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Course webpage:
http://www.stats.ox.ac.uk/~teh/smldm.html

Lecturer: Yee Whye Teh
TA for Part C: Thibaut Lienant
TA for MSc: Balaji Lakshminarayanan and Maria Lomeli

Please subscribe to Google Group:
https://groups.google.com/forum/?hl=en-GB#! forum/smldm

Sign up for course using sign up sheets.

Course Structure

Lectures

» 1400-1500 Mondays in Math Institute L4.
» 1000-1100 Wednesdays in Math Institute L3.
Part C:
» 6 problem sheets.
» Classes: 1600-1700 Tuesdays (Weeks 3-8) in 1 SPR Seminar Room.
» Due Fridays week before classes at noon in 1 SPR.
MSc:
4 problem sheets.
Classes: Tuesdays (Weeks 3, 5, 7, 9) in 2 SPR Seminar Room.
Group A: 1400-1500, Group B: 1500-1600.
Due Fridays week before classes at noon in 1 SPR.
Practical: Week 5 and 7 (assessed) in 1 SPR Computing Lab.
Group A: 1400-1600, Group B: 1600-1800.
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Course Aims

1. Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2. Have ability to identify and use appropriate methods and models for given
data and task.

3. Understand the statistical theory framing machine learning and data
mining.

4. Able to construct appropriate models and derive learning algorithms for
given data and task.



What is Machine Learning?

What's out there?
How does world work?
What's going to happen?
What should i do?
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What is Machine Learning?
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What is the Difference?

Traditional Problems in Applied Statistics
Well formulated question that we would like to answer.

Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

» Improvements in computers and data storage devices.
» Powerful data capturing devices.

» Lots of data with potentially valuable information available.



What is the Difference?

Data characteristics
» Size
» Dimensionality
Complexity
Messy
Secondary sources
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Focus on generalization performance

» Prediction on new data
» Action in new circumstances
» Complex models needed for good generalization.

Computational considerations

» Large scale and complex systems

Applications of Machine Learning

» Pattern Recognition
RS g
=

Sorting Cheques

Reading License Plates

Sorting Envelopes

Eye/ Face/ Fingerprint Recognition
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Applications of Machine Learning

» Business applications

» Help companies intelligently find information

» Credit scoring

» Predict which products people are going to buy
» Recommender systems

» Autonomous trading

» Scientific applications

» Predict cancer occurence/type and health of patients/personalized health
» Make sense of complex physical, biological, ecological, sociological models

Further Readings, News and Applications

Links are clickable in pdf. More recent news posted on course webpage.

>
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Leo Breiman: Statistical Modeling: The Two Cultures

NY Times: R

NY Times: Career in Statistics

NY Times: Data Mining in Walmart

NY Times: Big Data’s Impact In the World

Economist: Data, Data Everywhere

McKinsey: Big data: The Next Frontier for Competition

NY Times: Scientists See Promise in Deep-Learning Programs

New Yorker: Is “Deep Learning” a Revolution in Artificial Intelligence?



Types of Machine Learning

Unsupervised Learning
Uncover structure hidden in ‘unlabelled’ data.
» Given network of social interactions, find communities.

» Given shopping habits for people using loyalty cards: find groups of
‘similar’ shoppers.

» Given expression measurements of 1000s of genes for 1000s of patients,
find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.

Types of Machine Learning

Supervised Learning
A database of examples along with “labels” (task-specific).
» Given network of social interactions along with their browsing habits,
predict what news might users find interesting.

» Given expression measurements of 1000s of genes for 1000s of patients
along with an indicator of absence or presence of a specific cancer,
predict if the cancer is present for a new patient.

» Given expression measurements of 1000s of genes for 1000s of patients
along with survival length, predict survival time.

Goal: Prediction on new examples.

Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize its reward.

OxWaSP

Oxford-Warwick Centre for Doctoral Training in Statistics

» Programme aims to produce EuropeOs future research leaders in
statistical methodology and computational statistics for modern
applications.

» 10 fully-funded (UK, EU) students a year (1 international).
» Website for prospective students.
» Deadline: January 24, 2014



Exploratory Data Analysis

Notation

» Data consists of p measurements (variables/attributes) on n examples
(observations/cases)

» Xis an x p-matrix with X;; := the j-th measurement for the i-th example

X1 X12o... Xjoo..e. Xip
X21 X220 ... .)Czj e x2p
X =
Xi1 Xi2 e X e Xip
L Xnl Xn2 oer Xy oo Xpp o

» Denote the ith data item by x; € R”. (This is transpose of ith row of X)

» Assume xi,...,x, are independently and identically distributed
samples of a random vector X over R”.

Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on:

» the width of the frontal lobe FL,
» the rear width rRW,
» the length along the carapace midline C1,,
» the maximum width cw of the carapace, and
» the body depth BD in mm.
in addition to colour (species) and sex.

Crabs Data |

## load package MASS containing the data

library (MASS)
## look at data
crabs

## assign predictor and class variables
Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs[,1l],crabsl[,?2]

## various plots
boxplot (Crabs)

hist (Crabs$FL,col='red’
hist (Crabs$RW, col='red’
hist (Crabs$CL, col='red’
hist (Crabs$CW,col='red’
(

, Sep=" ll) )

hist (Crabs$BD, col='red’,breaks=20, xname='Body Depth
plot (Crabs, col=unclass (Crabs.class))

parcoord (Crabs)

Crabs data

sp sex index
1 B M 1
2 B M 2
3 B M 3
4 B M 4
5 B M 5
6 B M 6
7 B M 7
8 B M 8
9 B M 9
10 B M 10
11 B M 11
12 B M 12
13 B M 13
14 B M 14
15 B M 15
16 B M 16
17 B M 17
18 B M 18
19 B M 19
20 B M 20
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,breaks=20, xname='Frontal Lobe Size (mm)
,breaks=20, xname="Rear Width
,breaks=20, xname='Carapace Length (mm)’)
,breaks=20, xname='Carapace Width (mm)’)

(mm) ")

(mam) ")

")
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Univariate Boxplots
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Univariate Histograms
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Simple Pairwise Scatterplots
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Parallel Coordinate Plots
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Visualization and Dimensionality Reduction

These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Visualizing higher-dimensional problems:

» We are constrained to view data in 2 or 3 dimensions
» Look for ‘interesting’ projections of X into lower dimensions

» Hope that for large p, considering only k < p dimensions is just as
informative.

Dimensionality reduction
» For each data item x; € R”, find a lower dimensional representation
7 € REwith k < p.

» Preserve as much as possible the interesting statistical
properties/relationships of data items.
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Principal Components Analysis (PCA)

» PCA considers interesting directions to be those with greatest variance.
» A linear dimensionality reduction technique:
» Finds an orthogonal basis vi,vs, ..., v, for the data space such that

» The first principal component (PC) v, is the direction of greatest variance of
data.

» The second PC v, is the direction orthogonal to v, of greatest variance, etc.

» The subspace spanned by the first kK PCs represents the 'best’ k-dimensional
representation of the data.

» The k-dimensional representation of ; is:

k
T T
z=V xi= g Ve Xi
/=1
where V € RP¥,

» For simplicity, we will assume from now on that our dataset is centred, i.e.
we subtract the average x from each x;.
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Principal Components Analysis (PCA)
» Our data set is an iid sample of a random vector X = [X; ...X,
» For the 1 PC, we seek a derived variable of the form
Zy =vuXi +vXo + -+ vpX, = v X
where v; = [vi1,...,vi,] | € R? are chosen to maximise
Var(Z,).
To get a well defined problem, we fix

v]Tvl =1.

» The 2" PC is chosen to be orthogonal with the 1* and is computed in a
similar way. It will have the largest variance in the remaining p — 1
dimensions, etc.

27

Principal Components Analysis (PCA)

28



Deriving the First Principal Component
» Maximise, subject to v/ v; = 1:

Var(Z;) = Var(v{ X) = v, Cov(X)v; = v Sv,
where § € RP*? is the sample covariance matrix, i.e.

1 < i} _ 1 < 1
S= Z(xi ) —x)" = leix? = mXTX.

n—1< n—1~4

» Rewriting this as a constrained maximisation problem,
ﬁ(Vl,Al) = VIFS\)l — )\1 (v,Tv1 — 1) .

» The corresponding vector of partial derivatives yields
8£(v17 )\1)

=25vi — 2\,
oy Vi 11

» Setting this to zero reveals the eigenvector equation, i.e. v must be an
eigenvector of S and A, the corresponding eigenvalue.

» Since v] Sv; = A\1v/ v; = Ay, the 1 PC must be the eigenvector
associated with the largest eigenvalue of S.
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Deriving Subsequent Principal Components

» Proceed as before but include the additional constraint that the 2% PC
must be orthogonal to the 1* PC:

L (va, Ao, 1) = v;rsz -\ (v;vz - 1) — (vrvz) .

» Solving this shows that v, must be the eigenvector of S associated with
the 2" largest eigenvalue, and so on

» The eigenvalue decomposition of S is given by
S=vVAV'
where A is a diagonal matrix with eigenvalues
AMZ>ZN>>2N2>0

and V is a p x p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components vy, ..., v,.
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Properties of the Principal Components

» PCs are uncorrelated

Cov(X "vi,XTv)) = v/ Sv; = 0fori #j.
» The total sample variance is given by
P
ZS”':/\I SERNIDW
i=1
so the proportion of total variance explained by the " PC is

Ak
)\1+)\2+...+)\p

k=1,2,...,p

» Sis a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.

> Derived variables Z, ..., Z, have variances A;,..., \,.
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R code

This is what we have had before:

library (MASS)

Crabs <- crabs[,4:8]

Crabs.class <- factor (paste(crabs[,1l],crabs[,2],sep=""))
plot (Crabs, col=unclass (Crabs.class))

Now perform PCA with function princomp. (Alternatively, solve for the PCs
yourself using eigen or svd).

Crabs.pca <- princomp (Crabs, cor=FALSE)
plot (Crabs.pca)
pairs (predict (Crabs.pca),col=unclass (Crabs.class))

32



PC2vs PC3

Original Crabs Data
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PCA on Face Images

PCA of Crabs Data

36

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html
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PCA on European Genetic Variation
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Comments on the use of PCA

v

v

v

v

PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two moments.

Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

PCA commonly used for lossy compression of high dimensional data.
Emphasis on variance is where the weaknesses of PCA stem from:

» The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from Corr(X) instead of Cov(X).

» Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.
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Eigenvalue Decomposition (EVD)

Eigenvalue decomposition plays a significant role in PCA. PCs are
eigenvectors of § = nTIIXTX and PCA properties are derived from those of
eigenvectors and eigenvalues.

» For any p x p symmetric matrix S, there exists p eigenvectors v, ..., v,
that are pairwise orthogonal and p associated eigenvalues A, ..., A,
which satisfy the eigenvalue equation Sv; = \v; Vi.

> S can be written as S = VAV where

» V=|v,...,v]isap x p orthogonal matrix
» A=diag{\i,..., N}
» If S'is a real-valued matrix, then the eigenvalues are real-valued as well,
N € RV
» To compute the PCA of a dataset X, we can:

» First estimate the covariance matrix using the sample covariance S.
» Compute the EVD of S using the R command eigen.

39

Singular Value Decomposition (SVD)

Though the EVD does not always exist, the singular value decomposition is
another matrix factorization technique that always exist, even for non-square
matrices.
» X can be written as X = UDV " where
» U is an n x n matrix with orthogonal columns.
» Dis an x p matrix with decreasing non-negative elements on the diagonal
(the singular values) and zero off-diagonal elements.
» Vis ap x p matrix with orthogonal columns.
» SVD can be computed using very fast and numerically stable algorithms.
The relevant R command is svd.

40



Some Properties of the SVD

» Let X = UDVT be the SVD of the n x p data matrix X.
» Note that

(n—1)S=X"X=(upv")"(UDV")=VvD"U"UDV" =VD "DV,

using orthogonality (UTU = 1,,) of U.
1

» The eigenvalues of S are thus the diagonal entries of -5 D* and the

columns of the orthogonal matrix V are the eigenvectors of S.
» We also have

XX = (upvT)(upv")T =upv VD UT = UDDTUT,

using orthogonality (V'V =1,) of V.
» SVD also gives the optimal low-rank approximations of X:

min || X — X|*>  s.t. X has maximum rank r < n, p.
X

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.

41

Biplots

» PCA plots show the data items (as rows of X) in the PC space.

» Biplots allow us to visualize the original variables (as columns X) in the
same plot.

» As for PCA, we would like the geometry of the plot to preserve as much
of the covariance structure as possible.

42

Biplots

Recall that X = [X;,...,X,]" and X = UDV" is the SVD of the data matrix.
» The PC projection of x; is:

2=V 'x;=DU = [DnUy,...,DuUs]".

