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Aims

This course is intended to show the power and range of probability by considering real
examples in which probabilistic modelling is inescapable and useful. Theory will be
developed as required to deal with the examples.

Synopsis

Poisson processes and birth processes. Continuous-time Markov chains. Transition rates,
jump chains and holding times. Forward and backward equations. Class structure, hitting
times and absorption probabilities. Recurrence and transience. Invariant distributions
and limiting behaviour. Time reversal.

Applications of Markov chains in areas such as queues and queueing networks —
M/M/s queue, Erlang’s formula, queues in tandem and networks of queues, M/G/1 and
G/M/1 queues; insurance ruin models; epidemic models; applications in applied sciences.

Renewal theory. Limit theorems: strong law of large numbers, central limit theo-
rem, elementary renewal theorem, key renewal theorem. Excess life, inspection paradox.
Applications.

Reading
e J.R. Norris, Markov chains, Cambridge University Press (1997)

e G.R. Grimmett, and D.R. Stirzaker, Probability and Random Processes, 3rd edition,
Oxford University Press (2001)

G.R. Grimmett, and D.R. Stirzaker, One Thousand Ezercises in Probability, Oxford
University Press (2001)

D.R. Stirzaker, Elementary Probability, Cambridge University Press (1994)

S.M. Ross, Introduction to Probability Models, 4th edition, Academic Press (1989)
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Lecture 1

Introduction: Poisson processes,
generalisations and applications

Reading: Part A Probability; Grimmett-Stirzaker 6.1, 6.8 up to (10)
Further reading: Ross 4.1, 5.3; Norris Introduction, 1.1, 2.4

This course is, in the first place, a course for 3rd year undergraduates who did Part
A Probability in their second year. Other students from various M.Sc.’s are welcome
as long as they are aware of the prerequisites of the course. These are essentially an
introductory course in probability not based on measure theory. It will be an advantage
if this included the central aspects of discrete-time Markov chains, by the time we get to
Lecture 5 in week 3.

The aim of Lecture 1 is to give a brief overview of the course. To do this at an
appropriate level, we begin with a review of Poisson processes that were treated at the
very end of the Part A syllabus. The parts most relevant to us in today’s lecture are
again included here, and some more material is on the first assignment sheet.

This is a mathematics course. “Applied probability” means that we apply probability,
but not so much Part A Probability but further probability building on Part A and not
covered there, so effectively, we will be spending a lot of our time developing theory as
required for certain examples and applications.

For the rest of the course, let N = {0, 1,2, ...} denote the natural numbers including
zero. Apart from very few exceptions, all stochastic processes that we consider in this
course will have state space N (or a subset thereof). However, most results in the theory
of Markov chains will be treated for any countable state space S, which does not pose any
complications as compared with N, since one can always enumerate all states in S and
hence give them labels in N. For uncountable state spaces, however, several technicalities
arise that are beyond the scope of this course, at least in any reasonable generality — we
will naturally come across a few examples of Markov processes in R towards the end of
the course.
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1.1 Poisson processes

There are many ways to define Poisson processes. We choose an elementary definition
that happens to be the most illustrative since it allows to draw pictures straight away.

Definition 1 Let (Z,),>0 be a sequence of independent exponential random variables
Z, ~ Exp()\) for a parameter (inverse mean) A € (0,00), Ty = 0, T, = Sop—p Zi, n > 1.
Then the process X = (X});>o defined by

Xi=#{n>1:T, <t}
is called Poisson process with rate A.

Note that (X;);>o is not just a family of (dependent!) random variables but indeed
t — X, is a random right-continuous function. This view is very useful since it is the
formal justification for pictures of “typical realisations” of X.

Think of T}, as arrival times of customers (arranged in increasing order). Then X; is
counting the numbers of arrivals up to time ¢ for all £ > 0 and we study the evolution of
this counting process. Instead of customers, one might be counting particles detected by
a Geiger counter or cars driving through St. Giles, etc. Something more on the link and
the important distinction between real observations (cars in St. Giles) and mathematical
models (Poisson process) will be included in Lecture 2. For the moment we have a
mathematical model, well specified in the language of probability theory. Starting from a
simple sequence of independent random variables (Z,,),>o we have defined a more complex
object (X¢)t>0, that we call Poisson process.

Let us collect some properties that, apart from some technical details, can serve as
an alternative definition of the Poisson process.

Remark 2 A Poisson process X with rate A has the following properties

(i) X ~ Poi(At) for all t > 0, where Poi refers to the Poisson distribution with mean
A.

(ii) X has independent increments, i.e. forall to < ... <t,, Xy, =X, _,j=1,...,n,
are independent.

(iii) X has stationary increments, i.e. for all s < t, X;1 s — Xy ~ X, where ~ means
“has the same distribution as”.

To justify (i), calculate

E(¢) = D> ¢"P(Xi=n)=> ¢"P(T, <t, T >1)
n=0

n=0
oo

= > ¢ BT < 1)~ BT <) =1- ¢ (1 - B(T; < 1)

t 2, . 2\ .
= 1—/ ¢ 11— q)— ez
0 ; ( )(] —1)!
t

= 1- / (1= g)Ae Ay = 10,
0
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where we used the well-known fact that T}, as a sum of independent Exp()\)-variables has a

Gamma(n, \) distribution. It is now easily checked that this is the probability generating

function of the Poisson distribution with parameter A\t. We conclude by the Uniqueness

Theorem for probability generating functions. Note that we interchanged summation and

integration. This may be justified by an expansion of e into a power series and using

uniform convergence of power series twice. We will see another justification in Lecture 3.
(ii)-(iii) can be derived from the following Proposition 3, see also Lecture 4.

1.2 The Markov property

Let S be a countable state space, typically S = N. Let II = (m,4),ses be a Markov
transition matrix on S. For every so € S this specifies the distribution of a Markov chain
(M,,)n>0 starting from sy (under Py, say), by

Poo(My = s1,..., My =s,) =P(My =s1,..., M, = s,|My = s0) = [ [ 75,5,
j=1

We say that (M,,),>0 is a Markov chain with transition matrix II starting from sy. There
are several formulations of the Markov property:

e For all paths sq,...,s,+1 € S of positive probability, we have

P(Mn+1 = 8n+1|MO = S50y, Mn = 8n> = P(Mn+1 = 8n+1|Mn = Sn) = Tsp,8n41

e For all s € S and events {(M,, ..., M,) € A} and {(M,, M,11,...) € B}, we have:
if ]P)(Mn =S, (Mj)OSan € A) > O, then

P((Mpy1)k>0 € BIM,, = 5,(Mj)o<j<n € A) = P((Mpi1)k>0 € BIM,, = s).

o (M;)o<j<n and (M, 1y)r>o are conditionally independent given M,, = s, forall s € S.
Furthermore, given M,, = s, (M,+x)r>0 is & Markov chain with transition matrix II
starting from s.

Informally: no matter how we got to a state, the future behaviour of the chain is as if
we were starting a new chain from that state. This is one reason why it is vital to study
Markov chains not starting from one initial state but from any state in the state space.

In analogy, we will here study Poisson processes X starting from initial states Xy =
k € N (under Py), by which we just mean that we consider X; = k + X;, t > 0, where X
is a Poisson process starting from 0 as in the above definition.

Proposition 3 (Markov property) Let X be a Poisson process with rate \ starting
from 0 and t > 0 a fixed time. Then the following hold.

(i) For all k € N and events {(X,),<: € A} and {(Xi15)s>0 € B}, we have: if P(X; =
k? (Xr’)rgt € A) > O, then

P((Xiys)s>0 € BIXy =k, (Xp)r<t € A) = P((Xigs5)s20 € BIX, = k) = Pi((Xs)s20 € B).
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(i) Given Xy =k, (X,)r<t and (Xiys)s>0 are independent, and the conditional distri-
bution of (Xiys)s>0 is that of a Poisson process with rate \ starting from k.

(iil) (Xirs — Xi)s>0 @5 a Poisson process with rate \ starting from 0, independent of
(Xr)rgt-

We will prove a more general Proposition 17 in Lecture 4. Also, in Lecture 2, we will
revise and push further the notion of conditioning. For this lecture we content ourselves
with the formulation of the Markov property and proceed to the overview of the course.

Markov models (models that have the Markov property) are useful in a wide range of
applications, e.g. price processes in Mathematical Finance, evolution of genetic material
in Mathematical Biology, evolutions of particles in space in Mathematical Physics. The
Markov property is a property that makes the model somewhat simple (not easy, but it
could be much less tractable). We will develop tools that support this statement.

1.3 Brief summary of the course

Two generalisations of the Poisson process and several applications make up this course.

e The Markov property of Proposition 3(ii) can be used as a starting point to a bigger
class of processes, so-called continuous-time Markov chains. They are analogues of
discrete-time Markov chains, and they are often better adapted to applications. On
the other hand, new aspects arise that did not arise in discrete time, and connections
between the two will be studied. Roughly, the first half of this course is concerned
with continuous-time Markov chains. Our main reference book will be Norris’s
book on Markov Chains.

e The Poisson process is the prototype of a counting process. For the Poisson process,
“everything” can be calculated explicitly. In practice, though, this is often only
helpful as a first approximation. E.g. in insurance applications, the Poisson process
is used for the arrival of claims. However, there is empirical evidence that inter-
arrival times are neither exponentially distributed nor independent nor identically
distributed. The second approximation is to relax exponentiality of inter-arrival
times but keep their independence and identical distribution. This class of counting
processes is called renewal processes. Since exact calculations are often impossible
or not helpful, the most important results of renewal theory are limiting results. Our
main reference will be Chapter 10 of Grimmett and Stirzaker’s book on Probability
and Random Processes.

e Many applications that we discuss are in queueing theory. The easiest, so-called
M/M/1 queue consist of a server and customers arriving according to a Poisson
process. Independently of the arrival times, each customer has an exponential
service time for which he will occupy the server, when it is his turn. If the server
is busy, customers queue until being served. Everything has been designed so that
the queue length is a continuous-time Markov chain, and various quantities can be
studied or calculated (equilibrium distribution, lengths of idle periods, waiting time
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distributions etc.). More complicated queues arise if the Poisson process is replaced
by a renewal process or the exponential service times by any other distribution.
There are also systems with k£ = 2,3, ..., 0o servers. The abstract queueing systems
can be more concretely applied in telecommunication, computing networks, etc.

e Some other applications include insurance ruin and propagation of diseases.
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Lecture 2

Conditioning and stochastic
modelling

Reading: Grimmett-Stirzaker 3.7, 4.6
Further reading: Grimmett-Stirzaker 4.7, C'T4 Unit 1

This lecture consolidates the ideas of conditioning and modelling preparing a more
varied range of applications and a less mechanical use of probability than what was the
focus of Part A. Along the way, we explain the meaning of statements such as the Markov
properties of Lecture 1.

2.1 Modelling of events

Much of probability theory is about events and probabilities of events. Informally, this
is an easy concept. Events like A; =“the die shows an even number” and A, =“the first
customer arrives before 10am” make perfect sense in real situations. When it comes to
assigning probabilities, things are less clear. We seem to be able to write down some
(P(A;) = 0.57) probabilities directly without much sophistication (still making implicit
assumptions about the fairness of the die and the conduct of the experiment). Others
(P(Az)) definitely require a mathematical model.

Hardly any real situations involve genuine randomness. It is rather our incomplete
perception/information that makes us think there was randomness. In fact, assuming a
specific random model in our decision-making can be very helpful and lead to decisions
that are sensible/good/beneficial in some sense.

Mathematical models always make assumptions and reflect reality only partially.
Quite commonly, we have the following phenomenon: the better a model represents real-
ity, the more complicated it is to analyse. There is a trade-off here. In any case, we must
base all our calculations on the model specification, the model assumptions. Translating
reality into models is a non-mathematical task. Analysing a model is purely mathemat-
ical. Models have to be consistent, i.e. not contain contradictions. This statement may
seem superfluous, but there are models that have undesirable features that cannot be
easily removed, least by postulating the contrary. E.g., you may wish to specify a model
for customer arrival where arrival counts over disjoint time intervals are independent,

7
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arrival counts over time intervals of equal lengths have the same distribution (cf. Re-
mark 2 ii)-iii)), and times between two arrivals have a nonexponential distribution. Well,
such a model does not exist (we won’t prove this statement now, it’s a bit too hard at
this stage). On the other hand, within a consistent model, all properties that were not
specified in the model assumptions have to be derived from these. Otherwise it must be
assumed that the model may not have the property.

Suppose we are told that a shop opens at 9.30am, and on average, there are 10
customers per hour. One model could be to say, that a customer arrives exactly every
six minutes. Another model could be to say, customers arrive according to a Poisson
process at rate A = 10 (time unit=1 hour). Whichever model you prefer, fact is, you can
“calculate” P(As), and it is not the same in the two models, so we should reflect this in
our notation. We don’t want it to be A, that changes, so it must be P, and we may wish
to write P for the second model. P should be thought of as defining the randomness.
Similarly, we can express dependence on a parameter by P, dependence on an initial
value by Py. Informally, for a Poisson process model, we set Px(A) = P(A| Xy = k) for
all events A (formally you should wonder whether P(Xy = k) > 0).

Aside: Formally, there is a way to define random variables as functions X; : Q@ — N,
Zn Q2 — [0, 00) ete. Py can then be defined as a measure on €2 for all k, and this measure
is compatible with our distributional assumptions which claim that

(ALY n

the probability that X; =k + j is ——e
j!

in that

J
P Xy =j+k) =P({weQ: Xy(w)=j+k}) = (Et') e M.

In the mathematical sense, the set A; 1 :={X; =j+k} ={w e Q: Xi(w) =75+k} CQ
is called an event. Technically’, we cannot in general call all subsets of ) events if Q is
uncountable, but we will not worry about this, since it is very hard to find examples of non-
measurable sets. w should be thought of as a scenario, a realisation of all the randomness. €2
collects the possibilities and P tells us how likely each event is to occur. If we denote the set
of all events by A, then (2, A,P) is called a stochastic basis. Its form is usually irrelevant. It
is important that it exists for all our purposes to make sure that the random objects we study
exist. We will assume that all our random variables can be defined as (measurable) functions
on (). This existence can be proved for all our purposes, using measure theory. In fact, when
we express complicated families of random variables such as a Poisson process (X¢)¢>0 in terms
of a countable family (Z,),>1 of independent random variables, we do this for two reasons.
The first should be apparent: countable families of independent variables are conceptually
easier than uncountable families of dependent variables. The second is that a result in measure
theory says that there exists a stochastic basis on which we can define countable families of
independent variables whereas any more general result for uncountable families or dependent
variables requires additional assumptions or other caveats.

!The remainder of this paragraph is in a smaller font. This means (now and whenever something is
in small font), that it can be skipped on first reading, and the reader may or may not want to get back
to it at a later stage.
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It is very useful to think about random variables Z, as functions Z,(w), because
it immediately makes sense to define a Poisson process X;(w) as in Definition 1, by
defining new functions in terms of old functions. When learning probability, it is usual
to first apply analytic rules to calculate distributions of functions of random variables
(transformation formula for densities, expectation of a function of a random variable in
terms of its density or probability mass function). Here we are dealing more explicitly
with random variables and events themselves, operating on them directly.

This course is not based on measure theory, but you should be aware that some
of the proofs are only mathematically complete if based on measure theory. Ideally,
this only means that we apply a result from measure theory that is intuitive enough to
believe without proof. In a few cases, however, the gap is more serious. Every effort
will be made to point out technicalities, but without drawing attention away from the
probabilistic arguments that constitute this course and that are useful for applications.

B10a Martingales Through Measure Theory provides as pleasant an introduction to
measure theory as can be given. That course nicely complements this course in providing
the formal basis for probability theory in general and hence this course in particular.
However, it is by no means a co-requisite, and when we do refer to this course, it is
likely to be to material that has not yet been covered there. Williams” Probability with
Martingales is the recommended book reference.

2.2 Conditional probabilities, densities and expecta-
tions

Conditional probabilities were introduced in Part A (or even Mods) as

P(BNA)

P(BIA) = g

where we require P(A) > 0.

Example 4 Let X be a Poisson process. Then

P(X; — Xs =7, Xs =k)

P(X, = k+j| X, = k) = Pt =

= ]P)(Xt - Xs = ]) = ]P)(Xt—s = ])a

by the independence and stationarity of increments, Remark 2 (ii)-(iii).

Conditional densities were introduced as

fsir(slt) = fsir=i(s) = %(?)O

Example 5 Let X be a Poisson process. Then, for ¢ > s,
fT T (t) _ fT1,T2(37t) _ on,Zl(S,t — S) _ fZO(s)le(t — 3)
5| Ti=s fT1<8) fZO(S) fZ()(S)

by the transformation formula for bivariate densities to relate fr, 1, to fz, z,, and inde-
pendence of Z; and Z;.

= fz(t—s)= )\e_’\(t_s),
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Conditioning has to do with available information. Many models are stochastic only
because the detailed deterministic structure is too complex. E.g. the counting process
of natural catastrophies (hurricanes, earthquakes, volcanic eruptions, spring tide) etc. is
genuinely deterministic. Since we cannot observe and model precisely weather, tectonic
movements etc. it is much more fruitful to write down a stochastic model, e.g. a Poisson
process, as a first approximation. We observe this process over time, and we can update
the stochastic process by its realisation. Suppose we know the value of the intensity
parameter A € (0,00). (If we don’t, any update will lead to a new estimate of A, but
we do not worry about this here). If the first arrival takes a long time to happen, this
gives us information about the second arrival time T, simply since Ty, = 11 + Z; > 17.
When we eventually observe T = s, the conditional density of T5 given T} = s takes into
account this observation and captures the remaining stochastic properties of T;. The
result of the formal calculation to derive the conditional density is in agreement with the
intuition that if 77 = s, To, = T} + Z; ought to have the distribution of Z; shifted by s.

Example 6 Conditional probabilities and conditional densities are compatible in that
P(S e B|T=t) = / fsir=t(s)ds = liﬁ}IP’(S EBt<T <t+e¢),
B €
provided only that fr is right-continuous. To see this, when fgr is sufficiently smooth,
write for all intervals B = (a, b)

P(SeBt<T<t+e) = t+€fo5T (s,u)dsdu

P Blit<T < = -
(SeBt<T<t+e¢) P(t<T <t+e) iIP’(thSt-l—&)

and under the smoothness condition (by dominated convergence etc.), this tends to

fB fs’T(S, t)dS
fr(t)

Similarly, we can also define

P(X =k|T =) =lmP(X =kt <T <t +¢)

- /st|T:t(8)d$ =P(S e BIT=1).

