, form examples of continuous-time Markov chains, like
simple birth processes do, as we will see soon.

We will not use the second part of this definition yet. However, it is vital to point out
that, in general, the distribution of a Markov process (e.g. a Markov chain) is determined
by an intial distribution and the transition mechanism. Here, we chose to describe the
transition mechanism by the exponential holding times Zn, n ≥ 1, whose distributions
depend on the initial state k ∈ N.

Example 12 Consider a population in which each individual gives birth after an ex-
ponential time of parameter λ, all independently and repeatedly. If n individuals are
present, then the first birth will occur after an exponential time of parameter nλ. Then
we have n + 1 individuals and, by the lack of memory property (see Assignment 1), the
process begins afresh. Thus the size of the population performs a birth process with rates
λn = nλ. Let Xt denote the number of individuals at time t and suppose X0 = 1. Write
T for the time of the first birth. Then by Proposition 7c)

E(Xt) =

∫ ∞

0

λe−λs
E(Xt|T = s)ds =

∫ t

0

λe−λs
E(Xt|T = s)ds + e−λt

since Xt = X0 = 1 if T > t.

Put µ(t) = E(Xt), then for 0 < s < t, intuitively E(Xt|T = s) = 2µ(t − s) since from
time s, the two individuals perform independent birth processes of the same type and we
are interested in their population sizes t− s time units later. We will investigate a more
formal argument later, when we have a Markov property at our disposal.

Now

µ(t) =

∫ t

0

2λe−λsµ(t − s)ds + e−λt

and setting r = t − s

eλtµ(t) = 1 + 2λ

∫ t

0

eλrµ(r)dr.

Differentiating we obtain

µ′(t) = λµ(t)

so the mean population size grows exponentially, and X0 = 1 implies

E(Xt) = µ(t) = eλt.
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3.2 Tonelli’s Theorem, monotone and dominated con-

vergence

The following is a result from measure theory that we cannot prove or dwell on here.

Fact 13 (Tonelli) You may interchange order of integration, countable summation and
expectation whenever the integrand/summands/random variables are nonnegative, e.g.

E

(
∑

n≥0

Xn

)
=
∑

n≥0

E(Xn),

∫ ∞

0

∑

n≥0

fn(x)dx =
∑

n≥0

∫ ∞

0

fn(x)dx

∫ ∞

0

∫ x

0

f(x, y)dydx =

∫ ∞

0

∫ ∞

y

f(x, y)dxdy.

There were already two applications of this, one each in Lectures 1 and 2. The focus
was on other parts of the argument, but you may wish to consider the justification of
Remark 2 and Proposition 7 again now.

Interchanging limits is more delicate, and there are monotone and dominated conver-
gence for this purpose. In this course we will only interchange limits when this is justified
by monotone or dominated convergence, but we do not have the time to work out the
details. Here are indicative statements.

Fact 14 (Monotone convergence) Integrals (expectations) of an increasing sequence
of nonnegative functions (random variables Yn) converge (in the sense that limn→∞ E(Yn) =
E(limn→∞ Yn).

Fact 15 (Dominated convergence) Integrals (expectations) of a pointwise convergent
sequence of functions fn → f (applied to a random variable) converge, if the sequence
|fn| ≤ g is dominated by an integrable function g (function which when applied to the
random variable has finite expectation), i.e.

∫
g(x)dx < ∞ ⇒ lim

n→∞

∫
fn(x)dx =

∫
lim

n→∞
fn(x)dx

E(g(X)) < ∞ ⇒ lim
n→∞

E(fn(X)) = E( lim
n→∞

fn(X)).

We refer to Part B Martingales through measure theory for those of you who follow
that course. In any case, our working hypothesis is that, in practice, we may interchange
all limits that come up in this course.



16 Lecture Notes – Part B Applied Probability – Oxford MT 2007

3.3 Explosion

If the rates increase too quickly, it may happen that infinitely many individuals are
born in finite time (as with deterministic inter-birth times). We call this phenomenon
explosion. Formally, we can express the possibility of explosion by P(T∞ < ∞) > 0
where T∞ = limn→∞ Tn. For simple birth processes, we have the following necessary and
sufficient condition.

Proposition 16 Let X be a birth process with rates (λn)n≥0. Then

P(T∞ < ∞) > 0 if and only if
∞∑

n=0

1

λn

< ∞.

Furthermore, in this case P(T∞ < ∞) = 1.

Proof: Note that

E(T∞) = E

(
∞∑

n=1

Zn

)

=

∞∑

n=1

E(Zn)

=

∞∑

n=0

1

λn

where Tonelli’s Theorem allows us to interchange summation and expectation. Therefore,
if the series is finite, then E(T∞) < ∞ implies P(T∞ < ∞) = 1. The other implication
does not hold, in general. However, (using monotone convergence), and also the inde-
pendence of the Zn, we can calculate

− log E
(
e−T∞

)
= −

∞∑

n=0

log E
(
e−Zn

)

=
∞∑

n=1

log

(
1 +

1

λn

)
.

Either this latter sum is greater than log(2)
∑∞

n=n0

1
λn

if λn ≥ 1 for n ≥ n0, by linear
interpolation and concavity of the logarithm. Or otherwise a restriction to any subse-
quence λnk

≤ 1 shows that the sum is infinite as each of these summands contributes at
least log(2).

Therefore, if the series diverges, then E(e−T∞) = 0, i.e. P(T∞ = ∞) = 1. 2

Note that we have not explicitly specified what happens after T∞ if T∞ < ∞. With
a population size model in mind, Xt = ∞ for all t ≥ T∞ is a reasonable convention.
Formally, this means that X is a process in N̄ = N ∪ {∞}. This process is often called
the minimal process, since it is “active” on a minimal time interval. We will show the
Markov property for minimal processes. It can also be shown that there are other ways
to specify X after explosion that preserve the Markov property. The next natural thing
to do is to start afresh after explosion. Such a process is then called non-minimal.