» The jth unit vector e; € R? points in the direction of X;. Its PC projection is
V" = Ve, the jth row of V.

» The projection of the variable indicates the weighting each PC gives to
the original variables.

» Dot products between the projections gives entries of the data matrix:

p
xij = Z U,'kaijk = (DUIT, VJT>
k=1

» Distance of projected points from projected variables gives original
location.
» These relationships can be plotted in 2D by focussing on first two PCs.

43

Biplots
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Biplots

» There are other projections we can consider for biplots:

14
xj =Y UaDuVy = (DU, V) = (D'~U[ , D*V]").
k=1
where 0 < a < 1. The a = 1 case has some nice properties.
» Covariance of the projected points is:

1 n - 1
. i = I.
PR e

i=1

Projected points are uncorrelated and dimensions are equi-variance.
» The covariance between X; and X, is:

1
Var(X;X;) = —1<DVJ-T,DVJ )
n—
So the angle between the projected variables gives the correlation.

» When using k& < p PCs, quality depends on the proportion of variance
explained by the PCs.
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Biplots
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pc <- princomp (x)
biplot (pc, scale=0)
biplot (pc,scale=1)
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Iris Data

50 sample from 3 species of iris: iris setosa,

versicolor, and virginica

Each measuring the length and widths of

both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.

irisl <- iris
irisl <- irisl[,-5]

biplot (princomp (irisl, cor=T))

Iris Data
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests,cor=T)
plot (usarrests.pca)

pairs (predict (usarrests.pca))
biplot (usarrests.pca)

US Arrests Data Pairs Plot
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US Arrests Data Biplot
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Multidimensional Scaling

Suppose there are n points X in R”, but we are only given the n x n matrix D of
inter-point distances.

Can we reconstruct X?
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Multidimensional Scaling

Rigid transformations (translations, rotations and reflections) do not change
inter-point distances so cannot recover X exactly. However X can be
recovered up to these transformations!

» Letd; = ||x; — x;|» be the distance between points x; and x;.
dy = |x—xl3

= (x— xj)T(x,- )]

T T A T
= X X+Xx—2x

» Let B = XX be the n x n matrix of dot-products, b; = x; x;. The above
shows that D can be computed from B.

» Some algebraic exercise shows that B can be recovered from D if we
assume Y ", x; = 0.
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Multidimensional Scaling

» If we knew X, then SVD gives X = UDV". As X has rank k = min(n, p),
we have at most k singular values in D and we can assume U € R"*,
D e RFPand vV € RP¥P,

» The eigendecomposition of B is then:

B=XX' =UDD'U" = UAU".

» This eigendecomposition can be obtained from B without knowledge of X!
» Letx = U;A> be the ith row of UA2. Pad %; with Os so that it has length p.

T~ T _ _ T
X; XJ—U,AIJJ —bij—x,- Xj

and we have found a set of vectors with dot-products given by B.

» The vectors x; differs from x; only via the orthogonal matrix V so are
equivalent up to rotation and reflections.
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US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric
MDS finds a configuration with the same distance matrix.

ATLA CHIG DENV HOUS LA MIAM NY SFE SEAT DC

0 587 1212 701 1936 604 748 2139 2182 543
587 O 920 940 1745 1188 713 1858 1737 597
1212 920 O 879 831 1726 1631 949 1021 1494
701 940 879 O 1374 968 1420 1645 1891 1220
1936 1745 831 1374 O 2339 2451 347 959 2300
604 1188 1726 968 2339 O 1092 2594 2734 923
748 713 1631 1420 2451 1092 0 2571 2408 205
2139 1858 949 1645 347 2594 2571 O 678 2442
2182 1737 1021 1891 959 2734 2408 678 O 2329

543 597 1494 1220 2300 923 205 2442 2329 O
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US City Flight Distances

library (MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/smldm/data/uscities.csv")

## use classical MDS to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale (d=us, k=2)

plot (us.classical)
text (us.classical, labels=names (us))
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US City Flight Distances
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Lower-dimensional Reconstructions

In classical MDS derivation, we used all eigenvalues in the
eigendecomposition of B to reconstruct

)~Cl' == Ul’Ai.
We can use only the largest k < min(n, p) eigenvalues and eigenvectors in the
reconstruction, giving the ‘best’ k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of XX are
used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same
result.
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Crabs Data

library (MASS)
Crabs <- crabs/[,4:8]
Crabs.class <- factor (paste(crabs[,1l],crabs[,2],sep=""))

crabsmds <- cmdscale (d= dist (Crabs),b k=2)
plot (crabsmds, pch=20, cex=2,col=unclass (Crabs.class))
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Crabs Data

Compare with previous PCA analysis.
Classical MDS solution corresponds to the first 2 PCs.

Comp.1

Comp.s
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Example: Language data
Presence or absence of 2867 homologous traits in 87 Indo-European
languages.
> X[1:15,1:16]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V1l V12 V13

Irish A o 0 0 0 1 0 0 0 O 0 0 0 0
Irish B o 0 0 0 1 0 0 0 O 0 0 0 0
Welsh_N o 0 0 1 0 0 0 0 O 0 0 0 0
Welsh_C o 0 0 1 0 o0 0 0 O 0 0 0 0
Breton_List o 0 0 0 1 0 0 0 O 0 0 0 0
Breton_SE o 0 0 0 1 0 0 0 O 0 0 0 0
Breton_ST o 0 0 0 1 0 0 0 O 0 0 0 0
Romanian_List o 1 0 0 0 0 0 o0 O 0 0 0 0
Vlach o 1 0 0O O O 0 0 O 0 0 0 0
Italian o 1 0 0 O O 0 0 O 0 0 0 0
Ladin o 1 0 0 O 0O 0 0 O 0 0 0 0
Provencal o 1 0 0 0O 0O 0 0 O 0 0 0 0
French o 1 0 o0 0O o0 0 0 O 0 0 0 0
Walloon 0o 1 0 0O O O 0 0 O 0 0 0 0
French_Creole_C 0 1 0 O O O O 0 O 0 0 0 0
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Example: Language data
Using MDS with non-metric scaling.
& Panjabi_sf> Gypsy_Gk
OBengall  (ylahnda sk Ossetic
o | O Gujarati ¢ Hindi H T o it
° & Nepslicyptara < Singhalese Ao
¢ ORI pmenianki Bl ¥
< | ® Armenian_Mod * Wakhi
IS & Albanian_K
S Abanian C o Macedorian
o @ Albanian_T A Catalan
S 4 Albanian_Top X Czech E X;“f::;?;nge{mcmﬁ“a" A Sardinian_N A Provencal
X Ukrainian - A Ladin A Fren
& Abanian_@ « Gaeoh A Sardinian G A Frencly
o | X Byelorussigfbvak X Slovenian A Sardinjgngliian & Walloon
o « Poidh Russian
@ HITTITE v & Spynih Poru
« X Lithuanian_O A Romanian_List
c|>' - ® TOCHARIAN;Limuamgglsa-{wan
< | + Frisian . R B&g‘:’%"g’;g
< v Greek $iBreek_K + Danish T F‘Eh‘s‘ﬁ:ka’a:
S v Greerctiod FaroeseJr G o lrish_B
T + ‘CE“EWM'ML@E%E@QIMM 0 Irish_A
T T T
-0.5 0.0 0.5
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Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which
represents data points xy, ..., x, € R? in a lower-dimensional space
21, .. .,2, € RF which tries to preserve inter-point (dis)similarities.

» |t requires only the matrix D of pairwise dissimilarities
dij = d(xi,dj).

For example we can use Euclidean distance d; = ||x; — xj||». Other
dissimilarities are possible. Conversely, it can use a matrix of similarities.

» MDS finds representations z;, ..., z, € R¥ such that

d(xi, %) ~ dyj = d(z;,3}),

where d represents dissimilarity in the reduced k-dimensional space, and
differences in dissimilarities are measured by a stress function S(d;;, d;;).
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Varieties of MDS

Choices of (dis)similarities and stress functions lead to different objective
functions and different algorithms.
» Classical - preserves similarities instead

S(Z)=> (si— (2 —%75—2)

i#j
» Metric Shepard-Kruskal
S(Z) = (dyj— llzi — 3ll2)*

i#j
» Sammon - preserves shorter distances more

(dj — llzi — zill2)?
S(z)y=y L= S
D=2
i#] ’
» Non-Metric Shepard-Kruskal - ignores actual distance values, only ranks

Z = 1 ) — Lz 2
S8) = i g 2(6005) ~ I =51
7]
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:

» To visualize the (dis)similarities among items in a dataset, where these
(dis)disimilarities may not have Euclidean geometric interpretations.

» To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).

high-dim distribution high-dim samples estimated manifold
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Isomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs in its estimate of distances d;.

1. Calculate distances d;; for i,j = 1,...,n between all data points, using the
Euclidean distance.

2. Form a graph G with the n samples as nodes, and edges between the
respective K nearest neighbours.

3. Replace distances d;; by shortest-path distance on graph dijG- and perform
classical MDS, using these distances.

A

Examples from Tenenbaum et al. (2000).
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Handwritten Characters

B Bottom loop articulation

Top arch articulation

W
&
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Other Nonlinear Dimensionality Reduction Techniques

» Locally Linear Embedding.
» Laplacian Eigenmaps.
» Maximum Variance Unfolding.

Neural Electroencephalography (EEG)

http://newton.umsl.edu/tsytsarev_files/Lecture02.htm 70
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Clustering

» Many datasets consist of multiple heterogeneous subsets. Cluster
analysis is a range of methods that reveal this heterogeneity by
discovering clusters of similar points.

» Model-based clustering:

» Each cluster is described using a probability model.

» Model-free clustering:

» Defined by similarity among points within clusters (dissimilarity among points
between clusters).

» Partition-based clustering methods:

» Allocate points into K clusters.
» The number of cluster is usually fixed beforehand or investigated for various
values of K as part of the analysis.

» Hierarchy-based clustering methods:

» Allocate points into clusters and clusters into super-clusters forming a
hierarchy.

» Typically the hierarchy forms a binary tree (a dendrogram) where each
cluster has two “children”.
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Hierarchical Clustering

» Hierarchically structured data can be found everywhere (measurements
of different species and different individuals within species), hierarchical
methods attempt to understand data by looking for clusters.

» There are two general strategies for generating hierarchical clusters.
Both proceed by seeking to minimize some measure of dissimilarity.

» Agglomerative / Bottom-Up / Merging

» Divisive / Top-Down / Splitting
Hierarchical clusters are generated where at each level, clusters are
created by merging clusters at lower levels. This process can easily be
viewed by a dendogram/tree.
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Measuring Dissimilarity
To find hierarchical clusters, we need some way to measure the dissimilarity
between clusters

» Given two points x; and x;, it is straightforward to measure their
dissimilarity, say d(x;, x;) = ||lxi — x|

» It is unclear however how to extend this to measure dissimilarity between
clusters, D(C;, G;) for clusters C; and C;.

Many such proposals though no concensus as to which is best.
(a) Single Linkage

D(C;, C;) = min (d(x,y)|x € Ci,y € C))
Xy
(b) Complete Linkage
D(C;, C;) = max (d(x,y)|x € C;,y € C))
Xy

(c) Average Linkage
D(Ci’ Cj) = avgyy (d(xay)‘x eCyye CJ)

Measuring Dissimilarity

Cluster Distance

d24

(a)

dis

&)

d13+d14+d15+d23+d24+d25
6
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Hierarchical Clustering on Artificial Dataset

80
1

60

40
1

V2

o |

«

o

<]

8 4

I

=)

g

T
T T T T T T T
-20 0 20 40 60 80 100

\l

77

Hierarchical Clustering on Artificial Dataset

fstart afresh
dat=xclara #3000 x 2
library(cluster)

#plot the data
plot (dat, type="n")
text (dat, labels=row.names (dat) )

plot (agnes (dat,method="single"))

plot (agnes (dat, method="complete"))
plot (agnes (dat, method="average"))
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Hierarchical Clustering on Artificial Dataset

Height

Dendrogram of agnes(x = dat, method = "single")

dat
Agglomerative Coefficient = 0.93

Hierarchical Clustering on Artificial Dataset

Height

140

120

Dendrogram of agnes(x = dat, method = "complete")

|

WM "ﬂm l{'wﬂv’wﬂ!'u;

'ﬁwﬂ J MN""HWP ,‘M

\
I
e m———— - ey iy

dat
Agglomerative Coefficient = 0.99
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Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "average")

Height

2
2

dat
Agglomerative Coefficient = 0.99
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Using Dendograms

» Different ways of measuring dissimilarity result in different trees.

Dendograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.

Dendograms show hierarchical clusters with respect to increasing values
of dissimilarity between clusters, cutting a dendogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects. Cutting horizontally
effectively reveals the state of the clustering algorithm when the
dissimilarity value between clusters is no more than the value cut at.

Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendograms that
allow clusters in high-dimensional data to be better understood.
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Hierarchical Clustering on Indo-European Languages
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K-means
Partition-based methods seek to divide data points into a pre-assigned
number of clusters Cy, ..., Cx where for all k, k' € {1,...,K},
K
Cec{l,...,n}, CiNCy =0 Vk £k, Uc=A{1,....n}.
k=1

For each cluster, represent it using a prototype or cluster centre .
We can measure the quality of a cluster with its within-cluster deviance

W(C, pu) = Z llx; — 3.

i€Cy

The overall quality of the clustering is given by the total within-cluster

deviance:
K

W= W(Ci, ).

k=1

The overall objective is to choose both the cluster centres and allocation of
points to minimize the objective function.
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K-means K-means

K n
W= 303 sl =3 b =

k=g Some notes about the K-means algorithm.

where ¢; = k if and only if i € C;.

» Given partition {C,}, we can find the optimal prototypes easily by
differentiating W with respect to 1:

» The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the

number of iterations cannot exceed this.

ow 1

= 2 Z(x,- —w) =0 = g = e Zx,- » The K-means algorithm need not converge to global optimum.

Mk ‘eC |G| C . - . : .
1€k et K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically

» Given prototypes, we can easily find the optimal partition by assigning perform a number of runs from different configurations, and pick best
each data point to the closest cluster prototype: clustering.

¢; = argmin [lx; — fu]|3
k

But joint minimization over both is computationally difficult.
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K-means K-means on Crabs
The K-means algorithm is a well-known method that locally optimizes the

objective function W.

Iterative and alternating minimization.

1. Randomly fix K cluster centres uy, ..., uk. Looking at the Crabs data again.

2. Foreachi=1,...,n, assign each x; to the cluster with the nearest centre, .
library (MASS)

library (lattice)

: 2
¢; := argmin ||Xi _ Nk”z data (crabs)
k

splom(~log(crabs[,4:81),

3. Set Gy := {i : ¢; = k} for each k. col=as.numeric(crabs([,11),
4. Move cluster centr to the aver f the new clusters: pch=as.numeric(crabsl, 2]),
- Move cluster cenlres pui, . .., px 10 the average of the new clusters: main="circle/triangle is gender, black/red is species")
1
Mk = = Xi
|Gl lezcz [
k
5. Repeat steps 2 to 4 until there is no more changes.

6. Return the partition {C, ..., Cx} and means py, ..., ux at the end.
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K-means on Crabs

circle/triangle is gender, black/red is species

3% 25 g

r25Bp 25

26
+24RW24 4

Scatter Plot Matrix
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K-means on Crabs

Apply K-means with 2 clusters and plot results.

cl <- kmeans( log(crabs[,4:8]), 2, nstart=1, iter.max=10)
splom(~log(crabs[,4:8]),

col=clS$cluster+2,
main="blue/green is cluster finds big/small")
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K-means on Crabs

blue/green is cluster finds big/small

30 55 30
r25Bp25
20 2520
< 1 1
Ea40 T T 1T
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000
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Scatter Plot Matrix
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K-means on Crabs

‘Whiten’ or ‘sphere’ the data using PCA.

pcp <- princomp( log(crabs[,4:8]1) )
spc <- pcpS$scores $x% diag(l/pcp$sdev)
splom( ~spcl[,1:3],

col=as.numeric(crabs[,1]),

pch=as.numeric (crabs(,2]),

main="circle/triangle is gender, black/red is species")

And apply K-means again.

cl <- kmeans(spc, 2, nstart=1l, iter.max=20)
splom( ~spc[,1:3],
col=clS$cluster+2, main="blue/green is cluster")

"Apply a linear transformation so that covariance matrix is identity.
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K-means on Crabs

circle/triangle is gender, black/red is species blue/green is cluster

Scatter Plot Matrix Scatter Plot Matrix

Discovers gender difference...
Results depends crucially on sphering the data first.

K-means on Crabs

Using 4 cluster centers.

circle/triangle is gender, black/red is species colors are clusters

Scatter Plot Matrix

Scatter Plot Matrix
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K-means on Spike Waveforms

library (MASS)

library (lattice)

spikespca <- read.table ("spikes.txt")
cl <- kmeans (data, 6,nstart=20)
splom(data,col=clS$cluster)

K-means on Spike Waveforms

0OV ®
O

Scatter Plot Matrix
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Stochastic Optimization

>

Each iteration of K-means requires a pass through whole dataset. In
extremely large datasets, this can be computationally prohibitive.
Stochastic optimization: update cluster means after assigning each data
point to the closest cluster.

Repeat fort = 1,2, ... until satisfactory convergence:

1. Pick data item x; either randomly or in order.
2. Assign x; to the cluster with the nearest centre,

¢; = argmin ||x; — ,uk||§
3

3. Update cluster centre:
P 1= e+ (X — puk)
where «; > 0 are step sizes.
Algorithm stochastically minimizes the objective function. Convergence
requires slowly decreasing step sizes:

oo o0
E a, = 00 E atz < 00
t=1 =1
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Vector Quantization

A related algorithm developed in the signal processing literature for lossy
data compression.

If K < n, we can store the codebook of codewords 1, ..., ux, and each
vector x; is encoded using ¢;, which only requires [log K] bits.

As with K-means, K must be specified. Increasing K improves the quality
of the compressed image but worsens the data compression rate, so
there is a clear tradeoff.

» Some audio and video codecs use this method.

Stochastic optimization algorithm for K-means was originally developed
for VQ.
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VQ Image Compression

3 x 3 block VQ: View each block of 3 x 3 pixels as single observation

X, X, Xy X, X5 X X, Xy Xy Xy X Xy Xpp Xy X5 Xy X X Xy Xy Xy Ny Xy Xy Xps Xpg Xy

VQ Image Compression

Original image (24 bits/pixel, uncompressed size 1,402 kB)
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VQ Image Compression

Codebook length 1024 (1.11 bits/pixel, total size 88kB)

VQ Image Compression

Codebook length 16 (0.44 bits/pixel, total size 27kB)

VQ Image Compression

Codebook length 128 (0.78 bits/pixel, total size 50kB)
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K-means Additional Comments
» Sensitivity to distance measure. Euclidean distance can be greatly

affected by measurement unit and by strong correlations. Can use
Mahalanobis distance,

=yl = /x =) M1 ()

where M is positive semi-definite matrix, e.g. sample covariance.

Other partition based methods. There are many other partition based
methods that employ related ideas. For example K-medoids differs from
K-means in requiring cluster centres y; to be an observation x;2,
K-medians (use median in each dimension) and K-modes (use mode).
Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means?, use

K
W= "l — ml + K

k=1ieCy

2See also Affinity propagation.
3DP-means paper.
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Probabilistic Methods

» Algorithmic approach:

Algorithm Analvsis/
Data > naltysts/

Interpretation

» Probabilistic modelling approach:

Generative
Model

Unobserved | ———>
process <
Analysis

Interpretation

Data
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Mixture Models

» Mixture models suppose that our dataset was created by sampling iid
from K distinct populations (called mixture components).

» Typical samples in population k can be modelled using a distribution
F(¢x) with density f(x|¢x). For a concrete example, consider a Gaussian
with unknown mean ¢, and known symmetric covariance o1,

_r 1
6100) = f2mo|~ exp (5= aul3).
g
» Generative process: fori =1,2,...,n
» First determine which population item i came from (independently):
Z; ~ Discrete(my, . .., k) ie. P(Z; =k) =m

where mixing proportions are m;, > 0 for each k and Zle m = L.
» IfZ =k then X; = (Xi,...,X;)" is sampled (independently) from
corresponding population distribution:

Xi|Zi =k ~ F(¢x)

» We observe that X; = x; for each i, and would like to learn about the
unknown parameters of the process.
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Mixture Models

» Unknowns to learn given data are

» Parameters: m,..., 7k, ¢1,..., ¢k, as well as
» Latent variables: z;, . .., z.

» The joint probability over all cluster indicator variables {Z:} are:
1(zi=k
(i) H v =TT
i=1 k=1
» The joint density at observations X; = x; given Z; = z; are:
n K
px(()ii|(Z = z)izy) = [T [T (eilepu)* =0
i=1 k=1

» So the joint probability/density* is:
n K

pXZ 'xl7le 1 HH |¢k l(q_k)

i=1 k=1

4In this course we will treat probabilities and densities equivalently for notational simplicity. In
general, the quantity is a density with respect to the product base measure, where the base
measure is the counting measure for discrete variables and Lebesgue for continuous variables.
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Mixture Models - Posterior Distribution

» Suppose we know the parameters (m, ¢r)X_,.

» Z;is a random variable, so the posterior distribution given data set X tells
us what we know about it:
p(Zi = k,xi) mif (x| )

Qi :=p(Zi = klx;) = p(x) - Z]K:l mif (xi|j)

where the marginal probability is:

xl|¢/

T Mw

» The posterior probability Qi of Z; = k is called the responsibility of
mixture component k for data point x;.

» The posterior distribution softly partitions the dataset among the k
components.
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Mixture Models - Maximum Likehood

» How can we learn about the parameters 0 = (m;, ¢x)X_, from data?

» Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

» The log likelihood is the log marginal probability of the data:

(e, dr)izr) =

Vo l((T, dr)i_y)

log p((x;)i=; I( 7Tk7¢k k=1)

i=1 Zf:l mf (xil &)

- Z OV, log f (xi| o)

i=1

Zlomef (xil¢)

=3 W10 G o (aa)

» A difficult equation to solve, as Q; depends implicitly on ¢...

Mixture Models - Maximum Likehood

Z QuV g, logf(xi|pr) = 0

i=1

» What if we ignore the dependence of Q;. on the parameters?
» Taking the mixture of Gaussian with covariance oI as example,

MLE?
k

1
ZQ,kv@( 2 1og(2n0%) ~ sl — ol

:ﬁ Z Qur(x; —
i=1

_ S, Quxi
Z?:l Qi

— 5 (S0 own)

— & (X Qi) =0
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Mixture Models - Maximum Likehood

» The estimate is a weighted average of data points, where the estimated
mean of cluster k uses its responsibilities to data points as weights.

MLE? __ Dot Qi
k - n
Z,‘:1 Qik

» Makes sense: Suppose we knew that data point x; came from population
zi. Then Q;,, = 1 and Q; = 0 for k # z; and:

MLE __ EiZZi:k Xi

X =
Zi:zizk 1

» Our best guess of the originating population is given by Q.

Mixture Models - Maximum Likehood

» For the mixing proportions, we can similarly derive an estimator.
» Include a Lagrange multiplier A to enforce constraint ), m = 1.

vlogm (6((7@7 ¢k)kK:1) - )‘(Zszl Tk — 1))
_Z mif (xi| px)

i=1 j 1 ﬂ—}f(xlw)])
= Z Qi — Mm =0
aMLE? _ Zz 1Qlk

k

» Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population .
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Mixture Models - The EM Algorithm

» Putting all the derivations together, we get an iterative algorithm for
learning about the unknowns in the mixture model.
> Start with some initial parameters (7", ¢*)X_ .
> lterate forr=1,2,...:
» Expectation Step:

—1 —1
o .= m U (algy ™)
ik T K (1—1)

—1
2= T f(xi|¢;t )
» Maximization Step:
0 72?:1 Qi(k[) (1) ,Z?:l Qi(kt)xi
ko kT n
n Yo

» Will the algorithm converge?
» What does it converge to?

Likelihood Surface for a Simple Example
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mu‘

(left) n = 200 data points from a mixture of two 1D Gaussians with

m =m =0.5,0=5and u; =10, u; = —10.

(right) Log likelihood surface ¢ (1, 112), all the other parameters being
assumed known.
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Example: Mixture of 3 Gaussians
An example with 3 clusters.

X2
0

-5

After 1st E and M step.

datal,2]

-5
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Example: Mixture of 3 Gaussians

After 2nd E and M step.

Iteration 2
[V} ..
....O .: ]
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data[,1]
Example: Mixture of 3 Gaussians
After 3rd E and M step.
Iteration 3
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Example: Mixture of 3 Gaussians

After 4th E and M step.