One can define conditional expectations in analogy with unconditional expections, e.g.
in the latter case by

E(X|T =t) = Z]IP’ = 4T =1).
Proposition 7 a) If X and Y are (dependent) discrete random variables in N, then
=Y EX[Y =n)P(Y =n).
n=0

If b) X and T are jointly continuous random variables in (0,00) or ¢) if X is discrete
and T is continuous, and if T has a right-continuous density, then

E(X) = /0 TEXT = t) fr(t)dt
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Proof: ¢) We start at the right-hand side
| BT = s = [ P = gI7 = (e
0 (-

and calculate

: . P(X=jt<T<t+e)
PX =jT=t) =1
K=ilT=0 = = T <+ 9
Pt <T <t+elX =j)P(X =)

= - Pt<T <t+e)
Jrix=j(t)P(X = j)
fr(t)

so that we get on the right-hand side
| S =T = 0fr0de = S50 =) [ ey (it = BCY)
(- 0 0

after interchanging summation and integration. This is justified by Tonnelli’s theorem
that we state in Lecture 3.

b) is similar to c).

a) is more elementary and left to the reader. O

Statement and argument hold for left-continuous densities and approximations from
the left, as well. For continuous densities, one can also approximate {T" =t} by {t —¢ <
T <t+c¢e} (for e < t, and normalisation by 2¢, as adequate).

Recall that we formulated the Markov property of the Poisson process as

P((Xia)uso € BIX, = by (X,)yt € A) = P((Xis)uso € B)
for all events {(X,),<; € A} such that P(X; = k, (X,),<: € A) > 0, and {(X¢1u)u>0 € B}.
For certain sets A with zero probability, this can still be established by approximation.
2.3 Independence and conditional independence

Recall that independence of two random variables is defined as follows. Two discrete
random variables X and Y are independent if

P(X =Y =k =PX=/PY =k) foralljkeS.

Two jointly continuous random variables S and 7" are independent if their joint density
factorises, i.e. if

fs’T(S,t) = fs(S)fT(t) for all s, € R, where fs(S) = /]R;fs’T(S,t)dt.
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Recall also (or check) that this is equivalent, in both cases, to
P(S<s,T<t)=PS <s)P(T <) for all s,t € R.
In fact, it is also equivalent to
P(Se A, TeB)=P(S e B)PTeB) for all (measurable) A, B C R,
and we define more generally:

Definition 8 Let X and Y be two random variables with values in any, possibly different
spaces X and Y. Then we call X and Y independent if

P(X € A Y € B)=P(X € A)P(Y € B) for all (measurable) A C X and B C Y.

We call X and Y conditionally independent given a third random variable Z if for all
z € S (if Z has values in S) or z € [0, 00) (if Z has values in [0, 00)),

P(X €e AY € BlZ=2)=P(X € A|Z =2)P(Y € B|Z = z).

Remark and Fact 9 ? Condional independence is in many ways like ordinary (uncondi-
tional) independence. E.g., if X is discrete, it suffices to check the condition for A = {x},
r € X. If Y is real-valued, it suffices to consider B = (—o0,y|, y € R. If Y is bivariate,
it suffices to consider all B of the form B = By X Bs.

If X={f:]0,¢t] — N right-continuous}, it suffices to consider A = {f € X : f(r1) =
Niyeooy f(rm) =np}tforal 0 <ry <...<r, <tandng,...,n, € N. This is the basis
for the meaning of Proposition 3(ii).

We conclude by a fact that may seem obvious, but does not follow immediately from
the definition. Also the approximation argument only gives some special cases.

Fact 10 Let X be any random variable, and T a real-valued random variable with right-
continuous density. Then, for all (measurable) f : X x [0, 00) — [0, 00), we have

E(f(X, DT =t) = E(f(X,)[T =1).
Furthermore, if X and T are independent and g : X — [0,00) (measurable) we have
E(g(X)|T = t) = E(g(X)).

If X takes values in [0,00) also, example for f are e.g. f(x,t) = lyzss), Where
Lizgtssy == Lif o+t > s and 1gz44s) := 0 otherwise; or f(x,t) = eMe ) in which case
the statements are

P(X4+T>s|T=t)=P(X +t>s|T =t) and E(** DT = t) = ME(M|T = 1),

and the condition {T" = t} can be removed on the right-hand sides if X and T are
independent. This can be shown by the approximation argument.
The analogue of Fact 10 for discrete T is elementary.

2Facts are results that are true, but that we cannot prove in this course. Note also that there is a
grey zone between facts and propositions, since proofs or partial proofs sometimes appear on assignment
sheets, in the main or optional parts.



Lecture 3

Birth processes and explosion

Reading: Norris 2.2-2.3, 2.5; Grimmett-Stirzaker 6.8 (11),(18)-(20)

In this lecture we introduce birth processes in analogy with our definition of Poisson
processes. The common description (also for Markov chains) is always as follows: given
the current state is m, what is the next part of the evolution, and (for the purpose
of an inductive description) how does it depend on the past? (Answer to the last bit:
conditionally independent given the current state, but this can here be expressed in terms
of genuine independence).

3.1 Definition and an example

If we consider the Poisson process as a model for a growing population, it is not always
sensible to assume that new members are born at the same rate regardless what the size
of the population. You would rather expect this rate to increase with size (more births
in larger populations), although some saturation effects may make sense as well.

Also, if the Poisson process is used as a counting process of alpha particle emissions
of a decaying radioactive substance, it makes sense to assume that the rate is decreasing
with the number of emissions, particularly if the half-life time is short.

Definition 11 A stochastic process X = (X;);>¢ of the form

n—1
Xt:k+#{n21:ZZj§t}
=0

is called a simple birth process of rates (A\,)n>o starting from Xy = k € N, if the inter-
arrival times Zj, 7 > 0, are independent exponential random variables with parameters
Metjs J > 0. X is called a (K, (A,)n>0)-birth process.

Note that the parameter A, is attached with height n. The so-called holding time at
height n has an Fxp()\,) distribution.

“Simple” refers to the fact that no two births occur at the same time, which one
would call “multiple” births. Multiple birth processes can be studied as well, and, given
certain additional assumptions, form examples of continuous-time Markov chains, like
simple birth processes do, as we will see soon.

13
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Example 12 Consider a population in which each individual gives birth after an expo-
nential time of parameter A, all independently and repeatedly.

If n individuals are present, then the first birth will occur after an exponential time
of parameter n\. Then we have n + 1 individuals and, by the lack of memory property
(see Assignment 1), the process begins afresh with n + 1 exponential clocks independent
of the previous evolution (n — 1 clocks still running with residual Exzp(\) times and 2
new clocks from the individual that has just given birth and the new-born individual).
By induction, the size of the population performs a birth process with rates A\, = nA.

Let X; denote the number of individuals at time ¢ and suppose Xy = 1. Write T for
the time of the first birth. Then by Proposition 7c)

00 t
E(X;) = / e ME(X|T = u)du = / e ME(X|T = u)du + e
0 0

since X; = Xog=1if T > t.

Put u(t) = E(X;), then for 0 < u < t, intuitively E(X;|T = u) = 2u(t — u) since from
time wu, the two individuals perform independent birth processes of the same type and we
are interested in their population sizes ¢ — u time units later. We will investigate a more
formal argument later, when we have the Markov property at our disposal.

Now

t
wu(t) = / 2xe ™Mt — u)du + e
0

and setting r =% —u

t
Mu(t) =1+ 2)\/ e p(r)dr.
0

Differentiating we obtain

(' (t) = Au(t)
so the mean population size grows exponentially, and X, = 1 implies

E(X,) = u(t) = eM.

3.2 Tonelli’s Theorem, monotone and dominated con-
vergence

The following is a result from measure theory that we cannot prove or dwell on here.

Fact 13 (Tonelli) You may interchange order of integration, countable summation and
expectation whenever the integrand/summands/random variables are nonnegative, e.g.

E <Z Xn> = ZE(XN), /000 an(x)dz = Z/OOO folz)dx

n>0 n>0 n>0 n>0

/ ) / " fa,y)dyds = / N / " f(y)dedy.
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There were already two applications of this, one each in Lectures 1 and 2. The focus
was on other parts of the argument, but you may wish to consider the justification of
Remark 2 and Proposition 7 again now.

Interchanging limits is more delicate, and there are monotone and dominated conver-
gence for this purpose. In this course we will only interchange limits when this is justified
by monotone or dominated convergence, but we do not have the time to work out the
details. Here are indicative statements.

Fact 14 (Monotone convergence) Integrals (expectations) of an increasing sequence
of nonnegative functions (random variablesY,,) converge (in the sense that lim,,_ ., E(Y,) =
E(lim, o Yy) )

Fact 15 (Dominated convergence) Integrals (expectations) of a pointwise convergent
sequence of functions f, — f (applied to a random wvariable) converge, if the sequence
|ful < g is dominated by an integrable function g (function which when applied to the
random variable has finite expectation), i.e.

/g(x)dx <o = 71113010 folz)dr = /nll—{go fo(z)dz
E(g(X) <00 =  lim E(f,(X)) = E(lim £,(X))

We refer to Bl10a Martingales Through Measure Theory for those of you who follow
that course. In any case, our working hypothesis is that, in practice, we may interchange
all limits that come up in this course, but also know that these two theorems are required
for formal justification, and refer to them.

3.3 Explosion

If the rates (A, )nen increase too quickly, it may happen that infinitely many individuals
are born in finite time (as with deterministic inter-birth times). We call this phenomenon
explosion. Formally, we can express the possibility of explosion by P(T,, < co) > 0 where
Ty = lim,,_. o T;,. Remember that it is not a valid argument to say that this is ridiculous
for the application we are modelling and hence cannot occur in our model. We have
to check whether it can occur under the model assumptions. And if it does occur and
is ridiculous for the application, it means that the model is not a good model for the
application. For simple birth processes, we have the following necessary and sufficient
condition.

Proposition 16 Let X be a (k, (An)n>0)-birth process. Then

= 1
P(T,, <o0) >0 if and only if Z)\—<oo.

m=k

Furthermore, in this case P(T, < o0) = 1.
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Proof: Note that

E(T.) = E(izn>

(Zn)

Dgg

3
Il
o

1
Am

WK

k

3
Il

where Tonelli’s Theorem allows us to interchange summation and expectation. Therefore,
if the series is finite, then E(T) < oo implies P(7T,, < o0) = 1.

Since, in general, P(T,, < oo) does not imply E(T,,) < oo, we are not yet done for
the converse. However, (using monotone convergence), and also the independence of the
Z,, we can calculate

—logE (e_T“’) = — Z logE (e_Z”)
n=0
= Z log (1 + i) .
m=k

Either this latter sum is greater than log(2) > > ﬁ if A\, > 1 for n > ngy, by linear
interpolation and concavity of the logarithm. Or otherwise a restriction to any subse-
quence \,, < 1 shows that the sum is infinite as each of these summands contributes at
least log(2).

Therefore, if the series diverges, then E(e™7>) =0, i.e. P(T,, = o) = 1. O

Note that we have not explicitly specified what happens after T, if T,,, < oo. With
a population size model in mind, X; = oo for all ¢ > T is a reasonable convention.
Formally, this means that X is a process in N = N U {oo}. This process is often called
the minimal process, since it is “active” on a minimal time interval. We will show the
Markov property for minimal processes. It can also be shown that there are other ways
to specify X after explosion that preserve the Markov property. The next natural thing
to do is to start afresh after explosion. Such a process is then called non-minimal.



Lecture 4

Birth processes and the Markov
property

Reading: Norris 2.4-2.5; Grimmett-Stirzaker 6.8 (21)-(25)

In this lecture we discuss in detail the Markov property for birth processes.

4.1 Statements of the Markov property

Proposition 17 (Markov property) Let X be a simple birth process with rates (An)n>0
starting from k > 0, and t > 0 a fixed time, ¢ > k a fized height. Then given X; = ¢,
(X )r<t and (Xiys)s>0 are conditionally independent, and the conditional distribution of
(Xits)s>0 s that of a simple birth process with rates (A\,)n>0 starting from k, we use
notation

(X)re [T (Xers)szo ~ (£ (An)nzo)-birth process.

Xi=t
Example 18 In formulas, we can write (and apply)

P((X;)r<t € A, (Xigs)s20 € BIXy =) = P((Xy)r<t € A|X; = O)P((Xi44)s20 € BIX; = ()

= P((Xo)r<t € A[Xy = O)P((Xs)sz0 € B),

where X is an (£, (An)ns0)-birth process and A, B arbitrary sets of paths, e.g. A = {f :
0,t] = N: f(r;) =n;,j=1,...,m} for some 0 <ry <...<r, <t n; € N. Note that

(Xp)rt €A = X, =n;foralj=1,...,m.
Therefore, in particular

P(Xrl :n17...7X7.m = nm7Xt+81 :p17"'7Xt+Sh :ph|Xt — 6)
- P(Xrl =N, ’er = nm|Xt = K)IP)(X‘H = D1, - '7X8h :ph)

17
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The Markov property as formulated in Proposition 17 (or Example 18) says that
“past and future are (conditionally) independent given the present”. We can say this in
a rather different way as “the past is irrelevant for the future, only the present matters”.
Let us derive this reformulation using the elementary rules of conditional probability: the
Markov property is about three events

past E = {(X,),<: € A}, future F' = {(Xi45)s>0 € B} and present C' = {X; = (}

and states P(E' N F|C) = P(E|C)P(F|C). This is a special property that does not hold
for general events E, F' and C'. In fact, by the definition of conditional probabilities, we
always have

P(ENFNC) PWFIENC)P(ENC)

P(ENFIC) = =z = PO — P(F|E N O)P(E|C),

so that, by comparison, if P(E' N C) > 0, we here have P(F|ENC) = P(F|C), and we
deduce

Corollary 19 (Markov property, alternative formulation) For allt > 0, ¢ > k
and sets of paths A and B with P(X; = {,(X,),<; € A) > 0, we have

P((Xt-i-s)szo € B|Xt = E, (XT)TSt € A) = P((Xt-i-S)SZO € B|Xt = f) = P((XS)SZO € B)>

where X is an (£, (An)nso)-birth process.

In fact, the condition P(X; = ¢, (X,),<: € A) > 0 can often be waived, if the con-
ditional probabilities can still be defined via an approximation by events of positive
probability. This is a very informal statement since different approximations could, in princi-
ple, give rise to different values for such conditional probabilities. This is, in fact, very subtle,
and uniqueness cannot be achieved in a strong sense, but some exceptional points usually occur.
Formally, one would introduce versions of conditional probabilities, and sometimes, a nice ver-
sion can be identified. For us, this is just a technical hurdle that we do not attempt. If we did
attempt it, we would find enough continuity (or right-continuity), and see that we usually in-
tegrate conditional probabilities so that any non-uniqueness would not affect our final answers.
See B10a Martingales Through Measure Theory for details.

4.2 Application of the Markov property
We make (almost) rigorous the intuitive argument used in Example 12 to justify E(X,|T =
t) = 2E(X,—¢), where u > t, X is a (1, (n\),>0)-birth process and 7' = inf{t > 0: X; =
2}. In fact, we now have

{IT'=t}={X,=1r<t; X; =2} C{X; =2}
so that for all n > 0

P(X,=n|T =t) =P(X, =n|X, = 1,r < t; X, = 2) = P(X, = n| X, = 2) = P(X,_, = n),
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where X is a (2, (nA)p>0)-birth process. This also gives

E(X, T =t) = > nP(X,=n|T=t)
= > nP(X,_ =n|Xo =2) = E(X,_,) = 2E(X, ),

neN

since, by model assumption, the families of two individuals evolve completely indepen-
dently like separate populations starting from one individual each.

Remark: The event {T" = t} has probability zero (P(7" = t) = 0 as T is exponentially
distributed). Therefore any conditional probabilities given T = ¢ have to be approximated
(using {t —e < T < t}) in order to justify the application of the Markov property. We will not
go through the details of this in this course and leave this to the insisting reader. Our focus is
on the probabilistic argument that the application of the Markov property constitutes here.

4.3 Proof of the Markov property

Proof: Assume for simplicity that Xy = 0. The general case can then be deduced. On
{Xi =k} ={T <t <Tgi1} we have

-1 n—1
X, = Xirs =F# { Z t+s}:k‘+#{n2k+1:ZZj—t§s}
Jj= 7=0
1~
=0

where Z = Zyyj, 7 > 1, and Zo = Tyt1 — t. Therefore, X has the structure of a
birth process starting from k, since given X, = k, the Z ~ Exp(Apy;) are independent
(conditionally given X; = k). For j = 0 note that

P(Zy > 2| X, = k) =P(Zp > (t = Tp) + 2| Zx >t — T}y > 0) = P(Z; > 2)

where we applied the lack of memory property of Z; to the independent threshold ¢t —Tj..
This actually requires a slightly more thorough explanation since we are dealing with
repeated conditioning (first X; = k, then Z > t —T},), but the key result that we need is

Lemma 20 (Exercise A.1.4(b)) The lack of memory property of the exponential dis-
tribution holds at independent thresholds, i.e. for Z ~ Exp(\) and L a random variable
independent of Z, the following holds: given Z > L, Z — L ~ Exp(\) and Z — L is
conditionally independent of L.

The proof is now completed again by the lack of memory property to see that Zo (as
well as the Z;, j > 1) is conditionally independent of Zy, ..., Z;_; given X; = k, and the
assertion follows. O
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4.4 The strong Markov property

The Markov property means that at whichever fixed time we inspect our process, infor-
mation about the past is not relevant for its future behaviour. If we think of an example
of radioactive decay, this would allow us to describe the behaviour of the emission pro-
cess, say, after the experiment has been running for 2 hours. Alternatively, we may wish
to reinspect after 1000 emissions. This time is random, but we can certainly carry out
any action we wish at the time of the 1000th emission. Such times are called stopping
times.
We will only look at stopping times of the form

Ty =inf{t >0: Xy =n} or Te=inf{t>0:X,cC}
forn € Nor C CN (or later C' C S, a countable state space).

Proposition and Fact 21 (Strong Markov property) (i) Let X be a simple birth
process with rates (An)n>0 and T > 0 a stopping time. Then for all k € N with
P(Xr = k) > 0, we have given T' < 0o and Xp =k, (X,),<r and (Xrys)s>0 are
independent, and the conditional distribution of (Xris)s>o0 s a simple birth process
with rates (An)n>0 starting from k.

(11) In the special case where X is a Poisson process and P(T' < 0o) = 1, (Xr4s—X71)s>0
is a Poisson process starting from 0 independent of T and (X, ),<r.

The proof of the strong Markov property (in full generality) is beyond the scope of this
course, but we will use the result from time to time. See the Appendix of Norris’s book
for details. Note however, that the proof the strong Markov property for first hitting
times T; is not so hard since then P(X7, = i) = 1, so the only relevant statement is for
k =1, and (X,),<7, can be expressed in terms of Z;, 0 < j <i—1, and (X745 —X7)s>0 in
terms of Z;, j > 4. In fact, this is not just a sketch of a proof, but a complete proof, if we
make two more remarks. First, conditioning on { X7, = i} is like not conditioning at all,
because this event has probability 1. Second, it is really enough to establish independence
of holding times, because “can be expressed in terms of” is actually “is a function G of”,
where the first function e.g. goes from [0, 00)’ to the space

X = {f:]0,t] = N, f rightcontinuous, ¢ > 0}.

Now, we have a general result saying that if G : A — X and H : B — Y are (measureable)
functions, and A and B are independent random variables in A and B, then G(A) and
H(B) are also independent. To prove this using our definition of independence, just note
that for all £ C X and F' C Y (measurable), we have

P(G(A) € E,H(B)e F) = P(Ac G \(E),Be H'(F))
= P(AeG- (E))IP(BEH Y(F))
= P(G(A) € E)P(H(B) € F).