Iteration 4

-5

Example: Mixture of 3 Gaussians

After 5th E and M step.
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The EM Algorithm

» In a maximum likelihood framework, the objective function is the log
likelihood,

0) = log > mif(uléy)
i=1 j=1

Direct maximization is not feasible.
» Consider another objective function F(6, ¢) such that:
F(0,q) <L) forall 0, g,
max F(6,q) = £(0)
q

F(6,q) is a lower bound on the log likelihood.
» We can construct an alternating maximization algorithm as follows:
For = 1,2... until convergence:

¢ = argmax F(0'" Y, q)
q

o0 .— argmaXf(aaq(t))
0
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EM Algorithm

» The lower bound we use is called the variational free energy.
» g is a probability mass function for some distribution over (Z;) and

F(0,q) =E4llogp((xi,zi)i=1) — log q((zi)i=)]

[(ZZH ) (log +1ogf<x,¢k>>) —1ogq<z>}

i=1 k=1

=> 4l Kzzﬂ(zi = k) (logm+logf(xi¢k))> - 10gq(2)}
z k=1

i=1 k=

Using z := (z;)"_, to shorten notation.
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EM Algorithm - Solving for ¢

» Introducing Lagrange multiplier to enforce >, ¢(z) = 1, and setting
derivatives to 0,

n K
Vi@ F(0.9) ZZ

i=1

) (log m + log f(xi|fx)) —logg(z) — 1 — A

(log 7, + logf(xi|¢;)) —logg(z) =1 —A =0

M:

i=1

. [T, maf (x| @z) 7 f (xi|@2,)
T = 5 T, mf alog) szmf w160 ~ [T rtels.)

i=1
» Optimal ¢* is simply the posterior distribution.

» Plugging in optimal ¢* into the variational free energy,

F(0.q7) = Zlomef (xiln) = £(0)

i=1
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EM Algorithm - Solving for 6

» Setting derivative with respect to ¢, to 0,

V¢L 9 q) Z q Z ]]_(Z,- = k)vd)k logf(xi|¢k)
i=1

= Z q(zi = k)V, Jogf(xiléx) = 0

i=1

» This equation can be solved quite easily. E.qg., for mixture of Gaussians,
gt = iz 90 = K
Y=k

v

If it cannot be solved exactly, we can use gradient ascent algorithm:

G =t +a)_alz=k)Ve, logf (xi|ex)

i=1

v

This leads to generalized EM algorithm. Further extension using
stochastic optimization method leads to stochastic EM algorithm.
Similar derivation for optimal 7, as before.

v
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EM Algorithm Flexible Gaussian Mixture Models
. I (0) ,(0)\k
> Start with some initial parameters (m, ", ¢, )i, - » We can allow each cluster to have its own mean and covariance structure
> lterate fors=1,2,.. allows greater flexibility in the model.
» Expectation Step:

Different covariances Different, but diagonal covariances
(r—1) (t—1)
O o m el ) B
g (zi = k) := - S E,;(;,-p,,e(ffl))[]l(zz' = k)] _ 8558°
Sim e Nl 55
b SR e
» Maximization Step: e ﬁ%ﬂs\ 5o QA;\A?
\Aﬁiﬁ B \,‘ A /,‘
0 _ 2 d"@ =k 0 _ 24" @ =k
k n k S gz =k)
Identical covariances
» Each step increases the log likelihood: g P
o7 g

(o) = F(67V,q) < F(O,40) < F(OW,4"V) = £(61).

» Additional assumption, that V27 (0, ¢) are negative definite with
eigenvalues < —e < 0, implies that #) — #* where #* is a local MLE.
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Notes on Probabilistic Approach and EM Algorithm Probabilistic PCA
» A probabilistic model related to PCA has the following generative model:
fori=1,2,...,n:
. » Letk < n,p be given.
Some good things: » Let ¥; be a k-dimensional normally distributed random variable with 0 mean
» Guaranteed convergence to locally optimal parameters. and identity covariance:
» Formal reasoning of uncertainties, using both Bayes Theorem and

maximum likelihood theory. » We model the distribution of the ith data point given Y; as a p-dimensional
» Rich language of probability theory to express a wide range of generative normal:
models, and straightforward derivation of algorithms for ML estimation. X; ~ N(p+ LY;, 0°I)
where the parameters are a vector 4 € R”, a matrix L € R”** and o2 > 0.
» EM algorithm can be used for ML estimation, but PCA can more directly

Yi ~ N(0, L)

Some bad things:

» Can get stuck in local minima so multiple starts are recommended. give a MLE (note this is not unique).
» Slower and more expensive than K-means. > Let A\ > --- > )\, be the eigenvalues of the sample covariance and let
» Choice of K still problematic, but rich array of methods for model V € R"™* have columns given by the eigenvectors of the top k
selection comes to rescue. eigenvalues. Let R € R*** be orthogonal. Then a MLE is:
pME—x (ME= LS

IMLE _ Vdiag((/\l _ (UZ)MLE)%7 e (/\k — (JZ)MLE)%)R
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Mixture of Probabilistic PCAs

» We have learnt two types of unsupervised learning techniques:

» Dimensionality reduction, e.g. PCA, MDS, Isomap.
» Clustering, e.g. K-means, linkage and mixture models.

» Probabilistic models allow us to construct more complex models from
simpler pieces.

» Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(7y, ..., Tg)
Yi ~ N(Oa Id)
Xi|Z: = k,Y; = yi ~ N (e + Lyi, 0°1,)

» Allows flexible modelling of covariance structure without using too many
parameters.

Ghahramani and Hinton 1996 129

Mixture of Probabilistic PCAs

» PCA can reconstruct x given low dimensional embedding z, but is linear.
» |somap is non-linear, but cannot reconstruct x given any z.

A

B @ EE E E
. o
A = mEmo. MM mmge 8 “
g 7 T &) ra S 4
weE gl =
4 . o e
3 A L i
5 . 3
. , v
T g o o » O
] | —
o T e | = =
- u ol _— EJO
!‘./i —— ’ o
k. i
K = R e
S — ,
! 1 ,—1J° . 2
=19

JE Lighting direction Leftright pose

» We can learn a probabilistic mapping between the k-dimensional Isomap
embedding space and the p-dimensional data space.

» Demo: [Using LLE instead of Isomap, and Mixture of factor analysers
instead of Mixture of PPCAs.]

Teh and Roweis 2002 130

Further Readings—Unsupervised Learning

Hastie et al, Chapter 14.
James et al, Chapter 10.
Venables and Ripley, Chapter 11.

Tukey, John W. (1980). We need both exploratory and confirmatory. The
American Statistician 34 (1): 23-25.

vV v v VY
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Supervised Learning

Unsupervised learning:

» To “extract structure” and postulate hypotheses about data generating
process from observations xi, . .., x,.

» Visualize, summarize and compress data.

We have seen how response or grouping variables are used to validate the
usefulness of the extracted structure.

Supervised learning:
» In addition to the n observations of X, we also have a response variable
Ye).
» Techniques for predicting Y given X.
» Classification: discrete responses, e.g. Y = {+1,—1} or {1,...,K}.
» Regression: a numerical value is observed and ) = R.

Given training data (x;,y;), i = 1,...,n, the goal is to accurately predict the
class or response Y on new observations of X.
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Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv being the
response variable Y.

cri
zZn

ind
cha

nox
rm

age
dis
rad
tax
ptr

1st
med

m

us
S

atio

at
v

per capita crime rate by town

proportion of residential land zoned for lots

over 25,000 sqg.ft

proportion of non-retail business acres per town
Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)

nitric oxides concentration (parts per 10 million)
average numpber of rooms per dwelling

proportion of owner-occupied units built prior to 1940
weighted distances to five Boston employment centers
index of accessibility to radial highways

full-value property-tax rate per USD 10,000
pupil-teacher ratio by town

1000(B - 0.63)"2 where B is the proportion of blacks by tc
percentage of lower status of the population

median value of owner-occupied homes in USD 1000’s
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Regression Example: Boston Housing

> s

"data.frame’ :

r

L U i i O O U O O O O

> s

tr(X)

crim
zn
indus
chas
nox
rm
age
dis
rad
tax
ptrat
black
lstat

tr(Y)

506 obs. of 13 variables:
num 0.00632 0.02731 0.02729 0.03237 0.06905
num 18 0 0 0 0 O 12.5 12.5 12.5 12.5
num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.8"
int 0000O0O0O0O0OO ...
num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 (
num 6.58 6.42 7.18 7.00 7.15
num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
num 4.09 4.97 4.97 6.06 6.06
int 1223335555 ...
: num 296 242 242 222 222 222 311 311 311 311
io: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.¢
num 397 397 393 395 397 ...
num 4.98 9.14 4.03 2.94 5.33

num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9

Goal: predict median house price Y (X), given 13 predictor variables X of a
new district.
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Classification Example: Lymphoma

We have gene expression measurements X of n = 62 patients for p = 4026
genes. For each patient, Y denotes one of two subtypes of cancer. Goal:

predict cancer subtype Y (X) € {0, 1}, given gene expressions of a new
patient.

> str(X)

"data.frame’ : 62 obs. of 4026 variables:

$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868

$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330

$ Gene 3 num -0.776 -0.588 0.409 -0.991 -1.517

S Gene 4 num -0.474 -1.588 0.219 0.978 -1.604

S Gene 5 num -1.896 -1.960 -1.695 -0.348 -0.595

$ Gene 6 num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 num -1.8755 -1.8187 0.3175 0.3873 0.0414
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668

$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458

$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848

$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541

$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358

> str(Y)

num [1:62] 0 0 01 0 01 00O

Decision Theory

» Suppose we made a prediction ¥ € ) based on observation of X.
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» How good is the prediction? We can use a loss function L : Y x ) — R*

to formalize the quality of the prediction.
» Typical loss functions:
» Misclassification loss (or 0-1 loss) for classification

L(Y’?):{ (1) Y#£7V

» Squared loss for regression

L(Y,Y)= (Y =)~

» Alternative loss functions are often useful (later). For example, weighted

misclassification error often appropriate. Or log-likelihood loss

(sometimes shortened as log loss) L(Y,p) = —logp(Y), where p(k) is the

estimated probability of class k € ).
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Decision Theory

» For a given loss function L, the risk R of a learner is given by the

expected loss

R(Y) =

E(L(Y, Y (X)),

where the expectation is with respect to the true (unknown) joint

distribution (X, Y).

» The risk is unknown, but we can estimate it by the empirical risk:

R(Y R,(Y)

The Bayes Classifier

ZL vir Y (x:))
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» What is the optimal classifier if the joint distribution (X, Y) were known?

v

The joint distribution f of X can be written as a mixture

K
X) =Y RXP(Y =
k=1

where, fork=1,...,K,

» the prior probabilities over classes are P(Y = k) = m
» and distributions of X, conditional on Y = &, is fi(X).

v

The Bayes classifier ¥(X) — {1,...,

K} is the one with minimum risk:

R(Y) =E {L(Y, f/(x))] —E [E[L(Y, ¥()|x = x]}

:/XIE{L(Y, f/(x))\sz]f(X)dx

v

v

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, ¥ (x))|X = x] separately for each x suffices.
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The Bayes Classifier

» Consider the situation of the 0-1 loss.

» The risk simplifies to:

E [L(n ¥(x))|X = x} =5 Lk, Y(x)B(Y = kIX = x)

=1

—P(Y = Y(x)|X = x)

» The risk is minimized by choosing the class with the greatest posterior

probability:

Y(x) = argmaxP(Y = k|X = x) = arg max

k=1,...,.K

= argmax mfi(x).

k=1,...K

L(x)
k=1,....K Zk | Tifi(x)

» The functions x — mfi(x) are called discriminant functions. The
function with maximum value determines the predicted class of x.

The Bayes Classifier

139

A simple two Gaussians example: Suppose X ~ N (uy, 1), where iy = —1 and
w2 = 1 and assume equal priors m; = m, = 1/2.

filx) =

\/12? exp <(x_(2_1))2> and  f(x) = \/lz?exp (_(x—21)2>'

DENSITY
0.2
I

DENSITY

Optimal classification is ¥ (x) = arg max
k=1,...,
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The Bayes Classifier

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 27

I
5e-01
L

5e-02

DENSITY
06
I
DENSITY
5e-03

0.0
I
1e-04  5e-04

Looking at density in a log-scale, optimal classification is class 2 if and only if
x € [-0.39,2.15].
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Plug-in Classification

» The Bayes Classifier chooses the class with the greatest posterior
probability

Y(x) = argmaxmfi(x).
k=1,....K

» Unfortunately, we usually know neither the conditional class probabilities
nor the prior probabilities.

» We can estimate the joint distribution with:

> estimates 7, for mcand k= 1,..., K and
> estimates fi(x) of conditional class densities,

» The plug-in classifiers chooses the class

Y (x) = arg max 7fi (x).
k=1,....K

» Linear Discriminant Analysis will be an example of plug-in
classification.

142

Linear Discriminant Analysis

» LDA is the most well-known and simplest example of plug-in
classification.

» Assume a multivariate Normal form for f;(x) for each class k:
X|Y =k NN(Mk,E),

» each class can have a different mean
» but all classes share the same covariance X.

» For an observation x,
logP(Y = k|X = x) = k + log mifi (%)
1 _
=k +logm — E(X* ) TS (= )

The quantity (x — i) TS~ (x — ) is the square of the Mahalanobis
distance. It gives the distance between x and 1 in the metric given by X.

» fX =1, and m = &, Y (x) simply chooses the class k with the nearest (in
the Euclidean sense) mean.