A more formal definition of stopping times is as follows.
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Definition 22 (Stopping time) A random time 7" taking values in [0, o0] is called a stopping
time for a continuous-time process X = (X;)i>o0 if, for all ¢ > 0, the event {T' < ¢} can be
expressed (in a measurable way) in terms of (X;),<;.

Of course, you should think of X as an N-valued simple birth process for the moment, but
you will appreciate that this definition makes sense in much more generality. In our next lecture
we will see examples where we are observing several independent processes on the same time
scale. The easiest example is two independent birth processes X = (X, X)) modelling e.g.
two populations that we observe simultaneously.

Example 23 1. Let X be a simple birth process starting from Xg = 0. Then for all ¢ > 1,
T; = inf{t > 0: Xy = i} is a stopping time since {T' <t} = {Is <t: X, =i} = {X;y > i} (the
latter equality uses the property that birth processes do not decrease; thus, strictly speaking,
this equality is to mean that the two events differ by sets of probability zero in the sense that
we write £ = Fif P(E\ F) =P(F\ E) =0). T; is called the first hitting time of i. Clearly, for
X modelling a Geiger counter and ¢ = 1000, we are in the situation of our motivating example.

2. Let X be a simple birth process. Then for € > 0, the random time T, = inf{T; > T} :
T; — T;—1 < €}, i.e. the first time that two births have occurred within time at most & of one
another, is a stopping time.

In general, the first time that something happens, or that several things have happened
successively, is a stopping time. It is essential that we don’t have to look ahead to decide. In
particular, the last time that something happens, e.g. the last birth time before time ¢, is not
a stopping time, and the statement of the strong Markov property is usually wrong for such
times.

4.5 The Markov property for Poisson processes

In Proposition 3, we reformulated the Markov property of the Poisson process in terms of
genuine independence rather than just conditional independence. Let (X;);>o be a Poisson
process with rate A > 0, i.e. a (0, (A,)n>0)-birth process with A, = A for all n > 0, then

(X )ree [ [ (Xers — Xe)szo ~ (Xo)sz0-

Proof: By the version of the Markov property given in Proposition 17, we have for all £ > 0,
that

(Xr)rgt H (Xt+s)320 ~ (E + Xs)sZOa
Xe=t

also since (¢ + X;)s>0 is a Poisson process starting from ¢. Specifically, it is not hard to see
that for a general (k, (A, )n>0)-birth process, the process (¢ + X;)s>0 is a (k+ £, (Ay—¢)n>0-birth
process (for any choice of A\,, —¢ <n < 0), and here A, = A for all n. Clearly also

(Xr)rgt H (Xt+s - E)SZO ~ (XS)SZO'
Xi=L
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However, conditionally given X; = ¢, we have Xy, — ¢ = X415 — X for all s > 0, so that

(XT)TSt H (Xt+s - Xt)sZO ~ (XS)SZO'
Xi=/

Since the distribution of (X5 — X¢)s>0 (the distribution of a Poisson process of rate A starting
from 0) does not depend on ¢ € N, we can now apply Exercise A.1.5 to conclude that this condi-
tional independence is in fact genuine independence, and the common conditional distribution
of (Xiqs — X¢)s>0 given X; = ¢, £ € N, is in fact also the unconditional distribution.

More precisely, we apply the statement of the exercise with N = Xy, Z = (X35 —X¢)s>0 and
M = (X, )r<¢. Strictly speaking, Z and M are here random variables taking values in suitable
function spaces, but this does not pose any problems from a measure-theoretic perspective, once
“suitable” has been defined, but this definition of “suitable” is again beyond the scope of this
course. a

We can now also establish our assertions in Remark 2, namely X has stationary increments
since

(Xt—l—s — Xt)sZO ~ (Xs)szo = Xt—l—u — Xy~ Xy for all u > 0.
The subtlety of this statement is that we have for all B C {f : [0,00) — N} (measurable)
P((Xt4s — Xi)s>0 € B) = P((Xs)s>0 € B),

and for all n > 0 and B = By, = {f : [0,00) — N : f(u) = n} this gives P(X¢y, — X; =
n) = P(X, = n) as required. Independence of two increments X; and X, — X; also follows
directly. An careful inductive argument allows to extend this to the required independence of
m successive increments X, — X¢, ,, j =1,...,m, because

]P(Xthrl - Xt
=P( Xty — Xty = 1) P(Xe,, — Xy = 1y, Xy — Xy = m1)

= nm-{-l,Xtm — Xtmfl = TMmy .- ,th — Xto = ’I’Ll)

m

follows from the Markov property at t = t,,.

An alternative way to establish Proposition 3 is to give a direct proof of the stationarity and
independence of increments in Remark 2, based on the lack of memory property, and deduce
the Markov property from there.



Lecture 5

Continuous-time Markov chains

Reading: Norris 2.1, 2.6
Further reading: Grimmett-Stirzaker 6.9; Ross 6.1-6.3; Norris 2.9

In this lecture, we generalise the notion of a birth process to allow deaths and other
transitions, actually transitions between any two states in a state space S, just as for
discrete-time Markov chains and using the notion of a discrete-time Markov chain.

Continuous-time Markov chains are similar in many respects to discrete-time Markov
chains, but they also show important differences. Roughly, we will spend Lectures 5 and
6 to explore differences and tools to handle these, then similarities in Lectures 7 and 8.

5.1 Definition and terminology

Definition 24 Let (M, ),>0 be a discrete-time Markov chain on S with transition prob-
abilities m;;, 4,5 € S. Let (Z,)n>0 be a sequence of conditionally independent expo-
nential random variables with conditional distributions Exp(Ays,) given (M, ),>0, where
Ai € (0,00), i € S. Then the process X = (X;)i>0 defined by

Xy =M, T, <t<T,1,n >0, Xy =00, Ty <t<oo,

where Ty =0, T, = Zo+ ... + Z,_1, n > 1, is called (minimal) continuous-time Markov
chain with jump probabilities (m;;); jes and holding rates (\;);es.

Usually, T, = oo, but the explosion phenomenon studied in Lecture 3 for the special
case of a birth process has to be taken into account in a general definition. This is the
so-called jump-chain holding-time definition of continuous-time Markov chains. There
are others, and we will point these out when we have established relevant connections.

Here Z,, ~ Exp(\y,) given M, is short for Z,, ~ Exp(\;) conditionally given M,, = k,
for all £ € S and conditional independence given (M, ),>o means that for all m > 0,
Zo, ..., Ly are conditionally independent given My = ko, ..., M,, = k,.

Example 25 (Birth processes) For (k, (\,)n>0)-birth processes, we have M,, = k+n
deterministic, i.e. m; ;41 = 1. Conditional independence of Z,, given M, is independence,
and Exp(Ay, ) = Exp(Agin) is the unconditional distribution of Zj.

23
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The representation of the distribution of X by (m;;);jes and (\;);es is unique if we
assume furthermore 7; € {0,1} so that M either jumps straight away or remains in a
given state forever, and by setting \; = 0 if m;; = 1. This eliminates the possibility of the
discrete chain proposing a “jump” from state 7 to itself.

It is customary to represent the transition probabilities m;; and the holding rates A;
in a single matrix, called the Q)-matrix, as follows. Define for ¢ #£ j

qij = >\i7Tij and Gii = —\i

Remark 26 ¢; = — Z#i gij, since either Zj# mi; = 1 or \; = 0. As a consequence, the
row sums of a ()-matrix vanish.

X is then also referred to as a continuous-time Markov chain with Q-matriz Q, a (k, Q)-
Markov chain if starting from X, = My = k.

Example 25 (continued) For birth processes, we obtain

o o 0 0
0 )\ M\ 0
Q= 0 0 o Ao

As with discrete-time chains it is sometimes useful to specify an initial distribution
for X, that we call v, i.e. we let v; = P(Xy = 1), i € S. Such a continuous-time Markov
chain will be referred to as a (v, Q)-Markov chain. Often

Vv, = 52‘2'0 = { é i ; zz or short VvV = 6@'0
dii, as a number derived from two arguments, here 7 and 7, is called Kronecker delta, d;,
as a distribution only charging one point, here i, is called Dirac delta.

As an example of how an initial distribution can arise in practice, consider the number
of customers arriving before a shop opens at time ¢t = 0. As this number typically varies
from day to day, it is natural to model it by a random variable, and to specify its
distribution.

5.2 Construction

Defining lots of conditional distributions for infinite families of random variables requires
some care in a measure-theoretic context. Also outside the measure-theoretic context,
it is conceptually easier to express complicated random objects such as continuous-time
Markov chains, in terms of a countable family of independent random variables. We
have already done this for Poisson processes and can therefore use independent Pois-
son processes as building blocks. This leads to the following maze construction of a
continuous-time Markov chain. It is the second appearance of the theory of competing
exponentials and nicely illustrates the evolution of continuous-time Markov chains:
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Proposition 27 Let My ~ v and (N, N} Nis0, 1,7 €S, i # j, independent Poisson processes
with rates q;;. Then define Ty = 0 and forn >0

Thyr =inf{t > T, : NtM"j =+ N%”j for some j # M,}
and
Myyy = j if Tye1 < 00 and Ny # N
Then
Xy =M,, T, <t<T,1,n>0, Xi =00, Ty <t< oo,
is a (v, Q)-Markov chain.

Think of the state space S as a maze where g;; > 0 signifies that there is a gate from
state i € S to state j € S. Each gate (i, j) opens at the event times of a Poisson process
N%. If after a given number of transitions the current state is ¢, then the next jump
time of X is when the next gate leading away from ¢ opens. If this gate leads from i to
7, then j is the new state for X. Think of each Poisson process as a clock that rings at
its event times. A ringing clock here corresponds to a gate opening instantaneously (i.e.
immediately closing afterwards).

Proof: 'We have to check that the process defined here has the correct jump chain, holding
times and dependence structure. Clearly My = X, has the right starting distribution.
Given My = i, the first jump occurs at the first time at which one of the Poisson processes
N%_ j i, has its first jump. This time is a minimum of independent exponential random
variables of parameters ¢;;, T} = inf{T}7,j # i} for which

P(T) > t) = P(T{ > t for all j # i) HIP’ (TV > t) —exp{ thw}—e Ait

JFi JFi

ie. Zy =T, ~ Exp(Ay,) given My. Furthermore

(3 7 7 ql
P(Ty = T7) = P(T) < inf{T* k & {i,j}}) = AJ = T
For independence, the second and inductively all further holding times and transitions, we
apply the strong Markov property of the Poisson processes (Fact“21, or a combination of
the lack of memory property at minima of exponential variables 7T 7 and at an independent
exponential variable T} for N¥7 k # 4, as on assignment sheet 1) to see that the post-T}

Poisson processes (NT’1 +s — N1 )s>0 are Poisson processes themselves, and therefore the
previous argument completes the induction step and hence the proof. T is a stopping
time since

{Ty <t} = (T <t}
j#i

and the latter were expressed in terms of (Nr )r<t, j # 1, respectively, in Example 23. O
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Corollary 28 (Markov property) Let X be a (v,Q)-Markov chain and t > 0 a fized
time. Then given Xy = k, (X;)r<t and (Xiys)s>0 are independent, and the conditional
distribution of (Xiys)s>0 s that of a (k, Q)-Markov chain.

Proof: The post-t Poisson processes (Nfis — Ntij )s>0 are themselves Poisson processes,
independent of the pre-t Poisson processes (N)o<,.<;. The post-t behaviour of X only
depends on X, and the post-t Poisson processes. If we condition on {X; = k}, then
clearly (X;is)s>0 is starting from k. O

Continuous-time Markov chains also have the strong Markov property. We leave the
formulation to the reader. Its proof is beyond the scope of this course.

5.3 M/M/1 and M /M /s queues

Example 29 (M/M/1 queue) Let us model by X; the number of customers in a
single-server queueing system at time ¢ > 0, including any customer currently being
served. We assume that new customers arrive according to a Poisson process with rate
A, and that service times are independent Exp(u) distributed.

Given a queue size of n, two transitions are possible. If a customer arrives (at rate
A), X increases to n+ 1. If the customer being served leaves (at rate u), the X decreases
to n — 1. If no customer is in the system, only the former can happen. This amounts to
a (Q-matrix

—A A 0 0
W == A A 0
@=1 o A

X is indeed a continuous-time Markov chain, since given state n > 1 (n = 0) and
two (one) independent clocks Exp(\) and Exp(p) (unless n = 0) ticking, the theory of
competing exponential clocks (Exercise A.1.2) shows that the system starts afresh with
the residual clock and the new clock (except n =1 and transition to 0) exponential and
independent of the past, and the induction proceeds.

Example 30 (M/M/s queue) If there are s > 1 servers in the system, the rate at
which customers leave is s-fold, provided there are at least s customers in the system.
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We obtain the )-matrix

—-A A 0 0 0 0 0
no == A A 0 0 0 0
0 21 =20 — A A 0 0 0
0 0 3 =3 — A 0 0 0
0 0 0 0 =S — A A 0
0 0 0 0 Sp —Sp— A A
0 0 0 0 0 Sp —Si— A

which is maybe better represented by ¢; ;41 = A for all ¢ > 0, ¢; ;-1 = i for 1 <1 <'s,
Gii—1 = spfori > s, ¢y = —ip—Afor 0 <i <s,¢q; =—sp—Afore > s, and ¢; =0
otherwise. A slight variation of the argument for Exercise 29 shows that the M/M/s
queue is a continuous-time Markov chain.
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Lecture 6

Transition semigroups

Reading: Norris 2.8, 3.1
Further reading: Grimmett-Stirzaker 6.8 (12)-(17), 6.9; Ross 6.4; Norris 2.7, 2.10

In this lecture we establish transition matrices P(t), t > 0, for continuous-time Markov
chains. This family of matrices are the analogues of n-step transition matrices I1I" =
(Wg;l))i7jeg, n > 0, for discrete-time Markov chains. While we will continue to use the Q-
matrix to specify the distribution of a continuous-time Markov chain, transition matrices
P(t) give some of the most important probabilities related to a continuous-time Markov

chain, but they are available explicitly only in a limited range of examples.

6.1 The semigroup property of transition matrices

As a consequence of the Markov property of continuous-time Markov chains, the proba-
bilities P(X,ys = 7| X; = i) do not depend on t. We denote by

pij(s) = P(Xpps = j[ Xy = i) and  P(s) = (pi(s))ijes
the s-step transition probabilities and s-step transition matrix.

Example 31 For a Poisson process with rate A\, we have for j > i orn >0

b2 A
pii(t) = ((j _)Z,)!e Mooor o pian(t) = (n') e M

by Remark 2. For fixed t > 0 and i > 0, these are Poi(At) probabilities, shifted by 1.

Proposition 32 (P(t))i>0 is a semigroup, i.e. for all t,s > 0 we have P(t)P(s) =
P(t + s) in the sense of matriz multiplication, and P(0) = I, the identity matriz.

Proof: Just note that for all 1,k € S
pin(t+s) = Y P(Xips =k X, = j| Xo = i)

j€S
= > P(X; = j|Xo = i)P(Xips = KXy =5, Xo =) = > _ pij(t)pju(s)
j€S j€S
where we applied the Markov property. O

We will remind ourselves of a fixed initial state X, = @ by writing P(:| Xy = @) or P;().
29



30 Lecture Notes — Part B Applied Probability — Oxford MT 2007

6.2 Backward equations

The following result is useful to calculate transition probabilities.

Proposition 33 The transition matrices (P(t))i>o of a minimal (v,Q)-Markov chain
satisfy the backward equation

P'(t) = QP(t)

with initial condition P(0) = I, the identity matriz.
Furthermm;e, P(t) is the minimal nonnegative solution in the sense that all other nonnega-
tive solutions P(t) satisfy pix(t) > pi(t) for all i,k € S.

Proof:  We first show that (P(t))¢>o solves P'(t) = QP(t), i.e. for all i,k €S, t >0
Pi(t) = Z ipin(t)
jes

We start by a one-step analysis (using the strong Markov property at the first jump time
Ty, or directly identifying the structure of the post-T; process) to get

p) = Pi(X, = k) = / Pi(X, = k|T) = 5)Ae="ds

= O Nt 4 /ZIP’ (X, =k, X, = j|Ty = s) e Nds

JjES

= due /ZP (X0 = kX, = 4, T = 5)Pi(X, = j|Th = s)hieds

JjES

= Gpe N+ /ijk s)mighie Nids
0 ji

= zke )\t /qujpjk )du,
0 ji

1.e.
' pi(t) = b +/ Zq”p]k eMvdu.
0 j#i
Clearly this implies that p;; is differentiable and we obtain
P (t) + Nie pa(t) = Z Gipin(t)eM’,
J#i

which after cancellation of e}* and by \; = —¢;; is what we require.
Suppose now, we have another non-negative solution p;;(t). Then, by integration, p;;(t) also
satisfies the above integral equations (the d;; come from the initial conditions). Trivially

To=0 = PyX;=kt<Ty)=0<py(t) foralli,kecSandt>0.
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If for some n € N
Pi( Xy =k, t <Tp) <pi(t) foralli,keSandt>0,
then as above
Pi(Xy =kt <Thy1) = e “op+ /Ot Z 4ijPi( Xy = kyu < T)e MWy
J#i

t
e Ui + /0 > qipir(w)e ™ du = pa(t)
i

IA

and therefore
pir(t) = nhIgo Pi(Xy =k, t <Ty,) < Dir(t)

as required. We conclude that p;;(¢) is the minimal non-negative solution to the backward
equation. O

Note that non-minimal solutions that satisfy the conditions for transition matrices
can only exist if >, o pir(t) < 1 for some ¢ € S and t > 0, i.e. the continuous-time
Markov chain must be explosive in the sense that P(7,, < oco) > 0, and then p;(t) =

1= s Pir(t) > 0.

6.3 Forward equations

Proposition 34 IfS is finite, then the transition matrices (P(t))i>0 of a (v, Q)-Markov
chain satisfy the forward equation

with initial condition P(0) = I, the identity matriz.
Proof: See Assignment question A.3.5. O

Fact 35 If S is infinite, then the statement of the proposition still holds for minimal
(v, Q)-Markov chains.

Furthermore, P(t) is the minimal nonnegative solution.

The proof of the proposition can be adapted under a uniformity assumption. This
assumption will be sufficient for most practical purposes, but the general case is best
proved by conditioning on the last jump before t. Since this is not a stopping time, the
Markov property does not apply and calculations have to be done by hand, which is quite
technical, see Norris 2.8.

In fact, both forward and backward equations admit unique solutions if the corre-
sponding continuous-time Markov chain does not explode. This is the case in all practi-
cally relevant situations. The non-uniqueness arises since Markovian extensions of explo-
sive chains other than the minimal extension that we consider, will also have transition
semigroups that satisfy the backward equations.
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Remark 36 Transition semigroups and the Markov property can form the basis for a definition
of continuous-time Markov chains. In order to match our definition, we could say that a (v, Q)-
Markov chain is a process with right-continuous sample paths in S such that

]P(thJrl = in+1|Xto =10y, X, = Zn) = Dininy1 (tn—l—l - tn)

forall 0 <top<t; <...<tny1and ip,...,ip+1 €S, where P(t) satisfies the forward equations.
See Norris 2.8.