143

Linear Discriminant Analysis
» Expanding the discriminant (x — ;) "X 7! (x — ),

1
logP(Y = k|x) = k + log(m;) — 3 (1l S e =20 B "% +x T2 1)

1
= rlog(me) — Sl S e+ p{ X7
» Setting a; = log(mx) — 1/ ¥~ ' and by = ! 11, we obtain
logP(Y =k|X =x) =k +ar + b/ x

i.e. a linear discriminant function.
» Consider choosing class k over k’:

ak+b,;rx>ak/+b,jx = a*+h;rx>0

where a, = a, — ap and b, = b, — by.
» The Bayes classifier partitions X" into regions with the same class
predictions via separating hyperplanes.

» The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.
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Parameter Estimation Iris Dataset
» The final piece of the puzzle is to estimate the parameters of the LDA Just focus on two predictor variables.
model.
» We can achieve this by maximum likelihood.
» EM algorithm is not needed here since the class variables y; are

iris.data <- iris|[,3:4]
plot (iris.data,col=ct+l,pch=20,cex=1.5,cex.lab=1.4)

observed. v -
> Let ny = #{j : y; = k} be the number of observations in class . b o o .
K 1 o ..
O, (), B) =+ logm — (log || + (x5 — ) "2 (3 — ) ~ ’
k=1 j:y;=k
Then: § -]
N i L , 3 .
Tk = - 'uk_nkAZxJ L o2
Jiyi=k
1 & .
Z:;Z (x5 — fue) (x5 — fu) " 24 L.
k=1 jiyj=k o cosees s
» Note: the ML estimate of X is not unbiased. For an unbiased estimate we : . s : . o 7
need to divide by n—K. Petal.Length
145
Iris Dataset Iris Dataset

20 25 30 35 40 05 10 15 20 25
P T L
T
oog 8

g

Computing and plotting the LDA boundaries.

Sepal.Length ¢ 3 ##fit LDA
B p 0 . e . _
o os” g iris.lda <- lda(x=iris.data,grouping=ct)

ki

##create a grid for our plotting surface
x <- seq(-6,6,0.02)

<- seq(-4,4,0.02)

<- as.matrix (expand.grid(x,y),0)
length (x)
<- length(y)

library (MASS) :;8&5 > _| | Sepal.Width
data (iris) ;s
##save class labels

ct <- rep(l:3,each=50)
##pairwise plot
pairs(iris([,1:4],col=ct)

20 25 30 35 40

58 NK
A
|

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class

Petal.Width contour (x,y,matrix (iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)

05 10 15 20 25
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Iris Dataset Fisher’s Linear Discriminant Analysis

N R .. L] .
.’ +
®« |\ S L) +
2 . . +
£ o
S -
=
S » Find a direction v € R” to maximize the variance ratio
[0] . °
o 2. v By
\ v Sy
- . where
st S =I5 — ) (ki — ) T (within class covariance)
A B=1 "% m(u, —%)(u, —%)T  (between class covariance)
T T T T T T T
1 2 3 4 5 6 7 B has rank at most K — 1.
Petal.Length
149 Figure from Hastie et al.
Fisher’s Linear Discriminant Analysis Discriminant Coordinates

» In LDA, data vectors are classified based on Mahalanobis distance from
cluster means, which lie on a K — 1 affine subspace.

» In measuring these distances, directions orthogonal® to the subspace viBy ul (272)TBE 2u _u'B'u
can be ignored. viXy ulu T ouTu

» Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative

» To solve for the optimal v, we first reparameterize it as u = L2 v.

where B* = (£72)TBX 2.

information about (y;)"_,. » The maximization over u is achieved by the first eigenvector u, of B*.

» As with PCA, we can visualize the structure in the data by choosing an » We also look at the remaining eigenvectors u; associated to the non-zero
appropriate basis for the subspace and projecting data onto it. eigenvalues and defined the discriminant coordinates as v, = X7 2u,.

» Choose a basis by finding directions that are separate classes best. » The v/s span exactly the affine subspace spanned by (' 1)f_, (these

vectors are given as the “linear discriminants” in the R-function 1da).

50rthogonality defined in terms of the inner product corresponding to Mahalanobis distance:
<x? y> = xzily
150
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Crabs Dataset Crabs Dataset

cb.ldp <- predict (cb.lda)$x[,1:2]
egscplot (cb.1ldp, pch=ct+1l,col=ct+l)

: 7 x XXBSXX X +

library (MASS) x x yxgxx N W
data (crabs) X X g E X e 4 Ea

o XX m%% % ++ + *

. < x X + + +

## numeric and text class labels x % ++#7 s
ct <- as.numeric(crabs[,1])-1+2* (as.numeric (crabs([,2])-1) JINN X + ++

° a fo{%* ’

+

## Projection on Fisher’s linear discriminant directions ad pdd oy o
print (cb.lda <- lda(log(crabs[,4:8]),ct)) e PrVNNES R @ © o

o | INCYAVNN o ® o

h A éé A S oo
N A Aa 2 & Q
A 000 g°
OD
< | Iy °” &
I A o)
A o]
T T T T T T
-4 -2 0 2 4 6
158 155
Crabs Dataset Crabs Dataset
>>>>>>> > > Call:
lda(log(crabs[, 4:81), ct) ## display the decision boundaries
## take a lattice of points in LD-space
Prior probabilities of groups: x <- seq(-6,6,0.02)
’ ’ .

0 1 2 3

0.25 0.25 0.25 0.25 y <- seq(-4,4,0.02)
z <— as.matrix(expand.grid(x,y))
Group means: m <- length (x)
FL RW CL cw BD n <- length(y)
0 2.564985 2.475174 3.312685 3.462327 2.441351
1/2.852455 2.683831 3.529370 3.649555 2.733273 ## perform LDA on first two discriminant directions
2 2.672724 2.443774 3.437968 3.578077 2.560806 b.1lda <- 1d b.1d N
3 2.787885 2.489921 3.490431 3.589426 2.701580 co.Lda = a(ceb.ldp,ct)
## predict onto the grid
Coefficients of linear discriminants: cb.ldpp <- predict(cb.lda,z)Sclass
LD1 LD2 1D3
FL -31.217207 -2.851488 25.719750 ## classes are 0,1,2 and 3 so set contours
RW -9.485303 -24.652581 -6.067361 #% at 0.5,1.5 and 2.5

CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428

BD -17.998493  6.002432 -14.541487 levels=c(0.5,2.5),
add=TRUE, d=FALSE, 1ty=2, lwd=2)

contour (x,y,matrix (cb.ldpp,m,n),

Proportion of trace:
LD1 LD2 LD3

0.6891 0.3018 0.0091
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Crabs Dataset
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LDA separates the groups better.
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Naive Bayes

» Assume we are interested in classifying documents; e.g. scientific

articles or emails.

» A basic but standard model for text classification consists of considering
a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document i by a binary vector x;
where

if word j is present in document

]
i _{ 0 otherwise.

» To implement a probabilistic classifier, we need to model f; (x|¢;) for each
classk=1,...,K.
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Naive Bayes

» A Naive Bayes approach ignores feature correlations and assumes
fie(x) = f(x|¢x) where
p
‘ﬁ<(‘xl‘) :f(xi‘¢k) = H (¢kj)x£, (1 — Qbkj)lix'j

j=1
» Given dataset, the MLE is easily obtained
~ ny n Zi:y,:k Xij
T = — ¢kj = == 7
n ny

» One problem: if word j did not appear in documents labelled as class k
then ¢; = 0 and
P(Y = k|X = x with jth entry equalto 1) =0
i.e. we will never attribute a new document containing word j to class k.

» This problem is called overfitting, and is a major concern in modelling
high-dimensional datasets common in machine learning.

160



Generative and Discriminative Learning

» Generative learning: find parameters that explains all the data.
0" = argmax 3" logp(x; yl0)
o =

Examples: LDA, Naive Bayes.

» Makes use of all the data.
» Flexible framework, can incorporate other tasks.
» Stronger modelling assumptions.

» Discriminative learning: find parameters that help to predict relevant
data.

n

0" = argmaxE:logp(yipci7 0) or = argminZL(yi7f(Xi))
0 A

i=1

Examples: linear and logistic regression, rest of the course.
» Learns to perform better on the given task.
» Weaker modelling assumptions.
» Can overfitting more easily.

161

Statistical Learning Theory

» We work with a joint distribution p* (X, Y) over data vectors and labels.

» A learning algorithm constructs a function f(X) which predicts the label of
X.

Given a loss function L, the risk R of f(X) is

R(f) = Exy[L(Y.f(X))]
For classification, the best function f*(X) is the Bayes classifier, achieving
the minimum risk (Bayes risk).
Hypothesis space # is the space of functions under consideration.
Find best function minimizing the risk:

argmin Ex y[L(Y,f(X))]
feH

v

vy

» Empirical Risk Minimization: minimize the empirical risk instead, since we
typically do not know p* (X, Y).
» Regularization: Large hypothesis spaces can lead to overfitting,
1 n
argmin — L(yi, f(xi)) + A
gmin ; i f (3) + Allf [l
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Training and Test Performance

- yH 1

For 0-1 loss in classification, this is the misclassification error on the
training data, which were used in learning f(x).

» Test error is the empirical risk on new, previously unseen, observations
1 m
P Zl L(yi,f(x:))

which were NOT used in learning.

» Test error is a much better gauge of how well learned function
generalizes to new data.

» The test error is in general larger than the training error.
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Logistic Regression
» Assume we have two classes {+1, —1}.

» Recall that the discriminant functions in LDA are linear. Assuming that
data vectors in class k is modelled as NV (w4, 32), choosing class +1 over
—1 involves:

api+bix>a+blx e (ayr—a_y)+ (b —b_1)Tx>0

» If we care about minimizing classification errors, we can try to find a, b to
minimize directly the average misclassification error (empirical risk
associated with 0-1 loss):

.1 i 0 ify; =sign(a+b"x)
argmin —
%,b n<= |1 otherwise

n 1
— in—Y - — —sien(y; I
ar%g;lm , ; 573 sign(yi(a+ b x))

» An example of Empirical Risk Minimization. Unfortunately not typically
possible to solve...
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Logistic Regression

» Logistic regression replaces the 0-1 loss with the log loss.
» A model parameterizing the conditional distribution of labels given data

vectors:
1
Y=1X=x) = =: b'
PUY = 1 =) = o s =isla b )
1
Y=—-1X=x)= =s(—a—b"
PUY = —1X =) = s = s(a—bTy)
where s(-) is the logistic function
1
0.5t |
0 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8
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Logistic Regression
» Consider maximizing the conditional log likelihood:

n

t(a,b) = Zlogp(Y =ylX =x;) = Z —log(1 +exp(—yi(a+b"x)))

i=1 i=1

» Equivalent to minimizing the empirical risk associated with the log loss:

n
Ry = Z log(1 +exp(—yi(a+b"x)))
i=1

4 T T r T
Log Loss (log(1+exp(-y(a+b'x))))
----- 0-1 Loss (1/2+sign(-y(a+b'x))/2)
3 L 4
2 L
Phmim i 2 -
'
0 L —_
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Logistic Regression

» Not possible to find optimal a, b analytically.
» For simplicitiy, absorb a as an entry in b by

Logistic Function

appending ’1” into x vector. ( z) =1-s(2)
» Objective function: V.s(z) = ( )s(—2)
V. logs(z) = s(—z)
1 n
Rigg” = . =Y —logs(yix, b) V2 logs(z) = —s(2)s(—2)

i=1

» Differentiate wrt b:

n n

1 1
ViRiag =— > —s(=yir b)yixi = = 3~ ~((:5+ 5y) = s(x] b))
i=1 i=1

1
ViReg =~ ; s(vixi’ b)s(—yix; b)xix,

Logistic Regression

» Second derivative is positive-definite: objective function is convex and
there is a single unique global minimum.
» Many different algorithms can find optimal b, e.g.:
» Gradient descent:

n

1
bnew:b - *’,‘Tb X
+€n§ s(—yixi b)yix

i=1

» Stochastic gradient descent:

b =b+ e,‘ ( 1 Z s(—yix; b)yix;
i€l(r)

where () is a subset of the data at iteration ¢, and ¢, — 0 slowly
>, e =002, € < oo).
» Newton-Raphson:

b = b — (ViRpe?) ™' VuRee

This is also called iterative reweighted least squares.
» Conjugate gradient, LBFGS and other methods from numerical analysis.
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Logistic Regression

Properties of logistic regression:

» Makes less modelling assumptions than LDA and naive Bayes.
Models only the conditional distribution of labels, not the marginal

v

distribution of X.

v

v

transformation X — ¢(X).

v

deviance test, Wald test),

Crab Dataset

A linear method: decision boundary is a separating hyperplane.
Logistic regression can be made non-linear by applying a non-linear

Logistic regression is a simple example of a generalised linear model
(GLM). Much statistical theory:
» assessment of fit via deviance and plots,
> interpretation of entries of b as odds-ratios,
» fitting categorical data (sometimes called multinomial logistic regression),
» well founded approaches to removing insignificant features (drop-in

<« 4
° Bo o o
o o © o o
0o o 0,
0 0 2%, w502
~ o 00 ®% 8 o © 0,
o o o og“0
o © Oq @ o
o ° g&o
oo © © o -
ot B
° 7 o+ &7,
o o T+
i o
g & P
. w00 © et
Y4, °%°8 e o AT
& o ° +
o Sp % 8 . 5
o ° e L +
- +.
+
o +
< s . +
° +
4
o

Comparing LDA and logistic regression.