6.4 Example

Example 37 For the Poisson process ¢; ;-1 = A, ¢i; = —A, ¢;; = 0 otherwise, hence we
have forward equations

Pii(t) = —pu(t)A, 1 €N
p;,z-i—n(t) = pi,i—l—n—l)\ - pi,i_;_n(t))\, 1 E N’ n > 1
and it is easily seen inductively (fix ¢ and proceed n = 0,1,2,...) that Poisson probabil-
ities

(At)" Y
n!

Piitn(t) =

are solutions. Writing ¢ + n rather than j is convenient because of the stationarity of
increments in this special case of the Poisson process. Alternatively, we may consider the
backward equations

P (t) = —Apu(t), 1e€N
Pi;(t) = Apit1,(t) — Api; (1), ieN,j>i+1
and solve inductively (fix j and proceed i = j, 7 — 1,...,0). We have seen an easier way

to derive the Poisson transition probabilities in Remark 2. The link between the two
ways is revealed by the passage to probability generating functions

Gi(z,t) = E; (th)

which then have to satisfy differential equations

d =, .
—Gi(z,t) =Y 2P (0) = Mz — DGi(z,1),  Gi(2,0) = By(2¥0) = 2"
ot — :

Solutions for these equations are obvious. In general, if we have G; sufficiently smooth
in ¢ and z, we can derive from differential equations for probability generating functions

differential equations for moments
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that yield here

0 0 .
m/(t) = &EGZ(Z,t) =\ Gi(Z, t)|z:1— = >\, mZ(O) = EZ(X0> = 1.

z=1—

Often (even in this case), this can be solved more easily than the differential equation for
probability generating functions. Together with a similar equation for the variance, we
can capture the two most important distributional features of a model.

6.5 Matrix exponentials

It is tempting to say that the differential equation P’(t) = QP(t), P(0) = I, has as its unique
solution P(t) = €', that the same is true for P'(t) = P(t)Q, P(0) = I, and that the functional
equation P(s)P(t) = P(s+t) also has as its solutions precisely P(t) = €' for some Q. Remem-
ber, however that @) is a matrix, and, in general, the state space is countably infinite. Therefore,
we have to define ¢!? in the first place, and to do this, we could use the (minimal or unique)
solutions to the differential equations. Another, more direct, possibility is the exponential series

t n
S Ve
n>0

where t(Q) is scalar multiplication, i.e. multiplication of each entry of Q by the scalar ¢, and
(tQ)™ is an n-fold matrix product. Let us focus on a finite state space S, so that the only
limiting procedure is the series over n > 0. It is natural to consider a series of matrices as a
matrix consisting of the series of the corresponding entries. In fact, this works in full generality,

as long as S is finite, see Norris 2.10.

For infinite state space, this is much harder, since every entry in a matrix product is then
already a limiting quantity and one will either need uniform control over entries or use operator
norms to make sense of the series of matrices. The limited benefits from such a theory are not
worth setting up the technical apparatus in our context.
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Lecture 7

The class structure of
continuous-time Markov chains

Reading: Norris 3.2-3.5
Further reading: Grimmett-Stirzaker 6.9

In this lecture, we introduce for continuous-time chains the notions of irreducibility
and positive recurrence that will be needed for the convergence theorems in Lecture 8.

7.1 Communicating classes and irreducibility

We define the class structure characteristics as for discrete-time Markov chains.

Definition 38 Let X be a continuous-time Markov chain.
(a) We say that i € S leads to j € S and write ¢ — j if

P;(X¢ = j for some t > 0) = P;(Ty;; < o0) >0, where T{;y =inf{t > 0: X; = j}.

(b) We say i communicates with j and write ¢ < j if both ¢ — j and j — 1.

(c) Wesay A C S is a communicating class if it is an equivalence class for the equiva-
lence relation < on S, i.e. if for all 4,7 € A we have i <> 7 and A is maximal with
this property (for all k € S — A, i € A at most one of i — k, k — ¢ holds).

(d) We say A is a closed class if there isnoi € A, j € S— A with i — j, i.e. the chain
cannot leave A.

(e) We say that ¢ is an absorbing state if {i} is closed.

(f) We say that X is irreducible if S is (the only) communicating class.

In the following we denote by M = (M,),>o the jump chain, (Z,),>o the holding
times that we used in the construction of X = (X;):>o.

35
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Proposition 39 Let X be a minimal continuous-time Markov chain. Fori,j €S, i # j,
the following are equivalent

(i) i — j for X.
(ii) ¢ — j for M.
n—1

iii) There is a sequence (ig...,1,), 1; €S, fromig =1 to i, = j such that | | ¢;. .., > 0.
J JHoi+1
3=0

(iv) pij(t) > 0 for allt > 0.

(v) pij(t) >0 for somet > 0.

Proof: Implications (iv)=-(v)=-(i)=-(ii) are clear.
(ii)=-(iii): From the discrete-time theory, we know that ¢ — j for M implies that
there is a path (i, ...,4,) from ¢ to j with

n—1 n—1
H Tiins > 0,  hence H Tipesinis Ny > 0
k=0 k=0

since \,, = 0 if and only if m,,,, = 1.
(iii)=(iv) If ¢;; > 0, then we can get a lower bound for p;;(¢) by only allowing one
transition in [0,t] by

pii(t) > Pi(Zo <t,My=j,72, >1)
= Pi(Zy < O)Py(M; = j)P(Z, > t|M; = j)

= (1 — €_>\it)ﬂ'ij€_)\jt >0
for all £ > 0, hence in general for the path (i, ...,14,) given by (iii)

pii(t) = Pi(Xy=7)>Pi(Xpym =ix forall k=1,...,n)

n—1
= Hpikviiwl(t/n) >0
k=0

for all t > 0. For the last equality, we used the Markov property which implies that for
alm=1,....n

]P)(th/n = im|th/n = ik for all k = 0, N (e 1) = ]P)(th/n = im|X(m—1)t/n = im—l)
= pimflyim (t/n)

O

Condition (iv) shows that the situation is simpler than in discrete-time where it may

be possible to reach a state, but only after a certain length of time, and then only
periodically.
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7.2 Recurrence and transience

Definition 40 Let X be a continuous-time Markov chain.
(a) i €S is called recurrent if

P;({t > 0: X; =i} is unbounded) = 1.

(b) 7 € S is called transient if

P;({t > 0: X; =i} is bounded) = 1.

Note that if X can explode starting from ¢ and if X is a minimal continuous-time
Markov chain, then ¢ is certainly not recurrent.

Recall that N; = inf{n > 1: M, =i} is called the first passage time of M to state i.
We define

Hi = TNz‘ = 1nf{t Z Tl : Xt = Z},

the first passage time of X to state i. Note that we require the chain to do at least one
jump. This is to force X to leave i first if Xy = i. We also define the successive passage
times by Ni(l) = N; and Ni(mﬂ) = inf{n > Ni(m) : M, =i}, m > 1, for M, and

H™ =T

i Ni(m)’
m > 1, for X.

Proposition 41 i € S is recurrent (transient) for a minimal continuous-time Markov
chain X if and only if i is recurrent (transient) for the jump chain M.

Proof: Suppose, i is recurrent for the jump chain M, i.e. M visits ¢ infinitely often, at
steps (N(m))mzl. If we denote by 1{x,—;; the random variable that is 1 if Xy =4 and 0

7
otherwise, the total amount of time that X spends at ¢ is

ZO]-{X():i} _I_ Z ZNF77L) =

m>1

with probability 1 by the argument for Proposition 16 (convergent and divergent sums of
independent exponential variables) since Zy, ~ Fxp();) and the sum of their (identical!)
inverse parameters is infinite. In particular {¢ > 0 : X; = i} must be unbounded with
probability 1.

Suppose, i is transient for the jump chain M, then there is a last step L < oo away
from ¢ and

{t>0:X,=i}C[0,T%)

is bounded with probability 1.

The inverse implications are now obvious since ¢ can only be either recurrent or
transient for M and we constructed all minimal continuous-time Markov chains from
jump chains. O
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From this result and the analogous properties for discrete-time Markov chains, we
deduce

Corollary 42 Fuvery state i € S is either recurrent or transient for X.

Recall that a class property is a property of states that either all states in a (commu-
nicating) class have or all states in a (communicating) class don’t have.

Corollary 43 Recurrence and transience are class properties.

Proof: 1If i is recurrent and ¢ < j, for X, then ¢ is recurrent and ¢ < 5 for M. From
discrete-time Markov chain theory, we know that j is recurrent for M. Therefore j is
recurrent for X.

The proof for transience is similar. O

Proposition 44 For any i € S the following are equivalent:

(i) i is recurrent for X.

(1i1) /000 pii(t)dt = oc.

Proof: (iii)=-(ii): One can deduce this from the corresponding discrete-time result, but
we give a direct argument here. Assume \; > 0 and h; = P;(H; = oo) > 0. Then,

the strong Markov property at HZ-(m) states that, given HZ-(m) < 00, the post—Hi(m) process
m+1) __

X( + ) - (XHi(m)-i-t

the total number G of visits of X to ¢ must have a geometric distribution with parameter

h; since P;(G = 1) = h; and P;(G = m|G > m) = h;, m > 2. Therefore, the total time

spent in ¢ is

)t>0 is distributed as X and independent of the pre-HZ-(m) process. Now

G-1
Z Z yomy ~ Bxp(hi);), cf. Solution to Exercise A.2.6.

m=0

With notation 1yx,—; = 1 if X; =i and 1yx,—;; = 0 otherwise, we obtain by Tonelli’s
theorem

0 0
00 G-1 1
([ o) =2 (S 20 ) - g <

The other implications can be established using similar arguments. O




Lecture 7: The class structure of continuous-time Markov chains 39

7.3 Positive and null recurrence

As in the discrete-time case, there is a link between recurrence and the existence of
invariant distributions. More precisely, recurrence is strictly weaker. The stronger notion
required is positive recurrence:

Definition 45 A state i € S is called positive recurrent if either \; = 0 or m; = E;(H;) <
oo. Otherwise, we call 7 null recurrent.

Fact 46 Positive recurrence is a class property.

7.4 Examples

Example 47 The M/M/1 queue with A\ > 0 and g > 0 is irreducible since for all
m >mn >0, we have ¢pm—1...Gntin = p™ " >0 and ¢unt1-- - Gu-1m = A" > 0 and
Proposition 39 yields m < n.

A > 1 means that customers arrive at a higher rate than they leave. Intuitively, this
means that X; — oo (this can be shown by comparison of the jump chain with a simple
random walk with up probability A/(A+ p) > 1/2). As a consequence, L; = sup{t >
0:X; =1} <ooforallieN,andsince {t >0: X; =i} C [0, L;], we deduce that i is
transient.

A < o means that customers arrive at a slower rate than they can leave. Intuitively,
this means that X; will return to zero infinitely often. The mean of the return time
can be estimated by comparison of the jump chain with a simple random walk with up

probability /(A + p) < 1/2:
NQ = n)

No—1 n—1

Eo(Hy) = E <Z Zk> => P(Ny=n)E (Z Z,
= % + ;P(NO =n)E (kz;l Yk>

JR— n—1 1 Eo(Ny)—1
= — P(Ny = =+ ————<
A*Z; No=m 3 =3+ a3, =™
where Y1,Ys, ... ~ Exp(A + p). Therefore, 0 is positive recurrent. Since positive recur-

rence is a class property, all states are positive recurrent.

For A = u, the same argument shows that 0 is null-recurrent, by comparison with
simple symmetric random walk.

Note in each case, that the jump chain is not a simple random walk, but coincides
with a simple random walk until it hits zero. This is enough to calculate Eq(Ny).

Example 48 Let A > 0 and p > 0. Consider a simple birth and death process with

Q—matrix Q = (Qnm)n,meNa where dnn = _n<)‘ + /~L)7 nn+l = n>\7 Gnn—-1 = MU, Qnm = 0
otherwise.
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If £ =0and A =0, then @ = 0, all states are absorbing, so the communicating
classes are {n}, n € N. They are all closed and positive recurrent.

If w =0 and A > 0, then 0 is still absorbing since ggg = 0, but otherwise n — m if
and only if 1 < n < m. Again, the communicating classes are {n}, n € N, {0} is
closed and positive recurrent, but {n} is open and transient for all n > 1, since the
process will not return after the Exp(nA) holding time.

If £ > 0 and A =0, then {0} is still absorbing, {n} is an open transient class.

If £ > 0and A > 0, then {0} is still absorbing, {1,2,...} is an open and transient
communicating class. It can be shown that the process when starting from ¢ > 1
will be absorbed in {0} if A < p and that it will do so with a probability in (0, 1)
if A > p.



Lecture 8

Convergence to equilibrium

Reading: Norris 3.5-3.8
Further reading: Grimmett-Stirzaker 6.9; Ross 6.5-6.6

In Lecture 7 we studied the class structure of continuous-time Markov chains. We can
summarize the findings by saying that the state space can be decomposed into (disjoint)
communicating classes

S=JRnulJ T

m>1 m>1

where the (states in) R,, are recurrent, hence closed, and the 7, are transient, whether
closed or not. This is the same as for discrete-time Markov chains, in fact equivalent to
the decomposition for the associated jump chain. Furthermore, each recurrent class is
either positive recurrent or null recurrent.

To understand equilibrium behaviour, one should look at each recurrent class sepa-
rately. The complete picture can then be set together from its pieces on the separate
classes. This is relevant in some applications, but not for the majority, and not for those
we want to focus on here. We therefore only treat the case where we have only one class
that is recurrent. We called this case irreducible. The reason for this name is that we
cannot further reduce the state space without changing the transition mechanisms. We
will further focus on the positive recurrent case.

8.1 Invariant distributions
Note that for an initial distribution v on S, Xy ~ v we have

P(X, = j) = Y P(Xo = i)P(X, = j|Xo = i) = (vP(t));

1€S

where vP(t) is the product of a row vector v with the matrix P(t), and we extract the
7th component of the resulting row vector.

Definition 49 A distribution £ on S is called invariant for a continuous-time Markov
chain if £P(t) = ¢ for all ¢t > 0.

41
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If we take an invariant distribution £ as initial distribution, then X; ~ &£ for all ¢ > 0.
We then say that X is in equilibrium.

Proposition 50 IfS is finite, then £ is invariant if and only if £Q = 0.

Proof: 1f €P(t) =& for all t > 0, then by the forward equation

Erh) = PO _ g =0.
h—0

5Q:§P(t)Q:fP/(t)=§}lLli%P fP(t+h})l—§P(t)

If £Q = 0, we have

EP(t) = £P(0) + ¢ /0 P(s)ds =€+ /0 CQP(s)ds = €

where we applied the backward equation. Here, also the integration is understood com-
ponentwise.

Interchanging limits/integrals and matrix multiplication is justified since S is finite.
O

Fact 51 IfS is infinite, Q is a Q-matriz and (P(t));>o are the transition matrices of the
minimal continuous-time Markov chain associated with QQ-matrix Q. Then £Q = 0 if and
only if EP(t) =& for allt > 0.

As a consequence, £ can then only exist if X is non-explosive in the sense that P(T,,, =
o0) = 1.

Fact 52 An irreducible (minimal) continuous-time Markov chain is positive recurrent if
and only if it has an invariant distribution. An invariant distribution & can then be given

by

i = —, | €5,
& -y 1 E

where m; = E;(H;) is the mean return time to i and \; = —q;; the holding rate in 1.

The proof is quite technical and does not give further intuition. The analogous result
for discrete chains holds and gives n; = 1/E;(1V;) as invariant distribution. The further
factor \; occurs because a chain in stationarity is likely to be found in 7 if the return time
is short and the holding time is long; both observations are reflected through the inverse
proportionality to m; and \;, respectively. Since this is a key result for both Convergence
Theorem and Ergodic Theorem, the diligent reader may want to refer to Norris Theorem
3.5.3.
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Example 53 Consider the M/M/1 queue of Example 29. The equations £Q = 0 are
given by

—Ao +p&r =0, Ao — (A+p)&+p&i =0, i>1

This system of linear equations (for the unknowns &;, ¢ € N) has a probability mass
function as its solution if and only if A < u. It is given by the geometric probabilities

gi:(é)l(l—i), ieN.
f I

By Fact 52, we can calculate E;(H;) = m; = 1/(\&). In particular, for i = 0, we have
the length of a full cycle beginning and ending with an empty queue. Since the initial
empty period has average length 1/, the busy period has length

1 1

Foltlo) = VA= S0 =3 =

Note that this tends to infinity as A T p.

8.2 Convergence to equilibrium

The convergence theorem is of central importance in applications since is it often as-
sumed that a system is in equilibrium. The convergence theorem is a justification for
this assumption, since it means that a system must only be running long enough to be
(approximately) in equilibrium.

Theorem 54 Let X = (Xi)i>0 be a (minimal) irreducible positive-recurrent continuous-
time Markov chain, Xy ~ v, and & an invariant distribution, then

P(X; =j) =& ast — oo forall j €S.

This result can be deduced from the convergence result for discrete-time Markov
chains by looking at the processes zh = nn that are easily seen to be Markov chains
with transition matrices P(h).

However, it is more instructive to see a (very elegant) direct argument, using the
coupling method in continuous time.

Sketch of proof: Let X be the continuous-time Markov chain starting according to v, Y
an independent continuous-time Markov chain with the same @)-matrix, but starting from
the invariant distribution . Choose ¢ € S and define T' = inf{t > 0 : (X, Y;) = (4,9)}
the time they first meet (in 4, to simplify the argument). A third process is constructed
X, = Xy, t < T (following the v-chain before T), X, = Y;, t > T (following the &-chain
after T'). The following three steps complete the proof:

1. the meeting time 7" is finite with probability 1 (this is because n;; = £, is stationary
distribution for the bivariate process (X, Y’) and existence of stationary distribution
implies positive recurrence of X, Y (by Fact 52);
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2. the third chain X has the same distribution as the v-chain X ;

3. the third chain (which eventually coincides with the {-chain Y') is asymptotically
in equilibrium in the sense of the convergence statement in Theorem 54.

|

Note that we obtain the uniqueness of the invariant distribution as a consequence
since also the marginal distribution of a Markov chain starting from a second invariant
distribution would remain invariant and converge to &.

Theorem 55 (Ergodic theorem) In the setting of Theorem 54, Xo ~ v
1 t
P <¥/ lix,—iyds — & ast — oo) =1
0

Proof: A proof using renewal theory is in assignment question A.5.4. O

We interpret this as follows. For any initial distribution, the long-term proportions of
time spent in any state ¢ approaches the invariant probability for this state. This result
establishes a time-average analogue for the spatial average of Theorem 54. This is of great
practical importance, since it allows us to observe the invariant distribution by looking
at time proportions over a long period of time. If we tried to observe the stationary
distribution using Theorem 54, we would need many independent observations of the
same system at a large time t to estimate &.

8.3 Detailed balance equations and time reversal
Proposition 56 Consider a Q-matriz Q. If the detailed balance equations

have a solution & = (&;)ies, then £ is a stationary distribution.