Crab Dataset

Comparing logistic regression with and without quadratic interactions.
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Crab Dataset

library (MASS)

## load crabs data

data (crabs)

ct <- as.numeric(crabs[,1])-1+2% (as.numeric (crabs[,2])-1)
## project into first two LD

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict (cb.lda)

x <= cb.ldp$x[,1:2]

y <- as.numeric (ct==0)

egscplot (x, pch=2xy+1,col=y+1)

## visualize decision boundary

gxl <- seq(-6,6,.02)

gx2 <- seq(-4,4,.02)

gx <- as.matrix (expand.grid(gxl,gx2))

gm <- length (gxl)

gn <- length (gx2)

gdf <- data.frame (LDl=gx[,1],LD2=gx[,2])

lda <- 1lda(x,y)

y.lda <- predict (lda, x) Sclass

egscplot (x,pch=2xy+1,col=2-as.numeric (y==y.lda))
y.lda.grid <- predict (lda,gdf) $class

contour (gxl,gx2,matrix(y.lda.grid, gm,gn),

levels=c(0.5), add=TRUE,d=FALSE,lty=2,lwd=2)
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Crab Dataset

## logistic regression
xdf <- data.frame (x)
logreg <- glm(y ~ LDl + LD2, data=xdf, family=binomial)
y.lr <- predict (logreg, type="response")
egscplot (x, pch=2xy+1,col=2-as.numeric (y==(y.lr>.5)))
y.lr.grid <- predict (logreg, newdata=gdf, type="response")
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE, lty=3,1lwd=1)
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.5), add=TRUE,d=FALSE,lty=1, lwd=2)

## logistic regression with quadratic interactions
logreg <- glm(y ~ (LDl + LD2)"2, data=xdf, family=binomial)
y.lr <- predict (logreg, type="response")
egscplot (x, pch=2xy+1,col=2-as.numeric (y==(y.1lr>.5)))
y.lr.grid <- predict (logreg, newdata=gdf, type="response")
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE, lty=3,1lwd=1)
contour (gxl,gx2,matrix(y.lr.grid, gm,gn),
levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)
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Spam Dataset

> library (kernlab)
> data (spam)

> dim(spam)

[1] 4601 58

> spam[1l:2,]
make address all num3d our over remove internet order mail receive wil

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.¢

2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.7
people report addresses free business email you credit your font num0O0C

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.0C

2 0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.4:
money hp hpl george num650 lab labs telnet num857 data num4l5 num85

1 0.00 O 0 0 0 0 0 0 0 0 0 0

2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology numl999 parts pm direct cs meeting original project re edu te

1 0 0.00 0 0 0 0 0 0 0 0 00

2 0 0.07 0 0 0 0 0 0 0 0 00
conference charSemicolon charRoundbracket charSquarebracket charExclamat

1 0 0 0.000 0 0.778

2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitallong capitalTotal type

1 0.00 0.000 3.756 61 278 spam

2 0.18 0.048 5.114 101 1028 spam
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Spam Dataset
Use logistic regression to predict spam/not spam.

library (kernlab)
data (spam)

## let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric(spam[, ncol (spam)])-1
X <= spam[ ,-ncol (spam) ]

gl <= glm(Y ~ ., data=X, family=binomial)

Which predictor variables seem to be important? Can for example check
which ones are significant in the GLM.

> summary (gl)

Call:

glm(formula = Y ~ ., family = binomial, data = X)

Deviance Residuals:

Min 10 Median 30 Max
-4.127e+00 -2.030e-01 -1.967e-06 1.140e-01 5.364e+00
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Spam Dataset

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.569e+00 1.420e-01 -11.044 < 2e-16 xxx*
make -3.895e-01 2.315e-01 -1.683 0.092388
address -1.458e-01 6.928e-02 -2.104 0.035362 =«
all 1.141e-01 1.103e-01 1.035 0.300759
num3d 2.252e+00 1.507e+00 1.494 0.135168
our 5.624e-01 1.018e-01 5.524 3.31e-08 *x*x
over 8.830e-01 2.498e-01 3.534 0.000409 xx*x
remove 2.279e+00 3.328e-01 6.846 7.57e-12 *x*x*
internet 5.696e-01 1.682e-01 3.387 0.000707 *xx*
order 7.343e-01 2.849%e-01 2.577 0.009958 *«
mail 1.275e-01 7.262e-02 1.755 0.079230
receive -2.557e-01 2.979e-01 -0.858 0.390655
will -1.383e-01 7.405e-02 -1.868 0.061773
people -7.961e-02 2.303e-01 -0.346 0.729557
report 1.447e-01 1.364e-01 1.061 0.288855
addresses 1.236e+00 7.254e-01 1.704 0.088370 .
business 9.599%9e-01 2.251e-01 4.264 2.01e-05 *x*x
email 1.203e-01 1.172e-01 1.027 0.304533
you 8.131e-02 3.505e-02 2.320 0.020334 =«
credit 1.047e+00 5.383e-01 1.946 0.051675
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Spam Dataset

your 2.419e-01 5.243e-02 4.615 3.94e-06 *x*x%
font 2.013e-01 1.627e-01 1.238 0.215838
num000 2.245e+00 4.714e-01 4.762 1.91e-06 *#*x
money 4.264e-01 1.621e-01 2.630 0.008535 **
hp -1.920e+00 3.128e-01 -6.139 8.31le-10 =***
hpl -1.040e+00 4.396e-01 -2.366 0.017966 =
george -1.177e+01 2.113e+00 -5.569 2.57e-08 *x*x
numé650 4.454e-01 1.991e-01 2.237 0.025255 =«
lab -2.486e+00 1.502e+00 -1.656 0.097744
labs -3.299e-01 3.137e-01 -1.052 0.292972
telnet -1.702e-01 4.815e-01 -0.353 0.723742
num857 2.549e+00 3.283e+00 0.776 0.437566
data -7.383e-01 3.117e-01 -2.369 0.017842 =«
num415 6.679e-01 1.601e+00 0.417 0.676490
num85 -2.055e+00 7.883e-01 -2.607 0.009124 =%
technology 9.237e-01 3.091le-01 2.989 0.002803 **
numl 999 4.65le-02 1.754e-01 0.265 0.790819
parts -5.968e-01 4.232e-01 -1.410 0.158473
pm -8.650e-01 3.828e-01 -2.260 0.023844 =«
direct -3.046e-01 3.636e-01 -0.838 0.402215
cs -4.505e+01 2.660e+01 -1.694 0.090333 .
meeting -2.689e+00 8.384e-01 -3.207 0.001342 =%
original -1.247e+00 8.064e-01 -1.547 0.121978
project -1.573e+00 5.292e-01 -2.973 0.002953 *x*
re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
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Spam Dataset
edu -1.459e+00 2.686e-01 -5.434 5.52e-08 x**
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672 =
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 =*x*
charRoundbracket -1.881le-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ##*x
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 *x*x%
charHash 2.403e+00 1.113e+00 2.159 0.030883 =«
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitallong 9.118e-03 2.521e-03 3.618 0.000297 xxx*
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 *x*x

Signif. codes: 0 ’"x%x%x’ 0.001 "%’ 0.01 '« 0.057.” 0.1 7 ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom

AIC: 1931.8

Number of Fisher Scoring iterations: 13

178

Spam Dataset

How good is the classification?

> proba <- predict (gl,type="response")
> predicted_spam <- as.numeric( proba>0.5)
> table (predicted_spam,Y)
Y
predicted_spam 0 1
0 2666 194
1 122 1619

> predicted_spam <- as.numeric( proba>0.99)
> table (predicted_spam,Y)

Y
predicted_spam 0 1
0 2776 1095
1 12 718

So out of 730 emails marked as spam, 12 were actually not spam.
Advantage of a probabilistic approach: probabilities give interpretable
confidence to predictions.

Spam Dataset

Success rate is calculated on the same data that the GLM is trained on!
Separate in training and test set.

n <- length(Y)

i <- sample( rep(c(TRUE,FALSE),each=n/2),round(n) ,replace=FALSE )

train <- (1:n)[1i]
test <-= (l:n)[!'i]

Fit only on training set and predict on both training and test set.

gl <- glm(Y[train] ~ ., data=X[train, ], family=binomial)

proba_train <- predict (gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

predicted_spam_train <- as.numeric(proba_train > 0.95)
predicted_spam_test <- as.numeric(proba_test > 0.95)
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Spam Dataset

Results for training and test set:
> table (predicted_spam_train, Y[train])
predicted_spam_train 0 1

0 1403 354
1 11 567

> table (predicted_spam_test, Y([test])
predicted_spam_test 0 1

0 1346 351

1 28 541

It is no coincidence that test performance is worse than training performance.
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Spam Dataset

Compare with LDA.

library (MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda <- predict (lda_res,newdata=X[test,]) $posterior(,2]
predicted_spam_lda <- as.numeric (proba_lda > 0.95)

> table (predicted_spam_test, Y[test])

predicted_spam_test 0 1
0 1346 351
1 28 541

> table (predicted_spam_lda, Y[test])

predicted_spam_lda 0 1
0 1364 533
1 10 359

It seems as if LDA beats logistic regression here, but would need to adjust
decision threshold to get proper comparison. Use ROC curves.
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Performance Measures

» Confusion matrix:
True state | 0 1
Prediction 0 # true negative # false negative
1 # false positive  # true positive

Accuracy: (TP + TN)/(TP + TN + FP + FN).
Error rate: (FP + FN)/(TP + TN + FP + FN).
Sensitivity (true positive rate): 7P/(TP + FN).
Specificity (true negative rate): TN /(TN + FP).
Precision: TP/(TP + FP).

Recall: 7P/(TP + FN).

F1: harmonic mean of precision and recall.

vVYy vV VvV VvYVvYyYy

» As we vary the prediction
threshold ¢ from 0 to 1:
» Specificity varies from 0 to 1.
» Sensitivity goes from 1 to 0.

class 0 class 1

high S high
S minimize error o
sensitivity specificity
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ROC Curves

ROC curve plots sensitivity versus specificity as threshold varies.

cvec <- seq(0.001,0.999,1length=1000)
specif <- numeric (length (cvec))
sensit <- numeric (length (cvec))

for (cc in l:length(cvec)) {
sensit[cc] <- sum( proba_lda> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specif[cc] <- sum( proba_lda<=cvec([cc] & Y[test]==0)/sum(Y[test]==0)

}

plot (specif, sensit,xlab="SPECIFICITY",ylab="SENSITIVITY", type="1",1lwd=2)
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ROC Curves

ROC curve for LDA and logistic regression classification of spam dataset.
LDA = unbroken black line; LR = broken red line.