Proof: Let & be such that all detailed balance equations hold. Then fix 7 € S and sum
the equations over i € S to get

(€Q); = Zfi% = ijqji =§; Z ¢i =0

i€S 1€S 1€S

since the row sums of any @-matrix vanish (see Remark 26). Therefore £Q = 0, as
required. O
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Note that (in the case of finite #S = n), while £Q) = 0 is a set of as many equations as
unknowns, n, the detailed balance equations form a set of n(n — 1)/2 different equations
for n unknowns, so one would not expect solutions, in general. However, if the )-matrix is
sparse, i.e. contains lots of zeros, corresponding equations will be automatically satisfied,
and these are the cases where we will successfully apply detailed balance equations.

The class of continuous-time Markov chains for which the detailed balance equations
have solutions can be studied further. They also arise naturally in the context of time
reversal, a tool that may seem of little practical relevance, since our world lives forward
in time, but sometimes it is useful to model by a random process an unknown past.
Sometimes, one can identify a duality relationships between two different processes, both
forward in time that reveals that the behaviour of one is the same as the behaviour of
the time reversal of the other. This can allow to translate known results for one into
interesting new results for the other.

Proposition 57 Let X be an irreducible positive recurrent (minimal) continuous-time
Markov chain with Q-matriz Q and starting from the invariant distribution §. Let t > 0
be a fized time and X, =X, s_. Then the process X is a continuous-time Markov chain

with Q-matriz Q given by §iG5i = &iGij-

Proof: First note that () has the properties of a Q-matrix in being non-negative off the
diagonal and satisfying

Z (j]z Z QZ] = - - _quj

i#] 2#)

by the invariance of . Similarly, we define &;p;;(t) = &py;(t) and see that P(t) have the
properties of transition matrices. In fact the transposed forward equation P'(t) = P(¢)Q
yields P'(t) = QP(t), the backward equation for P(¢). Now X is a continuous-time
Markov chain with transition probabilities P(t) since

~

Pﬁ(Xt() - 7;0, N 7Xt - Zn) - ]P)ﬁ(Xt—tn - 'én, “e aXt—to - ZQ)

= &in Hpik,ik,l(tk —t-1)
k=1

= & Hﬁik,l,ik(tk —t-1).
k=1

From this we can deduce the Markov property. More importantly, the finite-dimensional
distributions of X are the ones of a continuous-time Markov chain with transition matrices
p(t) Together with the path structure, Remark 36 implies that X is a Markov chain
with @Q-matrix Q a

If Q = @, X is called reversible. 1t is evident from the definition of @ that & then
satisfies the detailed balance equations &;qi; = £;qji, 1,] € S.
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8.4 Erlang’s formula

Example 58 Consider the birth-death process with birth rates ¢;;41 = A; and death
rates ¢;i—1 = fbi, ¢ = —\i — fui, © € N, all other entries zero (and also pg = 0). (This
is standard notation for this type of process, but note that \; = g;; 41, we will not use
earlier notation \; = —g;;).

We recognise birth processes and queueing systems as special cases.

To calculate invariant distributions, we solve £Q) = 0, i.e.

S — Ao =0 and Sttt — En(An + fin) + iAo =0, n2>1

or more easily the detailed balance equations

§iNi = Sip1lhiv1-
giving

)\n—l e )\0
fn=—"C
Mn - - 1
where &, is determined by the normalisation requirement of £ to be a probability mass
function, i.e.

1 A1 Ao
& =5 where S 1+Z1 P
provided S is finite.

If S is infinite, then there does not exist an invariant distribution. This cannot be
deduced from the detailed balance equations but can be argued directly by showing that
£Q = 0 does not have a solution. It does not necessarily mean explosion in finite time,
but includes all simple birth processes since they model growing populations and cannot
be in equilibrium. By Fact 52, it means that X is then null recurrent or transient.

On the other hand, if \y = 0 as in many population models, then the invariant
distribution is concentrated in 0, i.e. {§g =1, &, =0 for all n > 1.

Many special cases can be given more explicitly. E.g., if A, =\, n > 0, u, = nu, we
get

&n = 7()\7/5)n e Mn,

You recognise the Poisson probabilities. What is this model? We can give two differ-
ent interpretations both of which tie in with models that we have studied. First, as a
population model, A\,, = A means that arrivals occur according to a Poisson process, this
can model immigration; u, = nu is obtained from as many Fxp(u) clocks as individuals
in the population, i.e. independent Exp(u) lifetimes for all individuals. Second, as a
queueing model with arrivals according to a Poisson process, each individual leaves the
system after an Exp(u) time, no matter how many other people are in the system — this
can be obtained from infinitely many servers working at rate p.



Lecture 9

The Strong Law of Large Numbers

Reading: Grimmett-Stirzaker 7.2; David Williams “Probability with Martingales™ 7.2
Further reading: Grimmett-Stirzaker 7.1, 7.3-7.5

With the Convergence Theorem (Theorem 54) and the Ergodic Theorem (Theorem
55) we have two very different statements of convergence of something to a stationary
distribution. We are looking at a recurrent Markov chain (X¢)¢>o, i.e. one that visits
every state at arbitrarily large times, so clearly X; itself does not converge, as t — oo.
In this lecture, we look more closely at the different types of convergence and develop
methods to show the so-called almost sure convergence, of which the statement of the
Ergodic Theorem is an example.

9.1 Modes of convergence
Definition 59 Let X,,, n > 1, and X be random variables. Then we define
1. X,, — X in probability, if for all € > 0, P(|X,, — X| >¢) — 0 as n — 0.

2. X,, — X in distribution, if P(X,, < z) - P(X < z) asn — oo, for all z € R at
which z — P(X < z) is continuous.

3. X, — X in LY if E(|X,,|) < oo for all n > 1 and E(|X,, — X|) — 0 as n — oo.

4. X,, — X almost surely (a.s.), if P(X,, - X asn — o0) = 1.

Almost sure convergence is the notion that we will study in more detail here. It helps
to consider random variables as functions X,, : 2 — R on a sample space (2, or at least as
functions of a common, typically infinite, family of independent random variables. What
is different here from previous parts of the course (except for the Ergodic Theorem, which
we yet have to inspect more thoroughly), is that we want to calculate probabilities that
fundamentally depend on an infinite number of random variables. So far, we have been
able to revert to events depending on only finitely many random variables by conditioning.
This will not work here.

47
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Let us start by recalling the definition of convergence of sequences, as n — oo,

Tp — X < valanmzfv/nznm Ty — [L’| < 1/m

If we want to consider all sequences (z,),>1 of possible values of the random variables
(Xn)n>1, then
N = inf{k > 1: VY, >z, — 2| <1/m} € NU{oco}
will vary as a function of the sequence (z,),>1, and so it will become a random variable
Ny =inf{k > 1: V5| X,, — X| <1/m} e NU {0}
as a function of (X,,),>1. This definition of N,, permits us to write
P(X, = X) =P(V;>1 N, < 00).

This will occasionally help, when we are given almost sure convergence, but is not much
use when we want to prove almost sure convergence. To prove almost sure convergence,
we can transform as follows

]P)(Xn — X) = P(szlEINzlanMXn — X| < l/m) =1
< P(HlevN213nZN|Xn — X| Z 1/m) =0.
We are used to events such as A,,, = {|X,, — X| > 1/m}, and we understand events as
subsets of €2, or loosely identify this event as set of all ((zg)x>1, ) for which |z, —z| > 1/m.

This is useful, because we can now translate 3,,>1Vy>13n > N into set operations and
write

P(Upm>1 Ny>1 UnsnAmn) = 0.

This event can only have zero probability if all events Ny>1 Up>ny Apmrn, m > 1, have
zero probability (formally, this follows from the sigma-additivity of the measure P). The
Borel-Cantelli lemma will give a criterion for this.

Proposition 60 The following implications hold

X, — X almost surely

Y
X, — X in probability = X, — X in distribution

)
X, — X in L = E(X,) — E(X)
No other implications hold in general.

Proof: ~ Most of this is Part A material. Some counterexamples are on Assignment
5. It remains to prove that almost sure convergence implies convergence in probability.
Suppose, X,, — X almost surely, then the above considerations yield P(V,,>1 N, < 00) =
1, ie. P(Ng < 00) > P(Vy>1 Ny < 00) = 1 for all k > 1.

Now fix € > 0. Choose m > 1 such that 1/m < €. Then clearly | X,, — X| >¢ > 1/m
implies N,, > n so that

P(|X, — X| > &) < P(N,, > n) — P(N,, = 00) = 0,

as n — oo, for any € > 0. Therefore, X,, — X in probability. O
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9.2 The first Borel-Cantelli lemma

Let us now work on a sample space 2. It is safe to think of @ = RN x R and w € Q as
w = ((zn)n>1, ) as the set of possible outcomes for an infinite family of random variables
(and a limiting variable).

The Borel-Cantelli lemmas are useful to prove almost sure results. Particularly lim-
iting results often require certain events to happen infinitely often (i.o.) or only a finite

number of times. Logically, this can be expressed as follows. Consider events A, C (2,
n > 1. Then

weA,io. <<= Vys13wn weAd, = wc ﬂ U A,,
n>1m>n

Lemma 61 (Borel-Cantelli (first lemma)) Let A=), ., U
infinitely many of the events A,, occur. Then

A,, be the event that

m>n

Y P(A) <o = PA) =0

n>1

Proof: 'We have that A C A, for all n > 1, and so

m>n

P(A)gIP’(U Am> <) PA,) =0 asn—oo

m>n m>n

whenever »_ - P(A,) < oco. O

9.3 The Strong Law of Large Numbers

Theorem 62 Let (X,,),>1 be a sequence of independent and identically distributed (iid)
random variables with E(X}) < oo and E(X;) = p. Then

Se 1
— == Z X, — almost surely.
n n ‘=

Fact 63 Theorem 62 remains valid without the assumption E(X}) < oo, just assuming
E(|X;]) < 0.

The proof for the general result is hard, but under the extra moment condition
E(X{) < co there is a nice proof.

Lemma 64 In the situation of Theorem 62, there is a constant K < oo such that for all
n>0

E((S, —nu)*) < Kn?.
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Proof: Let Zy =Xy —pand T, =21+ ...+ Z, = S, — nu. Then
n 4
E(T,) =E (Z ZZ-> = nE(ZY) + 3n(n — )E(Z222) < Kn®
i=1

by expanding the fourth power and noting that most terms vanish such as
E(leg) - E(ZI>E(Z§> =0.
K was chosen appropriately, say K = 4max{E(Z}), (E(Z3?))?}. 0

Proof of Theorem 62: By the lemma,

Now, by Tonelli’s theorem,

E(Z(%—u)>:ZE<<%—M)><o® . ;(%—u>4<oo

But if a series converges, the underlying sequence converges to zero, and so

S ! Su
— — | — 0 almost surely = — — p almost surely.
n n

|

This proof did not use the Borel-Cantelli lemma, but we can also conclude by the
Borel-Cantelli lemma:

Proof of Theorem 62: We know by Markov’s inequality that

N4
P (l 1S, — npt| > n_“’) < E((S,/n — pn)*) — Knr
n

n=4
Define for v € (0,1/4)
A, = {% 1S, — np| > n—V} = ) P(4,)<oo = P(A)=0
n>1

by the first Borel-Cantelli lemma, where A = -, U
if and only if -

A,,. But now, event A¢ happens

m>n

S, .

EIN\V/nZN n
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9.4 The second Borel-Cantelli lemma

We won’t need the second Borel-Cantelli lemma in this course, but include it for completeness.

Lemma 65 (Borel-Cantelli (second lemma)) Let A = ()5, U5, An be the event that
infinitely many of the events A, occur. Then

ZIP’(A,L) =00 and (Ap)p>1 independent = P(A) =1.

n>1

Proof: The conclusion is equivalent to P(A¢) = 0. By de Morgan’s laws
A= M 4.
n>1lm>n

However,

P(ﬂ Acm) = Tlﬂ)@(h A;)
= H (1 - P(Am)) < H exp (_]P)(Am)) = €Xp ( Z ]P)(Am) =0

m>n m>n

whenever >, P(4;,) = co. Thus

P(A°) = lim P (] 45 | =o.
m>n

As a technical detail: to justify some of the limiting probabilities, we use “continuity of P”
along increasing and decreasing sequences of events, that follows from the sigma-additivity of
P, cf. Grimmett-Stirzaker, Lemma 1.3.(5).

9.5 Examples

Example 66 (Arrival times in Poisson process) A Poisson process has independent
and identically distributed inter-arrival times (Z,),>0 with Z, ~ Exp()). We denoted
the partial sums (arrival times) by T,, = Zp + ... + Z,-1. The Strong Law of Large
Numbers yields

T, 1

— — = almost surely, as n — oo.

n A
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Example 67 (Return times of Markov chains) For a positive-recurrent discrete-time
Markov chain we denoted by

N;=NY =inf{n>0: M, =i}, N™ =inf{n>N"™: M, =i},meN,

the successive return times to 0. By the strong Markov property, the random variables
N NI > 1 are independent and identically distributed. If we define N\” = 0

)

and start from ¢, then this holds for m > 0. The Strong Law of Large Number yields

N™

— — Ei(V;) almost surely, as m — oc.
m

Similarly, in continuous time, for

Hi=HY =inf{t >T1: X, =i}, H™ =Tym.meN,
we get
H™
L — E;(H;) = my almost surely, as m — oo.
m

Example 68 (Empirical distributions) If (Y,,),>; is an infinite sample (independent
and identically distributed random variables) from a discrete distribution v on S, then the
random variables BY = l{v,=i}, n = 1, are also independent and identically distributed
for each fixed ¢ € S, as functions of independent variables. The Strong Law of Large
Numbers yields

I/Z-(n) _ #{]{Z: 1,...,n:Yk:i} _ BY)—F...—FBSLZ) HE(BY)) :P<Yi :i) =y,
n n

almost surely, as n — oco. The probability mass function v is called empirical distribu-
tion. It lists relative frequencies in the sample and, for a specific realisation, can serve as
an approximation of the true distribution. In applications of statistics, it is the sample
distribution associated with a population distribution. The result that empirical distri-
butions converge to the true distribution, is true uniformly in ¢ and in higher generality,
it is usually referred to as the Glivenko-Cantelli theorem.

Remark 69 (Discrete ergodic theorem) If (M,,),>o is a positive-recurrent discrete-
time Markov chain, the Ergodic Theorem is a statement very similar to the example of
empirical distributions

#{k=0,....n—1: M, =i}
n

P, (Mo =1) =n; almost surely, as n — oo,

for a stationary distribution 7, but of course, the M,, n > 0, are not independent (in
general). Therefore, we need to work a bit harder to deduce the Ergodic Theorem from
the Strong Law of Large Numbers.



Lecture 10

Renewal processes and equations

Reading: Grimmett-Stirzaker 10.1-10.2; Ross 7.1-7.3

10.1 Motivation and definition

So far, the topic has been continuous-time Markov chains, and we’ve introduced them
as discrete-time Markov chains with exponential holding times. In this setting we have
a theory very much similar to the discrete-time theory, with independence of future and
past given the present (Markov property), transition probabilities, invariant distributions,
class structure, convergence to equilibrium, ergodic theorem, time reversal, detailed bal-
ance etc. A few odd features can occur, mainly due to explosion.

These parallels are due to the exponential holding times and their lack of memory
property which is the key to the Markov property in continuous time. In practice, this
assumption is often not reasonable.

Example 70 Suppose that you count the changing of batteries for an electrical device.
Given that the battery has been in use for time ¢, is its residual lifetime distributed as
its total lifetime? We would assume this, if we were modelling with a Poisson process.

We may wish to replace the exponential distribution by other distributions, e.g. one
that cannot take arbitrarily large values or, for other applications, one that can produce
clustering effects (many short holding times separated by significantly longer ones). We
started the discussion of continuous-time Markov chains with birth processes as gener-
alised Poisson processes. Similarly, we start here generalising the Poisson process to have
non-exponential but independent identically distributed inter-arrival times.

Definition 71 Let (Z,,),>0 be a sequence of independent identically distributed positive
random variables, T,, = Z;é Zy, n > 1, the partial sums. Then the process X = (X)>0
defined by

X, =#{n>1:T, <t}

is called a renewal process. The common distribution of Z,,, n > 0, is called inter-arrival
distribution.

23
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Example 72 If (Y;);>0 is a continuous-time Markov chain with Yy = i, then Z, =

HZ-("H) — HZ-("), the times between successive returns to ¢ by Y, are independent and
identically distributed (by the strong Markov property). The associated counting process

X, =#{n>1:H" <t}

counting the visits to ¢ is thus a renewal process.

10.2 The renewal function
Definition 73 The function ¢ — m(t) := E(X,) is called the renewal function.

It plays an important role in renewal theory. Remember that for Z,, ~ Exp(\) we had
X, ~ Poi(\t) and in particular m(t) = E(X;) = At.

To calculate the renewal function for general renewal processes, we should investigate
the distribution of X;. Note that, as for birth processes,

Xi=k <= T <t <Tyy,
so that we can express
P(X;=Fk)=P(T, <t < Tpy1) =P(Ti <t) —P(Tpy1 < 1)

in terms of the distributions of T}, = Zg+ ...+ Z_1, k > 1.
Recall that for two independent continuous random variables S and T" with densities
f and g, the random variable S 4+ T has density

(f*xg)( / flu—t)g u € R,
the convolution (product) of f and g, and if S > 0 and T' > 0, then

(f*g)(u /fu—t u > 0.

It is not hard to check that the convolution product is symmetric, associative and dis-
tributes over sums of functions. While the first two of these properties translate as
S+T =T+ Sand (S+T)+U = S+ (T +U) for associated random variables, the
third property has no such meaning, since sums of densities are no longer probability
densities. However, the definition of the convolution product makes sense for general
nonnegative integrable functions, and we will meet other relevant examples soon. We

can define convolution powers f*(l fand f*D) = fx f*®) k> 1. Then

P <) = [ dn(s)ds= [ £
0 0

if Z,, n > 0, are continuous with density f.
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Proposition 74 Let X be a renewal process with interarrival density f. Then m(t) =
E(X,) is differentiable in the weak sense that it is the integral function of

(5):= Y [ ®(s)

Lemma 75 Let X be an N-valued random variable. Then E(X) =3, P(X > k).

Proof: 'We use Tonelli’s Theorem

Y>PX k) =) Y PX

k>1 k>1 j>k 7j>1 k=1 7=>0

o
pac}
<
I
=
i
-
pac}
<
I
=
]
=
=

Proof of Proposition 74: Let us integrate > oo, f**)(s) using Tonelli’s Theorem

/ t > FW(s)ds =D / t FE(s)ds =) P(Tp <t) =Y P(X; > k) = E(X,) = m(t).
0 k=1 k=1 0 k=1 k=1

O

10.3 The renewal equation

For continuous-time Markov chains, conditioning on the first transition time was a pow-
erful tool. We can do this here and get what is called the renewal equation.

Proposition 76 Let X be a renewal process with interarrival density f. Then m(t) =
E(X}) is the unique (locally bounded) solution of

_,_/tm(t_s)f(s)ds, t.e. m=F+ fxm,
0
where F(t fo P(Z1 <1).

Proof: Condltlonlng on the first arrival will involve the process X, = = Xryqu, u 2 0.

Note that Xo = 1 and that X — 1 is a renewal process with interarrival times Z = Znpi1,
n > 0, independent of T;. Therefore

BOG) = [ BT = s)ds = [ SRS s = i)+ [ rlsymie = s)d
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For uniqueness, suppose that also £ = F' + f *x {, then @« = ¢ — m is locally bounded and
satisfies &« = f *x @ = o * f. Iteration gives a = a * f**) for all k£ > 1 and, summing over
k gives for the right hand side something finite:

‘(Za * f*(k)> )| = (a s Zf*(k)) (1)

k>1 k>1

_ /0 't — sy (s)ds

= |(axm') (t)

< (usel[lopt] |a(u)\> m(t) < oo

but the left-hand side is infinite unless a(t) = 0. Therefore ((t) = m(t), for all £ > 0. O

Example 77 We can express m as follows: m = F + F x Zk21 f*®) Indeed, we check
that £ = F 4+ F x 2@1 f*(*) satisfies the renewal equation:

Fifol=F+Fxf+FxY fO=F+F=«) f®=y

§>2 k>1

just using properties of the convolution product. By Proposition 76, ¢ = m.

Unlike Poisson processes, general renewal processes do not have a linear renewal func-
tion, but it will be asymptotically linear (Elementary Renewal Theorem, as we will see).
In fact, renewal functions are in one-to-one correspondence with interarrival distributions
— we do not prove this, but it should not be too surprising given that m = F' + f xm is
almost symmetric in f and m. Unlike the Poisson process, increments of general renewal
processes are not stationary (unless we change the distribution of Z, in a clever way,
as we will see) nor independent. Some of the important results in renewal theory are
asymptotic results.

These asymptotic results will, in particular, allow us to prove the Ergodic Theorem
for Markov chains.

10.4 Strong Law and Central Limit Theorem of re-
newal theory

Theorem 78 (Strong Law of renewal theory) Let X be a renewal process with mean
interarrival time p € (0,00). Then

X; 1

— = — almost surely, ast — oo.

t %
Proof: Note that X is constant on [7},,7,1) for all n > 0, and therefore constant on
[Tx,, Tx,+1) O t. Therefore, as soon as X; > 0,

Tx, <t - Txirr _ Txpn Xi+1
Xt o Xt Xt Xt + 1 Xt
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Now P(X; — o0) = 1, since Xoo < n <= 7,41 = oo which is absurd, since T, =
Zy+ ...+ Z, is a finite sum of finite random variables. Therefore, we conclude from the
Strong Law of Large Numbers for 7),, that

Tx,
Xy

— [ almost surely, as t — oo.
Therefore, if X; — oo and T},/n — u, then

t
p<lim — <pu ast — oo,

t—o00 ¢

but this means P(X,/t — 1/u) > P(X; — 00, T, /n — p) = 1, as required. O

Try to do this proof for convergence in probability. The nasty e expressions are not
very useful in this context, and the proof is very much harder. But we can now deduce
a corresponding Weak Law of Renewal Theory, because almost sure convergence implies
convergence in probability.

We also have a Central Limit Theorem:

Theorem 79 (Central Limit Theorem of Renewal Theory) Let X = (X;);>0 be a
renewal process whose interarrival times (Y,,)n>o0 satisfy 0 < o2 = Var(Y;) < oo and

w=E(Y;). Then

X, —t
X tu — N(0,1) in distribution, as t — oo.

Vio?/

The proof is not difficult and left as an exercise on Assignment 5.

10.5 The elementary renewal theorem

Theorem 80 Let X be a renewal process with mean interarrival times p and m(t) =
E(X}). Then

m(t) = E(X) — l as t — 00
t t W

Note that this does not follow easily from the strong law of renewal theory since almost
sure convergence does not imply convergence of means (cf. Proposition 60, see also the
counter example on Assignment 5). In fact, the proof is longer and not examinable: we
start with a lemma.

Lemma 81 For a renewal process X with arrival times (T,,)n>1, we have

E(Tx,+1) = p(m(t) + 1), where m(t) = E(Xy), p=E(Ty).
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This ought to be true, because T'x,+; is the sum of X; 41 interarrival times, each with mean p.
Taking expectations, we should get m(t) 4+ 1 times pu. However, if we condition on X; we have
to know the distribution of the residual interarrival time after ¢, but without lack of memory,
we are stuck.

Proof:  Let us do a one-step analysis on the quantity of interest ¢g(t) = E(Tx,+1):

g(t):/ooo E(Tx,+1|Th=3s)f(s)ds :/0 (s + E(TXFSH)) f(s)ds + /too sf(s)ds=p+ (g f)(t).

This is almost the renewal equation. In fact, g1 (t) = g(¢)/n — 1 satisfies the renewal equation

o) = 1 [ ot =) f(s)s = [ @t =)+ Dfs)ds = PO + (0 D00
and, by Proposition 76, g1(t) = m(t), i.e. g(t) = u(1 + m(t)) as required. O

Proof of Theorem 80: Clearly t < E(Tx,+1) = p(m(t) + 1) gives the lower bound

For the upper bound we use a truncation argument and introduce

5 . Zj if Zj <a

ZJ_ZJ/\a_{a if Z; > a

with associated renewal process X. Zj < Zj for all j > 0 implies )A(:t > X; for all t > 0, hence
m(t) > m(t). Putting things together, we get from the lemma again

t> E(Ty) = E(Ty,,,) — E(Zg,) = ilfi(t) + 1) — E(Zg,) > film(t) + 1) — a.

X Xi+1 Xt
Therefore
t 1 a—pn
mt) 1 a7
t i ut
so that
t 1
lim sup m <=
t—o00 t 1%

Now fi = E(Z1) = E(Z1 Aa) — B(Z;) = i a a — oo (by monotone convergence). Therefore

(1)

3

lim sup
t—o0

1
S_
I

<~ ‘

O

Note that truncation was necessary to get E(Z ;Q) < a. It would have been enough if we

had E(Zx,) = E(Z1) = u, but this is not true. Look at the Poisson process as an example. We

know that the residual lifetime has already mean p = 1/, but there is also the part of Zx,

before time t. We will explore this in Lecture 11 when we discuss residual lifetimes in renewal
theory.



Lecture 11

Excess life and stationarity

Reading: Grimmett-Stirzaker 10.3-10.4; Ross 7.7

So far, we have studied the behaviour of one-dimensional marginals X;:

X L E(Xy) N Xt/ — N(0,1).
t W t 1! \/W

For Poisson processes we also studied finite-dimensional marginals and described the joint
distributions of

Xy Xpps — Xgy o v stationary, independent increments.

In this lecture, we will make some progress with such a programme for renewal processes.

11.1 The renewal property

To begin with, let us study the post-t process for a renewal process X, i.e. (Xyrs—X¢)s>0-
For fixed t, this is not a renewal process in the strict sense, but for certain random t =T
we have

Proposition 82 Let X be a renewal process, T; = inf{t > 0 : X; = i}. Then (X, )<,
and (X145 — X1,)s>0 are independent and (X1,+s — X1,)s>0 has the same distribution as
X.

Proof: The proof is the same as (actually easier than) the proof of the strong Markov
property of birth processes at T;, cf. Exercise A.2.3(a). We identify the interarrival times
Zy = Ziyn, n > 0, independent of Zy, ..., Z; ;. Here, as for the special case of Poisson
processes, we describe X = (X715 — X7,)s>0 rather than (Xr,45)s>0 since the former is
a renewal process (in the strict sense) whereas the latter starts at 7. a

Here are two simple examples that show why this cannot be extended to fixed times
t="T.

29



60 Lecture Notes — Part B Applied Probability — Oxford MT 2007

Example 83 If the interarrival times are constant, say P(Z, = 3) = 1, then X =
(X115 — Xi)s>0 has a first arrival time Zy with P(Zp =3 —1¢) =1, for 0 <t < 3.

The second example shows that also the independence of the pre-t and post-t processes
fails.

Example 84 Suppose, the interarrival times can take three values, say P(Z, = 1) = 0.7,
P(Z, =2)=0.2 and P(Z, = 19) = 0.1. Note

E(Z,) =07x14+02x2+01x19=3

Let us investigate a potential renewal property at time ¢ = 2. Denoting X = (Xirs —
X¢)s>0 with holding times Z,, n > 0, we have

(1) Xy =2 implies X; =1, Zy = Z; = 1, and we get P(Zy = j| X5 = 2) = P(Z, = j);

(2) X, =1and X; = 1 implies Zy = 1 and Z; > 2, we get P(Zy = 1| Xo =1, X; = 1)

(3) X, =1and X; =0 implies Zy = 2, we get P(Zy = 1| X, = 1, X; = 0) = 0.7;
(4) X, = 0 implies Zy = 19, we get P(Zy = 17| X, = 0) = 1.

From (1) and (4) we obtain that Z, is not independent of X, and hence X depends on
(XT)T§2‘ _
From (2) and (3) we obtain that Z; is not conditionally independent of X; given

Xy =1, so X depends on (X, ),<2 even conditionally given Xy = 1.

In general, the situation is more involved, but you can imagine that knowledge of
the age Ay =t — T, at time ¢, gives you information about the excess lifetime (residual
lifetime) E; = Tx,11 — t which is the first arrival time Z] of the post-t process. In
particular, A; and E; are not independent, and also the distribution of F; depends on ¢.
Note that if the distribution of F; did not depend on A;, we would get (something very
close to, not exactly, since A; is random) the lack of memory property and expect that
Z; is exponential.

However, this is all about Z), we have not met any problems for the following inter-
arrival times. Therefore, we define “delayed” renewal processes, where the first renewal
time is different from the other inter-renewal times. In other words, the typical renewal
behaviour is delayed until the first renewal time. Our main interpretation will be that
Zy is just part of an inter-renewal time, but we define a more general concept within
which we develop the idea of partial renewal times, which will show some effects that
seem paradoxial at first sight.

Definition 85 Let (Z,),>1 be a family of independent and identically distributed inter-
arrival times and Z, an independent interarrival time with possibly different distribution.
Then the associated counting process X with interarrival times (Z,,),>0 is called a delayed
renewal process.
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As a corollary to Proposition 82, we obtain.

Corollary 86 (Renewal property) Proposition 82 also remains true for delayed re-
newal processes. In this case, the post-T; process will be undelayed.

Just as the Markov property holds at more general stopping times, the renewal prop-
erty also holds at more general stopping times, provided that they take values in the
set {T,,,n > 0} of renewal times. Here is a heuristic argument that can be made pre-
cise: we apply Proposition 82 conditionally on 7' = T; and get conditional independence
and the conditional distribution of the post-T process given T' = T;. We see that the
conditional distribution of the post-T process does not depend on ¢ and apply Exercise
A.1.5 to deduce the unconditional distribution of the post-T process and unconditional
independence.

In particular, the renewal property does not apply to fixed T' = t, but it does apply,
e.g., to the first arrival (renewal) after time ¢, which is Ty, ;1. Actually, this special case
of the renewal property can be proved directly by conditioning on X;.

Proposition 87 Given a (possibly delayed) renewal process X, for everyt > 0, the post-t
process Z = (X5 — Xi)s>0 05 a delayed renewal process with Zy = E;.

Remark 88 Note that we make no statement about the dependence on the pre-t process.

Proof: 'We apply the renewal property to the renewal time T, 1, the first renewal time
after ¢. This establishes that (Z,,),>; are independent identically distributed interarrival
times, independent from the past, in particular from Z] = FE,. X therefore has the
structure of a delayed renewal process. O

11.2 Size-biased picks and stationarity

An important step towards further limit results will be to choose a good initial delay
distribution. We cannot achieve independence of increments, but we will show that we
can achieve stationarity of increments.

Proposition 89 Let X be a delayed renewal process. If the distribution of the excesses
E; does not depend on t > 0, then X has stationary increments.

Proof- By Proposition 87, the post-t process X = (Xirs — Xit)s>0 is a delayed renewal
process with Zo = E,. If the delay distribution does not depend on ¢, then the distribution
of X does not depend on t. In particular, the distribution of X, = X, ,— X;, an increment
of X, does not depend on t. O
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In fact,the converse is true, as well. Also, it can be shown that E is a Markov
process on the uncountable state space S = [0,00), and we are looking for its invariant
distribution.

Since we have not identified the invariant distribution, we should look at E; for large
t for a non-delayed renewal process since equilibrium (for Markov chains at least) is
established asymptotically. We may either appeal to the Convergence Theorem and look
at the distribution of E;, say P(E; > x) for large ¢, or we may appeal to the Ergodic
Theorem and look at the proportion of s € [0, ¢] for which Es > x.

Example 90 Let us continue the discussion of Example 84 and look at E; for large t.
First we notice that the fractional parts {E£;} have a deterministic sawtooth behaviour
forever since Z,,, n > 0, only take integer values. So, look at F), for large n. 1. What is
the probability that n falls into a long interarrival time? Or 2. What proportion of ns
fall into a long interarrival time? 10%?

In fact, E, is a discrete-time Markov chain on {1,2,...,19} with transition probabil-
ities

Tiy1; =1, ©>1, m; =P(Z; =j),

which is clearly irreducible and positive recurrent if Ei(H;) = E(Z;) < oo, so it has a
unique stationary distribution. This stationary distribution can be calculated in a general
setting of N-valued interarrival times, see Assignment 6. Let us here work on the intuition:
The answer to the first question is essentially the probability of being in a state 3,4, ...,19
under the stationary distribution (Convergence Theorem for P(E, = j)), whereas the
answer to the second question is essentially the probability of being in a state 3,4,...,19
under the stationary distribution (Ergodic Theorem for n ™ *#{k =0,...,n—1: Ex = j}).

In a typical period of 30 time units, we will have 10 arrivals, of which two will be
separated by one long interarrival time. More precisely, on average 11 ns out of 30 will
fall into small interarrival times, and 19 will fall into the long interarrival time. This is
called a size-biased pick since 19 is the size of the long interarrival time. 1 and 2 are
the sizes of the short interarrival times, this is weighted with their seven resp. two times
higher proportion of occurence.

Furthermore, of these 19 that fall into the long interarrival time, one each has an
excess of k for k =1,...,19, i.e. we may expect the split of the current interarrival time
into age and excess to be uniformly distributed over the interarrival time.

Definition 91 With a probability mass function p on N with u = ano np, < 0o we
associate the size-biased pick distribution p** as

n
sb . IPn n > 1.

n ? —

1
With a probability density function f on [0,00) with = [~ tf(t)dt < oo, we associate
the size-biased pick distribution

2f(2)
e

fsb(z> =
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Example 90 is for an N-valued interarrival distribution, where the renewal process
(X¢)i>0 will only see renewals at integer times, so it makes sense to consider the discretised
process (X, )n>0 as well as a discretised process (E,),>o of excesses at integer times. The
story with continuous interarrival times is completely analogous but does not tie in with
the theory of discrete-time Markov chains, rather with [0, co)-valued Markov processes.
We can still calculate

1 [T 1
Tk Lip,syyds = Tk ;(ZJ - y)l{Zj>y}

using the Strong Law of Large Numbers on (Z;);>0 and Y; = (Z; — y)1{z,5y, j > 0, to
obtain
k Z’“YHE(Yl)_ 1
Zk o Z; k E(Z) E(Z

) / e ) ()

as (survival function P(Zy > ) of the) proposed stationary distribution for (E);so.
It is not hard to show that if L has the size-biased pick distribution and U is uniform
on [0, 1] then LU has density

foly) = —F(y).

/o1 P(L > z/ulU = u)du = /01 /;: if(z)dZdu - /:O /m; duzf(Z)dz

- [ e-asee:

K
and differentiate to get

’:I'—‘

Just check

P(LU > )

fole) = = PLU > @) = af (@) +  Fla) = Sofla) =+ Fla).

If there is uniqueness of stationary distribution, Ergodic Theorem, etc. for the Markov
process (E;)i>0, we obtain the following result.

Proposition 92 Let X be a delayed renewal process where P(Z,, > y) = F(y), n > 1,
and P(Zy > y) = Fo(y). Then X has stationary increments, and Ey ~ LU where L ~ Fy,
and U ~ U(0,1) independent, for allt > 0.

Proof: A proof within the framework of this course is on Assignment 6. a

Example 93 Clearly, for the Exp()\) distribution as inter-arrival distribution, we get
fo(z) = Ae™** also. Note, however, that

be(.CL’) — [L’f(l’) — >\2xe—)\x7 T Z 07
]
is the probability density function of a Gamma(2, \) distribution, the distribution of the
sum of two independent Exp(\) random variables.
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Lecture 12

Convergence to equilibrium —
renewal theorems

Reading: Grimmett-Stirzaker 10.4

Equilibrium for renewal processes X (increasing processes!) cannot be understood
in the same way as for Markov chains. We rather want increment processes X;,s — X;,
t > 0, to form a stationary processes for all fixed s. Note that we look at X, , — X, as a
process in t, so we are looking at all increments over a fixed interval length. This is not
the post-t process that takes X, — X; as a process in s.

12.1 Convergence to equilibrium

We will have to treat the discrete and continuous cases separately in most of the sequel.
More precisely, periodicity is an issue for discrete interarrival times. The general notion
needed is that of arithmetic and non-arithmetic distributions:

Definition 94 A nonnegative random variable Z (and its distribution) are called d-arith-
metic if P(Z € dN) = 1, and d is maximal with this property. If Z is not d-arithmetic
for any d > 0, it is called non-arithmetic.

We think of Z as an interarrival time. All continuous distributions are non-arithmetic,
but there are others, which will not be relevant for us. We will mostly focus on this case.
Our second focus is the 1-arithmetic case, i.e. the integer-valued case, where additionally
P(Z € dN) < 1 for all d > 2. It is not difficult to formulate corresponding results for d-
arithmetic interarrival distributions and also for non-arithmetic ones, once an appropriate
definition of a size-biased distribution is found.

Fact 95 (Convergence in distribution) Let X be a (possibly delayed) renewal process
having interarrival times with finite mean .

65
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(a) If the interarrival distribution is continuous, then
Xips — Xy — XS i distribution, as t — 00,

where X 1s an associated stationary renewal process.

Also (A, Ey) — (L(1 —U), LU) in distribution, as t — oo where L has the size-
biased density fq, and U ~ Unif(0,1) is independent of L.

(b) If the interarrival distribution is integer-valued and 1-arithmetic, then
Xpss — X, — Xs in distribution, as n — oo.

where X is an associated delayed renewal process, not with continuous first arrival
LU, but with a discrete version: let L have size-biased probability mass function
ps and Zy conditionally uniform on {1,... L}. Also, (A, Ey) — (L — Zy, Zo) in

distribution, as n — oc.

We will give a sketch of the coupling proof for the arithmetic case below.

12.2 Renewal theorems

The renewal theorems are now extensions of Fact 95 to convergence of certain moments.
The renewal theorem itself concerns means. It is a refinement of the Elementary Renewal
Theorem to increments, i.e. a second-order result.

Fact 96 (Renewal theorem) Let X be a (possibly delayed) renewal process having in-
terarrival times with finite mean p and renewal function m(t) = E(X}).

(a) If the interarrival times are non-arithmetic, then for all h > 0

m(t+h)—m(t)—>% ast — oo.