0.8 1.0

SENSITIVITY

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

SPECIFICITY
Obvious now that LR is better for this dataset than LDA, contrary to the first

impression.
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Overfitting in Logistic Regression

-6 -4 -2 0 2 4 6

dx <- c¢(-5,-4,-3,-2,-1,1,2,3,5)

d <- data.frame (dx)

x <- seq(-6,6,.1)

y <- ¢(0,0,0,1,0,1,1,1,1)

lr <- glm(y ~ ., data=d, family=binomial)

p <- predict (lr,newdata=data.frame (dx=x), type="response")
plot (x,p,type="1")

points (dx,y)
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Overfitting in Logistic Regression

1.0

0.8

0.4
I

0.2

T T T T T T T
-6 -4 -2 0 2 4 6

dx <- c¢(-5,-4,-3,-2,-1,1,2,3,5)

d <- data.frame (dx)

x <- seq(-6,6,.1)

y <- ¢(0,0,0,0,0,1,1,1,1)

lr <= glm(y ~ ., data=d, family=binomial)

p <- predict (lr,newdata=data.frame (dx=grid), type="response")
plot (x,p, type="1")

points (dx,y)
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Demo on Overfitting in Logistic Regression

True conditional probabilities in Red. Blue circles are training data, Black
curve is predicted conditional probability. 11 datasets are sampled from true
distribution and used to learn a logistic regression model with non-linear
features ¢(x) = (1,x,x%,..., 2"~ 1).
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Demo on Overfitting in Logistic Regression

## true conditional probabilities
truep <- function(x) {
return ( (pmax (exp (- (x-2) "2/4) ,exp (- (x+3)~2/4)) +.1) /1.2)
}
## features are {x"i)
phi <- function(x,deg) {
d <- matrix(0,length(x),deg+l)
for (i in O:deg) {
df,i+1] <= x ~ i
}
return (data.frame(d))
}
## demo learning logistic regression, with different datasets generated,
## and using different degree polynomials as features
demolearn <- function(trainx,testx,truep,deg) {
trainp <- truep (trainx)
testp <- truep(testx)
par (mfrow=c (3, 4) , ann=FALSE, cex=.3,mar=c(1,1,1,1))
predp <- matrix(0,length (testx),11)
for (i in 1:11) {
trainy <- as.numeric(runif(length(trainx)) < trainp)
1r <- glm(trainy ~ .,data=phi(trainx,deg),family=binomial)
predpl,i] <- predict (1r,newdata=phi (testx, deg),type="response")
plot (testx, testp, type="1",col=2, lwd=3, ylim=c(-.1,1.1))
lines (testx,predp[,i],type="1")
points (trainx,trainy,pch=1,col=4, cex=2)
}
plot (testx, testp, type="1", lwd=3,col=2,ylim=c(-.1,1.1))
for (i in 1:11) {
lines (testx,predp(,i], type="1")
}
return (predp)
}

trainx <- seq(-10,10,.5)
testx <- seq(-12,12,.1)
pp <- demolearn(trainx,testx,truep,4)
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Regularization

» Flexible models for high-dimensional problems require many parameters.

» With many parameters, learners can easily overfit to the noise in the
training data.

» Regularization: Limit flexibility of model to prevent overfitting.
» Typically: add term penalizing large values of parameters 6.

1 n
RETP(0) + ANONG = D log(1 +exp(—yi(a+b'x)) + Allb|2

i=1
where p € [1,2], and ||z]|, = (327, |5]?)!/# is the L, norm of b (also of
interest when p € [0, 1), but is no longer a norm).
» Also known as shrinkage methods—parameters are shrunk towards 0.

» Typical cases are p = 2 (Euclidean norm, ridge regression) and p = 1
(LASSO). When p < 1 itis called a sparsity inducing regularization.

» )\ is a tuning parameter (or hyperparameter) and controls the amount
of regularization, and resulting complexity of the model.

Bach, Sparse Methods in Machine learning. 190

Regularization

3
25 N
2 /
1.5 q
! —.01
—.10
— .50
0.5 —1.0H
—15
2.0
-5 -4 -3 -2 -1 0 1 2 3 4 5
L, regularization profile for different values of p.
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Sparsity Inducing Regularization
» Consider constrained optimization problem

meinRemp(G) st [|0]l; <~

» Lagrange multiplier A > 0 to enforce constraint,
min R (0) + A(|0] =)

» At the optimal value of A, the parameter 0 is the
one minimizing the regularized empirical risk
objective.

» Conversely, given ), there is a value of v such that
the corresponding optimal Lagrange multiplier is A.

» Using L, regularization, optimal 6 has 6, = 0.
» Generally: L, regularization leads to optimal
solutions with many zeros, i.e. the regression

function depends only on the (small) number of
features with non-zero parameters.

constraint |81 <y
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Demo on L; Regularized Logistic Regression

Use glmnet for regression with L, L, and combination regularization.
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testx Log Lambda

194

Demo on L; Regularized Logistic Regression

#% true conditional probabilities
truep <- function(x) {

return ( (pmax (exp (- (x-2)~2/4) ,exp (- (x+3) "2/4))+.1) /1.2)
b
#4# features are {x"i}
phi <- function(x,deg) {

d <- matrix(0,length(x),deg+l)

for (i in 0:deg) {

df,i+1] <= x ~ i

}

return (data.frame(d))
¥
## demo L1 regularized learning of logistic regression
## with different datasets generated, and using different
## degree polynomials as features

trainx <- seq(-10,10,.5)
testx < seq(-12,12,.1)

demolearnLl <- function(trainx,testx,truep,deg) {
trainp <- truep(trainx
testp <- truep(testx
trainy <- as.numeric(runif (length(trainx)) < trainp)
slr <- glmnet (as.matrix (phi(trainx,deg)),as.factor(trainy),
family="binomial")
s <- c¢(0,.0001,.001,.01,.05)
predp <- predict (slr,newx=as.matrix (phi (testx,deg)),
s=s, type="response")
par (mfrow=c (1,2) ,mar=c(4,4,1,2))
plot (testx, testp, type="1", col=2,lwd=3,ylim=c(-.1,1.1))
points (trainx, trainy,pch=1,col=4,cex=2)
for (i in l:dim(predp) [2]) {
lines (testx,predpl,i], type="1")
)
plot (slr, xvar="1lambda")
print (coef (slr,s))
return (predp)
}

demolearnLl (trainx, testx, truep, 10

Optimization

» Many more complex models in statistics and machine learning do not
have analytic solutions to ML estimators.

» In most models parameters are learned by some numerical optimization
technique.
min F(0)

0
How many minima are there?
How do we find optimal 6?
Are we guaranteed to find the global optimum 6*, rather just a local one?
How efficiently can we solve for 67
What if there are constraints?

vV V. v v Y
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Constrained Optimization Convex Optimization

» Optimization problems with constraints, e.g. » Afunction f : R — R is convex if

min  F(6) flax+ (1= a)y) < af(x) + (1 — a)f(y)
subjectto  g;(0) <0 fori=1,...,1
hi(0) =0 forj=1,...,J

for all x,y € RY, o € [0, 1].

» For smooth functions: Equivalent to 2nd )
i i ; : . rivative (Hessian) bein itivi a6+ (1-o0fty)
where g; enforce inequality constraints and 4; equality constraints. derivative (Hessian) being positive
. . . semidefinite. Floox+(1-00)y) fiy)
> CGan write this succinctly: » A programme is a convex programme if: e ea Ty

min F(60 > F(0) is convex,

HERd > gi(0) is convex for each i,

subjectto  g(f) <0 > h(0) = A0 + b is affine.

h(6) =0

where g : RY — R/ is a vector-valued function with g(6); = g;(6). Similarly
h(0) : R - R, x < yiff x; < yiVi.
» These problems are called programmes.

Examples: linear, quadratic, semidefinite
programming.

Convex programmes have a unique
minimum (typically), which can be
efficiently found.

197 Boyd and Vandenberghe, Convex Optimization. 2004. MOOC right now.

Constrained Optimization Convex Duality

» Say the minimum is p*, and occurred at 6*.

min  F(6) » The dual programme inverts the order of max and min:
eeRd
subject to gEB; =<0 p* = min An;z(t))i< L(O,\ k) > An;%); min L(0,\ k) =d
h(0) =0

where the dual optimum is d*.

» Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a
solution 6* is the optimal solution of a convex programme, if and only if
there are \* and x* (the dual optimal solution) such that:

» We can enforce constraints by using Lagrange multipliers or dual
variables \ ¢ R’ and x € R’.

» The optimization problem can be written as a mini-max optimization of

the Lagrangian: » Primal feasible: g(6*) < 0, h(0") = 0.
min max £(f,\, x) = min max F(0) + \"g(0) + " h(6) > Dual feasible: A" > 0.
0 A-0,k e 0 A-0,x g » (6*,)\*, k") is a saddle point of £: For every 0, A = 0, x, we have

L0", N\ k) < LON ") < LO,N KT
» Intuition: For any 6, we have:
> VoL(0%, N, k") = VoF(0°) + (X)) TVog(0*) + (k") TVeh(07) =0
» Complementary slackness: For every i,
max L(0,\, k) =

{—I—oo if there is some unsatisfied constraint,
A=0,k

F(0) if all constraints are satisfied. Agi(0")=0

So the outer minimization over 6 results in the same optimization problem.
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Linear Classification Support Vector Machines

» A dataset with {+1, —1} labels is linearly separable if there is a
hyperplane separating two classes.

» Typically there will be an infinite number of such separating gx)=a+b'x=0

» A hyperplane can be parametrized as:

hyperplanes.
with the classification given by sign(g(x)). 0 ° +
» Distance and classification of a point x; ° o X
o o . from hyperplane is g(x;)/||b||. .
, A + » Multiplying @ and b by ¢ > 0 does not ’ .
© affect result. Rescale such that margin © 0 L.
o * (closest distance of data vectors to 0y " N
+ hyperplane) is 1/||b]. S e +
o + + t
. + vila+b"x)/|1b]| = 1/1b]
o . . N yila+b"x) > 1
oo + " » Constrained optimization problem to solve for a, b:
. l 2
° + max  1/] ] - min 3|14
subject to  yi(a+b'x;) > 1 subjectto  yi(a+b'x)>1 foralli
201
Maximum Margin Classification Support Vector Machines
» Good choice of separating hyperplane: one with large margin. . 4 .
» Such a hyperplane will be defined by a number of data vectors close to > Introduce Lagrange multipliers A; > 0 to enforce constraints:
the boundary—the support vectors, leading to a method called support 1 n
. : — 22 (1 — v T
vector machines. min r{lgé(ﬁ(a,b, A) = 3 161~ + ; Ai(l —yi(a+b x))
o » KKT optimality conditions:
(o] o + N )
o o H H . * * A ko
. Zero derivatives: VaL(a* b*, \*) = ;Ai yi =0
+ n
o |e—t—> . VoL@ b* N) =b" = > Ay =0
+ i=1
o
o . . Primal feasibility: yila* + (b*)Tx) > 1
05 n Dual feasibility: Af >
. " . Complementary slackness: A (1= yila® + (") x) =0
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Support Vector Machines

» Substituting optimal ¢* and »* into Lagrangian leads to the dual
optimization problem:

n 1 n
max ZI: A= > A (a) T ()

ij=1

subject to Z Ayi=0
i=1
A=0
A quadratic programme. Standard solvers can be used to find optimal
A*in O(n?) cost.
» Those vectors with \; > 0 are called support vectors.
» Complementary slackness implies that if x; does not lie on boundary, then
Ai = 0, i.e. not a support vector.
» Discriminant function is

n
X)=a + Y Ny x
i=1

where a* can be solved by noting that y;¢(x;) = 1 for a support vector x;.
205

Soft-Margin Support Vector Machines

» For non-linearly separable datasets, we
can allow for margin violations

¢ = 1 —yi(a+b"x) if margin violated,
"o if not violated.

=max(0,1 — y,(a+b'x;)) o o "

» Penalizing violations by their magnitude, o I I
min l||b||2 + Cif 0o . +
a,b,& 2 —1 ! ° N
subjectto  y;(a + bTxi) >1-¢
&E>0

where C is a tuning parameter.
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Soft-Margin Support Vector Machines

» Introduce Lagrange multipliers A\; > 0, v; > 0 to enforce constraints:
L(a,b, &\, 7) = \b|\2+CZ§,+Z>\ a+b'x)) Z’y,f,

» KKT optimality conditions:

Zero derivatives: Vo L(a*, b*, &\ 7%) Z/\*y, =0
VpL(a*, b, €5\, 7%) Z)\ yix; =0
vfiﬁ(a*vb*vg*v)‘*7’7 ) = C_ )‘t* - i =0

Primal feasibility: yila* + (b*)Tx) > 1 - ¢
&0
Dual feasibility: Af >0
v =0
Complementary slackness: MN(1=& —yi(a 4+ () x) =0

Y& =0 207

Soft-Margin Support Vector Machines

» Setting derivatives of primal variables to zero leads to the dual
programme:

max Z)\ — Z Ny (x) T (x)

lJ 1
subject to Z)\,-y,« =0
0=xX=C

Only difference is the box constraint on \; € [0, C].
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Soft-Margin Support Vector Machines

» From primal programme, we can first minimize over ¢;’s, leading to an
unconstrained convex programme:

P PR - T
min 5\|b|| + CZmaX(O7 1 —yi(a+b'x))

i=1

» Interpretation: regularized empirical risk minimization with the hinge
loss.

R Hir;ge Losé (max(O‘,1—y(a+‘b’x)))
Log Loss (log(1+exp(-y(a+b’x)))) (|
----- 0-1 Loss (1/2+sign(-y(a+b'x))/2)
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Support Vector Machines — Discussion

» Multiclass classification: If there are more than two classes, there are
multiclass generalizations of the SVM.
» A simple practical idea: treat a multiclass problem as multiple binary
classification problems.
» One-vs-one: train K(K — 1) binary SVMs, for each pair of classes. At test
time, predict class that got the most votes.
» One-vs-rest: train K binary SVMs, one for each class vs all other classes. At
test time, predict class with largest discriminant value a; + b, x.
» Optimization for large scale problems:
» Standard quadratic programme solvers not scalable.
» Sequential minimal optimization (SMO): iterative solve pairs of \;’s.
» Pegasos : stochastic gradient descent on regularized hinge loss objective.
L, regularization controls overfitting.
Not probabilistic and cannot produce uncertainty estimates.
Statistical learning theory foundations.
Further readings:
» Bishop, Chapter 6.
» Christopher Burgess, A Tutorial on Support Vector Machines for Pattern
Recognition. 1998.

vvyVvYyy
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Nonlinear Methods

» Decision boundaries and
regression functions often need to
be nonlinear.