(b) If the interarrival times are 1-arithmetic, then for all h € N

m(t+h)—m(t)—>ﬁ ast — oo.
o

As a generalisation that is often useful in applications, we mention a special case of
the key renewal theorem:

Fact 97 (Key renewal theorem) Let X be a renewal process with continuous inter-

arriwval time distribution and m(t) = E(X;). If g : [0,00) — [0,00) is integrable (over
[0,00) in the limiting sense) and non-increasing, then

(g*m’)(t):/ot (t — z)m/(z)dx — — / as t — oo.
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There are generalisations that allow bigger classes of g (directly Riemann-integrable
functions) and put no restrictions on the interarrival distribution (at the cost of some
limits through discrete lattices in the d-arithmetic case). Even an infinite mean can be
shown to correspond to zero limits.

Note that for g,(x) = 1 (x), we get

/Otg(t —x)m/(z)dx = /:h ' (2)dz = m(t) — m(t — h)

and this leads to the renewal theorem. The renewal theorem and the key renewal theorem
should be thought of as results where time windows are sent to infinity, and a stationary
picture is obtained in the limit. In the case of the renewal theorem, we are only looking at
the mean of an increment. In the key renewal theorem, we can consider other quantities
related to the mean behaviour in a window. E.g., moments of excess lifetimes fall into
this category. Note the general scheme that e.g. {F; < h} is a quantity only depending
on a time window of size h.

Vice versa, the key renewal theorem can be deduced from the renewal theorem by
approximating g by step functions.

12.3 The coupling proofs

Suppose now that X is a renewal process with integer-valued interarrival times, and
suppose that P(Z; € dN) < 1 for all d > 2, i.e. suppose that Z; is l-arithmetic. Let
X be a renewal process that is not itself stationary, but that is such that (Xn)nzo has
stationary increments and such that X has also a l-arithmetic first arrival time. This can
be achieved by choosing L with the size-biased pick distribution p°?, which is 1-arithmetic,
and choosing 7, conditionally uniform on {1,...,L}.

We want to couple these two independent processes X and X. Define N = inf{n >
1:7, = T n}, the first index of simultaneous arrivals. Note that we require not only that
arrivals happen at the same time, but that the index is the same. We can show that
P(N < o0) = 1 by invoking a result on centered random walks. In fact N is the first
time, the random walk S,, = T,, — T\n hits 0. S is not a simple random walk, but it can
be shown that it is recurrent (hence hits 0 in finite time) since E(Z; — Z;) = 0.

Now the idea is similar to the one in the coupling proof of the convergence theorem
for Markov chains. We construct a new process

A Z, ifn<N
Z, ifn>N

so that

— X ift<TN
X, ift>Ty
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Now X ~ X and we get, in fact

]P)((Yt-i-s - Yt)SZO S A) = ]P)(TN <t, ()?t-i-s - )?t)SZO € A) + ]P)(TN >, (Yt—i-s - Yt)SZO S A)
— P((Xiys — Xi)sx0 € A),

for all suitable A C {f : [0,00) — N}, since P(Ty > t) — 0.

This shows convergence of the distribution of (X;;s — X})s>0 to the distribution of X
in so-called total variation, which is actually stronger than convergence in distribution
as we claim. In particular, we can now take sets A = {f : [0,00) — N : f(s) = k} to
conclude.

For the renewal theorem, we deduce from this stronger form of convergence, that the
means of X;,, — X, converge as t — oo.

For the non-arithmetic case, the proof is harder, since N = oo, and times N. =
inf{n > 1:|T,, — T,| < €} do not achieve a perfect coupling.

There is also a proof using renewal equations.

12.4 Example

Let us investigate the asymptotics of E(E]). We condition on the last arrival time before
t and that it is the kth arrival

E(E?)

E(((ZO — t —|— Z/ Zk — t — ;L’))"‘)T)f*(k) ([L’)dl’

k>1

= E(((Zo—1)" ))+/ E(((Z1 = (t = 2))")")m/ (z)dx.
0

Let us write h(y) = E(((Z; — y)T)"). This is a clearly a nonnegative nonincreasing
function of y and can be seen to be integrable if and only if E(Z]*!) < oo (see below).
The Key Renewal Theorem gives

. L[~ _ E(Z7)
E(Et) - ;/0 h(y)dy = m
B(Zi—0)*)) = [ G-y sods= [ i+ ady
and hence

/OOOIE(((Zl—:c)J’)T)d:c - / / F(y + x)ddy
= /0 F(y)dy = E(Zifﬂ).

r+1

It is now easy to check that, in fact, these are the moments of the limit distribution LU
for the excess life Ej.



Lecture 13

M/M/1 queues and queueing
networks

Reading: Norris 5.2.1-5.2.6; Grimmett-Stirzaker 11.2, 11.7; Ross 6.6, 8.4

Consider a single-server queueing system in which customers arrive according to a
Poisson process of rate A and service times are independent Exp(u). Let X; denote the
length of the queue at time ¢ including any customer that is currently served. This is the
setting of Exercise A.4.2 and from there we recall that

e An invariant distribution exists if and only if A\ < u, and is given by
&=/ X =Ap)=p"1-p), n=0.
where p = A/ is called the traffic intensity. Cleary A < p <= p < 1. By the

ergodic theorem, the server is busy a (long-term) proportion p of the time.

e &, can be best obtained by solving the detailed balance equations. By Proposition
57, X is reversible in equilibrium.

e The embedded “jump chain” (M, )n>0, M,, = Xr,,, has a different invariant distri-
bution 7 # £ since the holding times are Exzp(\ + p) everywhere except in 0, where
they are Exp()), hence rather longer, so that X spends “more time” in 0 than M.
Hence n puts higher weight on 0, again by the ergodic theorem, now in discrete
time. Let us state more explicitly the two ergodic theorems. They assert that we
can obtain the invariant distributions as almost sure limits as n — oo

1 Ty 1 n—1
?/0 lix,—iyds = T Z Zilpn=iy — &

1 n—1
Ezl{Mk:i} — i,
k=0

for all 7 > 0, actually in the first case more generally, as t — oo where t replaces
the special choice t = T,,. Note how the holding times change the proportions as
weights in the sums, T, = Zy + ...+ Z,,_1 being just the sum of the weights.

e During any Exp(u) service time, a geom(A/(A + p)) number of customers arrives.

69



70 Lecture Notes — Part B Applied Probability — Oxford MT 2007

13.1 M/M/1 queues and the departure process
Define Dy = 0 and successive departure times
Dn+1 = 1nf{t > Dn : Xt - Xt_ = —1} n Z 0.

Let us study the process V,, = Xp_, n > 0, i.e. the process of queue lengths after depar-
tures. By the lack of memory property of Exp(\), the geometric random variables N,,,
n > 1, that record the number of new customers between D,,_; and D,,, are independent.
Therefore, (V,,),>0 is a Markov chain, with transition probabilities

AN\ u
A f—14m = , E>1,m>0.
kk—1+ <)\+,u) X+ g m

For k = 0, we get do,, = dim, m > 0, since the next service only begins when a new
customer enters the system.

Proposition 98 V' has invariant distribution &.

Proof: A simple calculation shows that with p = \/p and ¢ = /(A + p)

n+1 n+1 k
ngdk,n = £od0,n + ngdk,n = (1 — p)qn(l — q) + (1 — p)(l — q)q”‘H Z (B) =&,

keN k=1 k=1 q

after bringing the partial geometric progression into closed form and appropriate cancel-
lations. U

Note that the conditional distribution of D, 1 — D,, given V,, = k is the distribution
of a typical service time G ~ Exp(u) if & > 1 and the distribution of Y + G, where
Y ~ Ezp()) is a typical interarrival time, if £ = 0 since we have to wait for a new customer
and his service. We can also calculate the unconditional distribution of D, — D,,, at
least if V' is in equilibrium.

Proposition 99 If X (and hence V') is in equilibrium, then the D, 1 — D,, are indepen-
dent Exp(\) distributed.

Proof:  Let us first study D;. We can calculate its moment generating function by
Proposition 7 a), conditioning on Vj, which has the stationary distribution ¢:

E(eP) = E('|V, = 0)P(Vy = 0) + iE(e”D1 Vo = F)P(Vo = k)

k=1

and identify the Fxp()\) distribution.



Lecture 13: M/M/1 queues and queueing networks 71

For independence of V; and D; we have to extend the above calculation and check
that

E(eleavl): >\)\ /J/_>\)\7
— Y-«

because the second ratio is the probability generating function of the geom(\/u) station-
ary distribution £. To do this, condition on Vi ~ £ and then on D;:
E(e"a") =Y GE(a" |V = k)
k=0

and use the fact that given V; = k > 1, V; = k+N;—1, where N; ~ Poi(Az) conditionally
given D = x, because Vi is counting Poisson arrivals in an interval of length D; = x:

E(Pa |V = k) = o/*H/ E(e"P1a™|Vy = k, Dy = x) fp, (x)dx
0

= of! /OO e exp{—Az(1 —a)}fp,(x)dx
0

k—1 (y=A(1—a)D1)\ _ k—1 H
a""E(e =« )
( ) p=7+A1l-a)

For k = 0, we get the same expression without o*~! and with a factor A\/(A — ),
because D; =Y + G, where no arrivals occur during Y, and NV, is counting those during
G ~ Exp(u). Putting things together, we get

A p p
E(e"PraV1) = (1 —
(€)= M<A—7+1—m)u—v+kﬂ—ay

which simplifies to the expression claimed.

Now an induction shows D,, ;1 —D,, ~ Exp(\), and they are independent, because the
strong Markov property at D,, makes the system start afresh conditionally independently
of the past given V,,. Since D, ..., D, — D,_; are independent of V,,, they are then also
independent of the whole post-D,, process. O

The argument is very subtle, because the post-D,, process is actually not independent
of the whole pre-D,, process, just of the departure times. The result, however, is not
surprising since we know that X is reversible, and the departure times of X are the
arrival times of the time-reversed process, which form a Poisson process of rate \.

In the same way, we can study Ay = 0 and successive arrival times
An+1 = lnf{t > An : Xt - Xt— = ]_}, n Z 0.

Clearly, these also have Exp()) increments, since the arrival process is a Poisson process
with rate \. We study X4, in the next lecture in a more general setting.
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13.2 Tandem queues

The simplest non-trivial network of queues is a so-called tandem system that consists
of two queues with one server each, having independent Ezp(u;) and Exp(us) service
times, respectively. Customers join the first queue according to a Poisson process of rate
A, and on completing service immediately enter the second queue. Denote by Xt(l) the
length of the first queue at time t and by Xt(2) the length of the second queue at time ¢.

Proposition 100 The queue length process X = (X, X @) is a continuous-time Markov
chain with state space S = N? and non-zero transition rates

q(,5),3Gi+1,5) = A q(i4+1,5),3,5+1) = M1,  d(i,j+1),6,5) — H2, i,j € N.

Proof:  Just note that in state (i + 1,5 4+ 1), three exponential clocks are ticking, that
lead to transitions at rates as described. Similarly, there are fewer clocks for (0,75 + 1),
(1+1,0) and (0, 0) since one or both servers are idle. The lack of memory property makes
the process start afresh after each transition. Standard reasoning completes the proof.

O

Proposition 99 yields that the departure process of the first queue, which is now also
the arrival process of the second queue, is a Poisson process with rate A, provided that
the queue is in equilibrium. This can be achieved if A\ < p.

Proposition 101 X is positive recurrent if and only if p1 := Ay < 1 and py :== N/ ps <
1. The unique stationary distribution is then given by

Eig) = P11 = p)p(1 — p2)
i.e. in equilibrium, the lengths of the two queues at any fized time are independent.

Proof:  As shown in Exercise A.4.3, p; > 1 would prevent equilibrium for X, and
expected return times for X and X then clearly satisfy m(0,0) = m((]l) =o0. If py <1
and X is in equilibrium, then by Proposition 99, the arrival process for the second queue
is a Poisson process at rate A, and p, > 1 would prevent equilibrium for X . Specifically,
if we assume mg o < oo, then we get the contradiction oo = m(()z) < myg,0) < 00.

If pp < 1 and py < 1, € as given in the statement of the proposition is an invariant
distribution, it is easily checked that the (i 4+ 1,5 + 1) entry of £Q = 0 holds:

EGi D) 05+1),(41,5+1) T E(i2.)4(i2.). (4 1,5+1) T 41542 Ai41,5+2),(+1,5+1)
+ &1+ di+1,5+1) i+1,+1) = O

for 7,7 € N, and similar equations for states (0,7 + 1), (¢ + 1,0) and (0,0). It is unique
since X is clearly irreducible (we can find paths between any two states in N?). O

We stressed that queue lengths are independent at fized times. In fact, they are not
independent in a stronger sense, e.g. (Xs(l), Xt(l)) and (X8(2),Xt(2)) for s <t turn out to
be dependent. More specifically, consider Xs(l) — Xt(z) = n for big n, then it is easy to
see that 0 < IP(Xt(2) = O|XS(1) —xV = n) — 0 as n — oo, since at least n customers will
then have been served by server 2 also.
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13.3 Closed and open migration networks

More general queueing systems are obtained by allowing customers to move in a system of
m single-server queues according to a Markov chain on {1,...,m}. For a single customer,
no queues ever occur, since he is simply served where he goes. If there are r customers in
the system with no new customers arriving or existing customers departing, the system
is called a closed migration network. If at some (or all) queues, also new customers arrive
according to a Poisson process, and at some (or all) queues, customers served may leave
the system, the system is called an open migration network.

The tandem queue is an open migration network with m = 2, where new customers
only arrive at the first queue and existing customers only leave the system after service
from the second server. The Markov chain is deterministic and sends each customer
from state 1 to state 2: w5 = 1. Customers then go into an absorbing exit state 0, say,
20 = 1, 70,0 = 1.

Fact 102 If service times are independent Exp(uy) at server k € {1,...,m}, arrivals
occur according to independent Poisson processes of rates \g, k = 1,...,m, and depar-
tures are modelled by transitions to another server or an additional state 0, according
to transition probabilities e, then the queue-lengths process X = (XM X)) s
well-defined and a continuous-time Markov chain. Its transition rates can be given as

Qz,x+e, — )\ka Qrx—ep+ep, — METEL, Qe.z—e, = METEO

for all k0 € {1,...,m}, x = (x1,...,2y) € N™ such that x;; > 1 for the latter two,
er = (0,...,0,1,0,...,0) is the kth unit vector.

Fact 103 If X = (XU, ..., X)) models a closed migration network with irreducible

magration chain, then the total number of customers Xt(l) +...+ Xt(z) remains constant
over time, and for any such constant r, say, X has a unique invariant distribution given

by

Sx:BTHn,ﬁk, for all x € N™ such that x1 + ...+ x,, =,
k=1

where 1 1s the invariant distribution of the continuous-time migration chain and B, is a
normalising constant.

Note that & has a product form, but the queue lengths at servers £ = 1,...,m
under the stationary distribution are not independent, since the admissible z-values are
constrained by x; + ...+ x, = 7.
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Lecture 14

M/G/1 and G/M/1 queues

Reading: Norris 5.2.7-5.2.8; Grimmett-Stirzaker 11.1; 11.3-11.4; Ross 8.5, 8.7
Further reading: Grimmett-Stirzaker 11.5-11.6

The M/M/1 queue is the simplest queueing model. We have seen how it can be ap-
plied /modified in queueing networks, with several servers etc. These were all continuous-
time Markov chains. It was always the exponential distribution that described interarrival
times as well as service times. In practice, this assumption is often unrealistic. If we keep
exponential distributions for either interarrival times or service times, but allow more gen-
eral distributions for the other, the model can still be handled using Markov techniques
that we have developed.

We call M/G/1 queue a queue with Markovian arrivals (Poisson process of rate \), a
General service time distribution (we also use G for a random variable with this general
distribution on (0, 00)), and 1 server.

We call G/M/1 queue a queue with a General interarrival distribution and Markovian
service times (exponential with rate parameter p), and I server.

There are other queues that have names in this formalism. We have seen M/M/s
queues (Example 30), and also M/M /oo (queues with an infinite number of servers) —
this model is the same as the immigration-death model that we formulated at the end of
Example 58.

14.1 M/G/1 queues

An M/G/1 queue has independent and identically distributed service times with any
distributions on (0, 00), but independent Exp(\) interarrival times. Let X; be the queue
length at time ¢. X is not a continuous-time Markov chain, since the service distribution
does not have the lack of memory property (unless it is exponential which brings us back
to M/M/1). This means that after an arrival, we have a nasty residual service distribu-
tion. However, after departures, we have exponential residual interarrival distributions:
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Proposition 104 The process of queue lengths V,, = Xp, at successive departure times
D,, n >0, is a Markov chain with transition probabilities

)\ m
i j—14m = E (%ffm) , E>1,m>0,

and dy ,, = dym, m > 0. Here G is a (generic) service time.

Proof: ~ The proof is not hard since we recognise the ingredients. Given G = t the
number N of arrivals during the service times has a Poisson distribution with parameter
At. Therefore, if G has density ¢

P(N =m) = /OOO P(N = m|G = t)g(t)dt

= /OO (i\nl;ne_)‘tg(t)dt
: E0<<Aa>me_m)'

m!

If G is discrete, a similar argument works. The rest of the proof is the same as for M/M/1
queues (cf. the discussion before Proposition 98). In particular, when the departing
customer leaves an empty system behind, there has to be an arrival, before the next
service time starts. O

For the M/M/1 queue, we defined the traffic intensity p = A/, in terms of the arrival
rate A = 1/E(Y) and the (potential) service rate p = 1/E(G) for a generic interarrival
time Y ~ Exp(\) and service time G ~ Fxp(u). We say “potential” service rate, because
in the queueing system, the server may have idle periods (empty system), during which
there is no service. Indeed, a main reason to consider traffic intensities is to describe
whether there are idle periods, i.e. whether the queue length is a recurrent process.

If G is not exponential, we can interpret “service rate” as asymptotic rate. consider a
renewal process N with interrenewal times distributed as GG. By the strong law of renewal
theory N/t — 1/E(G). It is therefore natural, for the M/G/1 queue, to define the traffic
intensity as p = AE(G).

Proposition 105 Let p = AE(G) be the traffic intensity of an M/G/1 queue. If p < 1,
then V' has a unique invariant distribution €. This & has probability generating function

B e

keN

Proof: 'We define £ via its probability generating function

o(s) = ngsk =1-p@1- 5)1 — S/E(lek(s_l)G)

keN
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and note that £, = ¢(0) = 1 — p. To identify £ as solution of
j+1

§ = Zgidi,ja 7 =0,
=0

we can check the corresponding equality of probability generating functions. The prob-
ability generating function of the left-hand side is ¢(s). To calculate the probability
generating function of the right-hand side, calculate first

Z dk+17k+msm = Z E (&e—w) — E(e(s‘l)’\G),

m!
meN meN

and then we have to check that the following sum is equal to ¢(s):

j+1
DO iz = Y bodogs’ + D Y Gndist pamst
jEN =0 jeN keN meN
= E(e(S—l)AG) (50 + Z §k+13k>
keN

= E(* )57 (g(s) — (1 - p)(1 - 5).

but this follows using the definition of ¢(s). This completes the proof since uniqueness
follows from the irreducibility of V. O

14.2 Waiting times in M/G/1 queues

An important quantity in queueing theory is the waiting time of a customer. Here we have
to be specific about the service discipline. We will assume throughout that customers
queue and are served in their order of arrival. This discipline is called FIFO (First In
First Out). Other disciplines like LIFO (Last In First Out) with or without interruption
of current service can also be studied.

Clearly, under the FIFO discipline, the waiting time of a given customer depends on
the service times of customers in the queue when he arrives. Similarly, all customers in
the system when a given customer leaves, have arrived during his waiting and service
times.

Proposition 106 If X is such that V' is in equilibrium, then the waiting time of any
customer has distribution given by

vy (L=p)y
Be™) = T ey
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Proof:  Unfortunately, we have not established equilibrium of X at the arrival times
of customers. Therefore, we have to argue from the time when a customer leaves. Due
to the FIFO discipline, he will leave behind all those customers that arrived during his
waiting time W and his service time G. Given T' = W + G = t, their number N has a
Poisson distribution with parameter A\t so that

E(SN) = /OO E(3N|T = t)fT(t)dt — /OO e)xt(s—l)fT(t)dt
= Eo(e)\T(s—l)) — E(eA(S_l)W)E((S)‘(S_l)G).

From Proposition 105 we take E(s"), and putting v = A\(s — 1), we deduce the formula
required by rearrangement. O

Corollary 107 In the special case of M/M/1, the distribution of W is given by
PW=0)=1-p and PW >w)=pe #N >0

Proof: We calculate the moment generating function of the proposed distribution

670(1—p)+/ 67tp(u—)\)e‘(“‘”tdt:’u_>‘ A p=A _p=A p—y '
0 B pp— A=y o= A=y

From the preceding proposition we get for our special case

(W) = =N/ p—A (=)
Aty = A/ =) o A+ (r—7)— A

and we see that the two are equal. We conclude by the Uniqueness Theorem for moment
generating functions. O

14.3 G/M/1 queues

For G/M/1 queues, the arrival process is a renewal process. Clearly, by the renewal
property and by the lack of memory property of the service times, the queue length
process X starts afresh after each arrival, i.e. U, = X4, n > 0, is a Markov chain on
{1,2,3,...}, where A, is the nth arrival time. It is actually more natural to consider the
Markov chain U,, = (7” —1=X4,_ onN.

It can be shown that for M/M/1 queues the invariant distribution of U is the same
as the invariant distribution of V' and of X. For general G/M/1 queues we get

Proposition 108 Let p = 1/(uE(A;)) be the traffic intensity. If p < 1, then U has a
unique invariant distribution given by

gk:(l_Q)qk> kEN,

where q is the smallest positive root of ¢ = E(ea=DA),
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Proof: First note that given an interarrival time Y = y, a Poi(uy) number of customers
are served, so U has transition probabilities

Y)i . . :
Qi ip1—5 = E (%._')e—w) ;o J=0,.050 a0=1— Z Qjit1—j-
! =

Now for any geometric &, we get, for £ > 1, from Tonelli’s theorem,

(o @] o
Z Sty = Z§j+k—1@j+k—1,j

i=k—1 §=0

_ ;(1 _ q)qj-i-k—lE <(:U;'/)] 6—;LY>
= (1-¢q)¢"'E (e—uY(l—q))

and clearly this equals & = (1 — ¢)¢* if and only if ¢ = E(e#@=DY) =: f(q), as required.
Note that both sides are continuously differentiable on [0,1) and on [0, 1] if and only if
limits ¢ T 1 are finite, f(0) > 0, f(1) =1 and f'(1) = E(uY) = 1/p, so there is a solution
if p < 1, since then f(1 —¢) < 1 — ¢ for £ small enough. The solution is unique, since
there is at most one stationary distribution for the irreducible Markov chain U. The case
k = 0 can be checked by a similar computation, so £ is indeed a stationary distribution.

O

Proposition 109 The waiting time W of a customer arriving in equilibrium has distri-
bution

P(W =0)=1-gq, P(W > w) = ge *1=9% o > 0.

Proof: In equilibrium, an arriving customer finds a number N ~ £ of customers in the
queue in front of him, each with a service of G; ~ Exp(u). Clearly P(W = 0) = §y = 1—q.
Also since the conditional distribution of N given N > 1 is geometric with parameter ¢
and geometric sums of exponential random variables are exponential, we have that W
given N > 1 is exponential with parameter (1 — q). a

Alternatively, we can write this proof in formulas as a calculation of P(W > y) by
conditioning on N.

P(W >w) = ZIP’ P(W > w|N = n)

n

_ o+Zq"<1—q>/ e
0 -1
= / e "qu(l —q) Z n,u ¢l e
w n=1

= q /OO (1 — q) exp{—pz + pgr}dr = gexp{—p(l — q)y},

where we used that the sum of n independent identically exponentially distributed ran-
dom variables is Gamma distributed.
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Lecture 15

Markov models for insurance

Reading: Ross 7.10; CT4 Unit 6
Further reading: Norris 5.3

15.1 The insurance ruin model

Insurance companies deal with large numbers of insurance policies at risk. They are
grouped according to type and various other factors into so-called portfolios. Let us
focus on such a portfolio and model the associated claim processes, the claim sizes and
the reserve process. We make the following assumptions.

e Claims arrive according to a Poisson process (X;);>o with rate A.

e Claim amounts (A;);>; are positive, independent of the arrival process and identi-
cally distributed with common probability density function k(a), a > 0, and mean

e The insurance company provides an initial reserve of © > 0 money units.

e Premiums are paid continuously at constant rate ¢ generating a linear premium
income accumulating to ct at time t. We assume ¢ > Ap to have more premium
income than claim outgo, on average.

e We ignore all expenses and other influences.

In this setting, we define the following objects of interest

Xt
e The aggregate claims process C; = Z A, t>0.
n=1

e The reserve process Ry = u+ct — Cy, t > 0.
e The ruin probability ¢ (u) = P,(R; < 0 for some ¢t > 0), as a function of Ry = u > 0.
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15.2 Aggregate claims and reserve processes

Proposition 110 C' and R have stationary independent increments. Their moment
generating functions are given by

E(e?") = exp {)\t /Ooo(ew — 1)k(a)da}

and
E(ef) = exp {6u + Bet — At /00(1 - e‘ﬁa)k(a)da} :
0

Proof: First calculate the moment generating function of Cy:

(e 5))

— ZE (exp {7 ‘ Aj}> P(X; =n)
= Z (E (eVAl))nIP’(Xt =n)

neN

— exp {M (E (1) — 1)}

which in the case where A; has a density k, gives the formula required. The same calcu-
lation for the joint moment generating function of C; and Cy, s — C, or more increments,
yields stationarity and independence of increments (only using the stationarity and in-
dependence of increments of X, and the independence of the (A4;);>1).

The statements for R follow easily with g = —~. O

E(e”’cf)

The moment generating function is useful to calculate moments.

Example 111 We differentiate the moment generating functions at zero to obtain

—xn2E ()] =t

B(C) = - e {4 (B () - 1)} 5

oy

~v=0 ~=0

and E(R;) = u+ ct — Mp = u+ (¢ — Ap)t. Note that the Strong Law of Large Numbers,
applied to increments Z,, = R, — R,,_ yields

R, u 1
7:;+gZIZjHE(ZI):C_A“>O a.s., as n — 00.
‘]:

confirming our claim that ¢ > Ay means that, on average, there is more premium income
than claim outgo. In particular, this implies R, — oo a.s. as n — oo. Does this imply
that inf{R, : 0 < s < 0o} > —00? No. It is conceivable that between integers, the reserve
process takes much smaller values. But we will show that inf{R; : 0 < s < oo} > —o0.
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There are other random walks that are embedded in the reserve process:

Example 112 Consider the process at claim times W,, = Ry, , n > 0, where (T},),>0 are
the event times of the Poisson process (and Ty = 0). Now

Wn+1 - Wn = RTn+1 - RT

n

= C(Tn+1 - Tn) - An+17 n > 07

are also independent identically distributed increments with E(W,,,1—W,,) = ¢/A—pu > 0,
and the Strong Law of Large Numbers yields

n u

7:_+EZ<WTL+1_WH)HC>\_M a.s. as n — oo.

Again, we conclude W,, — oo, but note that W,, are the local minima of R, so
Io :=inf{R;: 0 <t < oo} =inf{W,,n >0} > —o0.
As a consequence, if we denote RY = ct — C; with associated 12, then
Y(u) =P, (R; < 0 for some t > 0) =P(I2 < —u) — P(I2, = —00) =0

as u — 00, but this is then ¢ (oc0) = 0.

15.3 Ruin probabilities

We now turn to studying the ruin probabilities 1 (u), u > 0.

Proposition 113 The ruin probabilities 1) (u) satisfy the renewal equation

/'QD[L'— dy7 fZOa

Proof:  Condition on T} ~ Exp(A) and A; ~ k(a) to obtain

P(x) = / / (x4 ct — a)k(a)dare ™ dt

:/ s“/c/ (s — a)k(a)dads

where we use the convention that i(x) =1 for z < 0.
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Differentiation w.r.t. x yields

vu>=:3wm»—5/wwm—aMWMa

= %1# ——/wx—a da—éK()

Note that we also have a terminal condition 9 (co) = 0. With this terminal condition,
this integro-differential equation has a unique solution. It therefore suffices to check that
any solution of the renewal equation also solves the integro-differential equation.

For the renewal equation, we only sketch the argument since the technical details
would distract from the main steps: note that differentiation (we skip the details for
differentiation under the integral sign!) yields (setting s = = — y in the convolution
integral)

W) = @)+ @)+ [ o) =i
- —%K@»+;w@»—gl/wx—ammm%

and note also that, with the convention ¢ (z) = 1 for x < 0, we can write the renewal

equation as
= [ wta s,

where f is a nonnegative function with fooo f(y)dy = Aec < 1, so for any nonnegative
solution ¥ > 0, ¢(x) is less than an average of ¢ on (—o0, x|, and hence 1) is decreasing
(this requires a bit more care), so 1(o0) exists with (by monotone convergence using

Ul — ) L (00) as = — o0)
w(o0) = lim [ wle =)ty = [ w(o0) flu)dy = 2uie) = w(o0) =

O

Example 114 We can calculate 1(0) = g(0) = Ap/c. In particular, zero initial reserve
does not entail ruin with probability 1. In other words, ¢ jumps at u = 0 from ¥(0—) = 1

to (0) = ¢(0+) = Ap/c < 1.

Corollary 115 If Au < ¢, then v is given by

P(x) = g(x) + /0 Cga—yulpdy  where u(y) = >y

n>1

Proof: This is an application of Exercise A.6.2(c), the general solution of the renewal
equation. Note that f is not a probability density for A\u < ¢, but the results (and
arguments) are valid for nonnegative f with [° f(y)dy < 1. O
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Where is the renewal process? For Ay < ¢, there is no renewal process with interarrival
density f in the strict sense, since f is not a probability density function. One can
associate a defective renewal process that only counts a geometric number of points, and
the best way to motivate this is by looking at Ap = ¢, where the situation is nicer. It can
be shown that the renewal process is counting new minima of R or R°, not in the time
parameterisation of R°, but in the height variable, i.e.

Yy = #{n>1:W, € [-h,0] and W, = min{Wy,...,W,}},  h>0,

is a renewal process. Note that f is the distribution of LU where L is a size-biased claim
and U ~ Unif(0,1). Intuitively, this is, because big claims are more likely to exceed the
previous minimal reserve level, hence size-biased L, but the previous level will only be
exceeded by a fraction LU, since R will not be at its minimum when the claim arrives.

So what happens if A < ¢? There will only be a finite number of claims that exceed
the previous minimal reserve level since now R; — oo, and Y remains constant for any
lower levels of h.

This is not very explicit. To conclude, let us derive more explicit estimates of ).

Proposition 116 Assume that there is o > 0 such that

o0 A o0 -~
- / e f(y)dy = 2 / eV (y)dy.

Cc

Then there is a constant C > 0 such that

P(x) ~ Ce " as r — 00.

Proof:  Define a probability density function f (y) = e* f(y), and g(y) = e*Yg(y) and
Y(x) = e®p(x). Then () satisfies

~

Be) = (o) + / b — ) f)dy.

The solution (obtained as in Corollary 115) converges by the key renewal theorem:

~ R T ) ) 1 o] A
i@ =g0)+ [ s ity — 5 [Tat =0 wsa -,
0 0
where

i@) = 3 ).

n>1

Note that g is not necessarily non-increasing, but it can be checked that it is integrable,
and a version of the key renewal theorem still applies. O
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Example 117 If A, ~ Exp(1/p), then in the notation of Proposition 113

gr) = Mol and f(y) = e

so that the renewal equation becomes
- A A [T
eia) =L 4 2 [ iigernay
0

In particular ¢(0) = Ap/c. After differentiation and cancellation

V= (3-1)uw = e = Lep{- ¥l

c W cp

15.4 Some simple finite-state-space models

Example 118 (Sickness-death) In health insurance, the following model arises. Let
S = {H,S, A} consist of the states healthy, sick and dead. Clearly, A is absorbing. All
other transitions are possible, at different rates. Under the assumption of full recovery
after sickness, the state of health of the insured can be modelled by a continuous-time
Markov chain.

Example 119 (Multiple decrement model) A life assurance often pays benefits not
only upon death but also when a critical illness or certain losses of limbs, sensory losses
or other disability are suffered. The assurance is not usually terminated upon such an
event.

Example 120 (Marital status) Marital status has a non-negligible effect for various
insurance types. The state space is S = {B, M, D, W, A} to model bachelor, married,
divorced, widowed, dead. Not all direct transitions are possible.

Example 121 (No claims discount) In automobile and some other general insurances,
you get a discount on your premium depending on the number of years without (or at most
one) claim. This gives rise to a whole range of models, e.g. S = {0%, 20%, 40%, 50%, 60%}.

In all these examples, the exponential holding times are not particularly realistic.
There are usually costs associated either with the transitions or with the states. Also, es-
timation of transition rates is of importance. A lot of data are available and sophisticated
methods have been developed.



Lecture 16

Conclusions and Perspectives

16.1 Summary of the course

This course was about stochastic process models X = (X;);>o in continuous time and
(mostly) a discrete state space S, often N. Applications include those where X describes

e counts of births, atoms, bacteria, visits, trials, arrivals, departures, insurance claims,
etc.

e the size of a population, the number of buses in service, the length of a queue

and others can be added. Important is the real structure, the real transition mecha-
nism that we wish to model by X. Memory plays an important role. We distinguish

e Markov property (lack of memory, exponential holding times; past irrelevant for
the future except for the current state)

e Renewal property (information on previous states irrelevant, but duration in state
relevant; Markov property at transition times)

e Stationarity, equilibrium (behaviour homogeneous in time; for Markov chains, in-
variant marginal distribution; for renewal processes, stationary increments)

e Independence (of individuals in population models, of counts over disjoint time
intervals, etc.)

Once we are happy that such conditions are met, we have a model X for the real
process, and we study it under our model assumptions. We study

e different descriptions of X (jump chain - holding times, transition probabilities -
forward-backward equations, infinitesimal behaviour)

e convergence to equilibrium (invariant distributions, convergence of transition prob-
abilities, ergodic theorem; strong law and CLT of renewal theory, renewal theorems)

e hitting times, excess life, recurrence times, waiting times, ruin probabilities

87
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e odd behaviour (explosion, transience, arithmetic interarrival times)
Techniques

e Conditioning, one-step analysis

e detailed balance equations

e algebra of limits for almost sure convergence

16.2 Duration-dependent transition rates

Renewal processes can be thought of as duration-dependent transition rates. If the in-
terarrival distribution is not exponential, then (at least some) residual distributions will
not be the same as the full interarrival distribution, but we can still express, say for Z
with density f that

P(Z —t>s|Z>t) = % and fz—z>4(8) = %
If we define
_ ) _—F
) = P(Z>t) F(t)

where F(t) = P(Z > t) and in particular F(0) = 1, we can write

F(t) :exp{— /0 t )\(s)ds} and  f(t) = A1) exp{— /0 t A(s)ds}.

We can then also express the residual distributions in terms of A(s)

P(Z—t>s|Z>1) = exp {—/tHS)\(r)dr} |

A(t) can be interpreted as the instantaneous arrival rate time ¢ after the previous arrival.
Similarly, we can use this idea in Markov models and split a holding rate \;(d) depending
on the duration d of the current visit to state 7 into transition rates Ai(d) = >_,_; ¢i;(d).

16.3 Time-dependent transition rates

A different type of varying transition intensities is obtained if we make the rates A(t)
dependent on global time t. Here, the time passed in a given state is irrelevant, but only
the actual time matters. This is useful to model seasonal effects. E.g. the intensity of
road accidents may be considered higher in winter than in summer. So, a Poisson process
to model this could have intensity A(t) = Ao + Ay cos(27t). This can also be built into
birth- and death-rates of population models, insurance models etc.
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16.4 Spatial processes

In the case of Poisson counts, one can also look at intensity functions on R? or R? and
look at “arrivals” as random points in the plane.

N([0,4] x [0, 2]) = X (£, 2) ~ Poi ( /0 t /0 A, y)dyds)

and such that counts in disjoint rectangles are independent Poisson variables.

16.5 Markov processes in uncountable state spaces
(R or RY)

We have come across some processes for which we could have proved a Markov property,
the age process (A;);>o of a renewal process, the excess process (E;);>o of a renewal pro-
cess, but also the processes (Cp)i>o and (R:)i>o with stationary independent increments
that arose in insurance ruin by combining Poisson arrival times with jump sizes. A sys-
tematic study of such Markov processes in R is technically much harder, although many
ideas and results transfer from our countable state space model.

Diffusion processes as a special class of such Markov processes are studied in a Finance
context in B10b, in the context of Stochastic Differential Equations in a Part C course,
and in a Genetics context in another Part C course.

16.6 Lévy processes

A particularly nice class of processes are processes with stationary independent incre-
ments, so-called Lévy processes. If you have learned or are about to learn about Brown-
ian motion in another course (B10b), then you know most Lévy processes since a general
Lévy process can be written as X; = ut + 0B; + Cy where p is a drift coefficient, o
a scale parameter for the Brownian motion process B, and C' is a limit of compound
Poisson processes like the claim size process above. In fact, C' may have infinitely many
jumps in a finite interval, that are summable in some sense, but not necessarily absolutely
summable, but these jumps can bedescribed by a family of independent Poisson processes
with associated independent jump heights, in fact a Poisson measure on [0, c0) x R* with
intensity function ...
There is a Part C course on Lévy processes in Finance.

16.7 Stationary processes

We have come across stationary Markov chains and stationary increments of other pro-
cesses. Stationarity is a concept that can be studied separately. In our examples, the
dependence structure of processes was simple: independent increments, or Markovian
dependence, independent holding times etc. More complicated dependence structures
may be studied.
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16.8 4th year dissertation projects

Other than this, if you wish to study any of the stochastic processes or the applications
more deeply in your fourth year, there are several people in the Statistics Department
and the Mathematical Institute who would be willing to supervise you. Think about
this, maybe over the Christmas vacations since the Easter vacations are close to the
exams. Dissertation projects for Maths&Stats students are arranged before the summer
to ensure that every student obtains a project well in advance, you can start working on
your project during the summer. For Maths students dissertation projects are optional.
Please get in touch with me or other potential supervisors in Hilary term, if you wish to
discuss your possibilities. I am also happy to direct you to other people.