» One general approach: transform
data x — ¢(x).

» A global approach. Decisions and
optimal parameters depend on
whole training dataset.

» Alternative approach:

p(Y = 1]X = x) or f(x) depends
only on data cases in local
neighbourhood of x.

Local Methods
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k-Nearest Neighbours k-Nearest Neighbour Demo

» A simple, local, nonlinear,
non-model-based, method.

» Prediction at a data vector x is *
simply determined by the k& © - ..
nearest neighbours ney(x) of x ] ° P o N U +
among the training set. 0 0 3 w°2 " L bty
. . . o 4 oo % 8 ° ° o ° Ty + +
» Classification: predict the oo %o ° ol & o o « ft :ﬁﬁ LR S I
. . . °© & S [
majority vote of the neighbours: o 0 ° PRI 5 ++ o j ®o o Hypteas o
° ° . ° % o b= R +% o ° o . 5
KNN /.y . cy = | 89 & tE, o +°O 0080 T 0“0"04%1 oy
f (x)fargrlnax [{j € nex(x) : y; = 1}]. il Beegom %ﬁ%ﬁ L+ P R SR - S )
° o ° + 1 o9 o o o o O oo
000&5’08 PR 4 00 %o S o @ © ©° o
<] § oy i °q ° o “eoo
» Regression: predict the average . ’ + ° o @°
among the neighbours: : : : : : : 7 o °
-4 -2 0 2 4 6 T T T
> yi -5 0 5
PNy — jEner(x) 77 .
ZjEnek(x) 1
Data
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k-Nearest Neighbours k-Nearest Neighbour Demo
» Nearest neighbours are simple and essentially model-free methods for ° x
classification. o
» Weaker modelling assumptions than e.g. LDA, Naive Bayes and logistic
regression. +
» These methods are not very useful for understanding relationships ~

between attributes and class predictions.
» As black box classification methods however, they are often perform
reasonably on real life problems and provide a good benchmark. .
» Can break down in high-dimensional data:

» Effectively, partitions input space into regions each containing k data points,
and prediction in each region estimated separately.
» In a space of dimension p > 0, number of regions needed is R = m”, so size

trainx], 2]

of dataset needed is km”.

trainx[, 1]

Result of 1NN
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k-Nearest Neighbour Demo

trainx[, 2]
-4 -2
| |

-6

trainx[, 1]

Result of 3NN

k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 5NN

k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 11NN
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k-Nearest Neighbour Demo

trainx], 2]

trainx[, 1]

Result of 21NN
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k-Nearest Neighbour Demo

trainx[, 2]
-4 -2
| |

-6

-5 0

trainx[, 1]

Result of 31NN

k-Nearest Neighbour Demo

trainx[, 2]
-4 -2
| |

-6
1

-5 0

trainx[, 1]

Result of 51NN
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k-Nearest Neighbour Demo — R Code |

library (MASS)

## load crabs data data(crabs)

ct <- as.numeric(crabs[,1])-1+2« (as.numeric(crabs[,2])-1)
## project into first two LD

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict (cb.lda)

X <- as.matrix(cb.ldp$x[,1:2])

y <- as.numeric(crabs[,2])-1

x <= x + rnorm(dim(x) [1]*dim(x) [2])*1.5
egscplot (x, pch=2+y+1, col=1)

k <= 3

kNN <- function(k,x,y,gridsize=100) {

n <- length(y)
p <~ dim(x) (2]
i <- sample (rep (c (TRUE, FALSE) , each=n/2) , n, replace=FALSE)

train <= (1l:n)[i]
test  <- (1:n)[!i]
trainx <- x[train,]
trainy <- y[train]
testx <- x[test,]
testy <- y[test]

trainn <- dim(trainx) [1]
testn <- dim(testx)[1]

gridxl <- seq(min(x[,1]),max(x[,2]), length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix(expand.grid(gridxl,gridx2))
gridn <- dim(gridx) [1]

# calculate distances, smart and intelligently.
trainxx <- t((trainx+trainx) %+% matrix(l,p,1))

k-Nearest Neighbour Demo — R Code Il

testxx <- (testx+testx) %% matrix(l,p,1)

gridxx <- (gridxsgridx)  $+3% matrix(1l,p,1)

testtraindist <- matrix(l,testn,l) %% trainxx +
testxx %$x% matrix(l,1,trainn) -
2% (testx %x% t(trainx))

gridtraindist <- matrix(1l,gridn,1) %*3% trainxx +
gridxx %+% matrix(1l,1,trainn) -
2% (gridx %*% t(trainx))

# predict

testp <- numeric(testn

gridp <- numeric (gridn)

for (3 in l:testn) {
nearestneighbors <- order (testtraindist[j,]) [1:k]
testp[j] <- mean(trainy[nearestneighbors])

}

for (j in l:gridn) {
nearestneighbors <- order (gridtraindist[j,]) [1:k]
gridp[j] <- mean(trainy[nearestneighbors])

1

predy <- as.numeric(testp>.5)

plot (trainx[,1],trainx[,2],pch=trainy+3+1, col=4, lwd=.5)

points (testx[,1],testx[, 2], pch=testy3+1, col=2+ (predy==testy), lud=3)

contour (gridxl, gridx2,matrix (gridp, gridsize, gridsize),
levels=seq(.1,.9,.1),lwd=.5, add=TRUE)

contour (gridxl,gridx2, matrix (gridp, gridsize,gridsize),
levels=c(.5), lwd=2, add=TRUE)
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Asymptotic Performance of 1NN
» Let (x;,y:)7_, be training data where x; € R” and y; € {1,2, ...,K}.
» We define

VBayes (x) = argmax mf (x)
le{l1,...,K}

and
YinN (x) = y (nearest neigbour of x) .

» The (optimal) Bayes risk and 1NN risk are:

RBayes = E [H (Y 7é ?Bayes (X))]
Rine = E[H(Y#)AGNN(X))}

» As n — oo, we have the following powerful result

RBayes <RiNN < 2RBayes - fRBayes-

K-Nearest Neighbours — Discussion

» kNN is sensitive to distances: normalize data and find suitable metric.
» Choice of k important: controls flexibility of model.

» Computational cost of kNN is very high.

» Need to store all training data.

» Need to compare each test data vector to all training data.

> Need a lot of data in high dimensions.

» Mitigation techniques:

» Compute approximate nearest neighbours, using kd-trees, cover trees,
random forests.

» Apply K-means to data in each class, to reduce size of data (need to use
large K).
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Non-linear Problems

» Linear methods (PCA, LDA, linear and logistic
regression) are simple and effective
techniques to learn from data “to first order”.

» To capture more intricate information from
data, flexible, non-linear methods are often
needed.

» Explicit non-linear transformations x — ¢(x).
» Local methods like KNN.

» Kernel methods: introduce non-linearities
through implicit non-linear transforms, often
local in nature.

The Kernel Method

» Back to the soft-margin SVM. The dual objective is:

n 1 .
In)f\iX Zl i — 5 Z )\i)\jyiyj(b(xi)T(b(xj) subject to

ij=1

227

0=Xx=xcC

{Z?:l Aiyi=0

» Suppose p = 2, and we would like to introduce quadratic non-linearities,

o(x;) = (1, V2xi, V2xi0, X, Xy, xi1xin)

Then

2.2 2.2
d(xi) To(x;) = 1+ 2xx51 + 2xxp + X515 + XXy + Xit XiXji X2

= (1+x'x)?

» Since only dot-products are needed in the objective function, non-linear

transform need not be computed explicitly!

» Generally, m-order interactions can be implemented simply by
d(x;) To(x;) = (1 +xx;)™. This is called a polynomial kernel.
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The Kernel Method

» The Gram matrix is the matrix of dot-products, B; = ¢(x;) " ¢(x;).

— plx) T —

- ¢(xn)-r -
» Since B = ®® T, it is symmetric and positive semidefinite.
» The Gram matrix is sufficient for training the soft-margin SVM.

¢ 1 - . Z?:] Aiyi =0
max ; Ai — 3 Z AiNYiyiBij subject to 0= A= C

ij=1
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The Kernel Method

» Akernel is a function x : X x X — R such that:
» Symmetric: k(x,x') = (X', x).
» Positive semidefinite: given any finite set {x;}/_, C X, the matrix B € R"*"
with entries B; = x(x;, x;) is positive definite. Equivalently, for any ¢ € R",

Zn: Zn: cicik(xi, x5) >0

i=1 j=1

» Mercer’s Theorem: if x is continuous, symmetric and positive
semidefinite, then there is a function ¢ : X — H into a Hilbert space H
with inner product (-, -, ) such that

K(x,x') = (¢(x), ¢(x'))
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The Kernel Method
w(x,x") = (p(x), p(x))

» We do not need to compute the features ever—the Gram matrix is
sufficient for learning and prediction. The discriminant function
(absorbing a into b) is

2(x) = > Nyis(n) To(x) = D Nyin(x;, x)
i=1 i=1

» The function ¢ can be interpreted as non-linear features of our data
vectors x € X.

» Generally, the Hilbert space can be infinite-dimensional, so we are
effectively computing an infinite number of features of our data, and
learning a SVM based on all features.

» There are an infinite number of parameters in the SVM—a
nonparametric method.

» The L, regularization of SVMs is very important to prevent overfitting.
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Examples of Kernels

» Polynomial kernel:
k(X)) = (1+x"x)"

» Gaussian, radial-basis function (RBF), or squared-exponential
kernel:

1
o) = exp (=3 1=

This leads to a discriminant function of form

n . 1
g(x) = Ayiexp [ —lx — x5,
i=1 2

A local method very similar to kNN.
» If k1 and k, are both kernels, then so are kernels defined by

/i3(x7x/) = Kl(xvx/) + K2(x7x/)

k(6 x") = k1 (6, %) X Ko (x, 1))
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Kernel SVM Demo

library (MASS)

library (e1071)

## load crabs data, project onto LD space, add noise.
data (crabs)

ct <- as.numeric(crabs[,1])-1+2x*(as.numeric(crabs[,2])-1)
cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict (cb.lda)

x <- as.matrix(cb.ldp$x[,1:2])

y <- as.numeric(crabs[,2])-1

X <= x + rnorm(dim(x) [1]+dim(x) [2])+1.5

gridsize <- 100

xlim <- c(min(x[,1]),max (x[,1]))

ylim <= c(min(x[,2]),max (x[,2]))

gridxl <- seq(xlim[1],x1lim[2],length=gridsize)

gridx2 <- seq(ylim[1],ylim[2], length=gridsize)

gridx <- as.matrix(expand.grid(gridxl,gridx2))
gridn <- dim(gridx) [1]

plot (x,pch=2xy+1, col=1,xlim=xlim, ylim=ylim)

n <- length(y)
P <= dim(x) [2]
i <- sample (rep (c (TRUE, FALSE) , each=n/2),n, replace=FALSE)

train <- (l:n)I[i]
test <= (1l:n)[!i]
trainx <- x[train,]

trainy <- y([train]
testx <- x[test,]
testy <- y[test]

svmdemo <- function (kernel,gamma=1,coef0=0,cost=1,degree=3) {
model <- svm(trainx,trainy,kernel=kernel,gamma=gamma, coef0=coef0, degree=degree, cost=cost)
gridp <- predict (model,gridx)
predy <- as.numeric(predict (model,testx)>.5)
plot (trainx[,1],trainx[,2],pch=trainy*3+1, col=4, lwd=.5, xlim=xlim, ylim=ylim)
points (testx[,1], testx[,2],pch=testyx3+1, col=2+ (predy==testy) , lwd=3)
contour (gridxl, gridx2, matrix (gridp, gridsize,gridsize), levels=seq(.1,.9,.1),lwd=.5, add=TRUE)
contour (gridxl, gridx2, matrix (gridp, gridsize, gridsize), levels=c(.5), lwd=2, add=TRUE)
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Kernel Methods — Discussion

» The kernel method allows for very flexible and powerful machine learning
models.

» Kernels can be defined over much more complex structures than vectors,
e.g. graphs, strings.

» Can be hard to interpret.
O(n®) computation and O(n?) memory cost can be prohibitive.
Further readings:

» Bishop, Chapter 6.

» Christopher Burgess, A Tutorial on Support Vector Machines for Pattern
Recognition. 1998.

» Rasmussen and Williams, Gaussian Processes for Machine Learning. 2006.
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