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Course webpage:
http://www.stats.ox.ac.uk/~teh/smldm.html

Lecturer: Yee Whye Teh
TA for Part C: Thibaut Lienant
TA for MSc: Balaji Lakshminarayanan and Maria Lomeli

Please subscribe to Google Group:
https://groups.google.com/forum/?hl=en—-GB#! forum/smldm

Sign up for course using sign up sheets.

Course Structure

Lectures

» 1400-1500 Mondays in Math Institute L4.
» 1000-1100 Wednesdays in Math Institute L3.
Part C:
» 6 problem sheets.
» Classes: 1600-1700 Tuesdays (Weeks 3-8) in 1 SPR Seminar Room.
» Due Fridays week before classes at noon in 1 SPR.
MSc:
4 problem sheets.
Classes: Tuesdays (Weeks 3, 5, 7, 9) in 2 SPR Seminar Room.
Group A: 1400-1500, Group B: 1500-1600.
Due Fridays week before classes at noon in 1 SPR.
Practical: Week 5 and 7 (assessed) in 1 SPR Computing Lab.
Group A: 1400-1600, Group B: 1600-1800.
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Course Aims

1. Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2. Have ability to identify and use appropriate methods and models for given
data and task.

3. Understand the statistical theory framing machine learning and data
mining.

4. Able to construct appropriate models and derive learning algorithms for
given data and task.



What is Machine Learning?

What's out there?

How does world work?
What's going to happen?
What should i do?
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What is Machine Learning?
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What is the Difference?

Traditional Problems in Applied Statistics

Well formulated question that we would like to answer.
Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

» Improvements in computers and data storage devices.
» Powerful data capturing devices.

» Lots of data with potentially valuable information available.



What is the Difference?

Data characteristics
» Size

Dimensionality

Complexity

Messy

Secondary sources

Focus on generalization performance

» Prediction on new data
» Action in new circumstances

» Complex models needed for good generalization.

Computational considerations

» Large scale and complex systems

Applications of Machine Learning

» Pattern Recognition
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Sorting Cheques
Reading License Plates
Sorting Envelopes

Eye/ Face/ Fingerprint Recognition
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Applications of Machine Learning

» Business applications

» Help companies intelligently find information

» Credit scoring

» Predict which products people are going to buy
» Recommender systems

» Autonomous trading

» Scientific applications

» Predict cancer occurence/type and health of patients/personalized health
» Make sense of complex physical, biological, ecological, sociological models

Further Readings, News and Applications

Links are clickable in pdf. More recent news posted on course webpage.
» Leo Breiman: Statistical Modeling: The Two Cultures
» NY Times: R
» NY Times: Career in Statistics

NY Times: Data Mining in Walmart

NY Times: Big Data’s Impact In the World

Economist: Data, Data Everywhere

McKinsey: Big data: The Next Frontier for Competition

NY Times: Scientists See Promise in Deep-Learning Programs

New Yorker: Is “Deep Learning” a Revolution in Artificial Intelligence?
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Types of Machine Learning

Unsupervised Learning
Uncover structure hidden in ‘unlabelled’ data.
» Given network of social interactions, find communities.

» Given shopping habits for people using loyalty cards: find groups of
‘similar’ shoppers.

» Given expression measurements of 1000s of genes for 1000s of patients,
find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.

Types of Machine Learning

Supervised Learning
A database of examples along with “labels” (task-specific).
» Given network of social interactions along with their browsing habits,
predict what news might users find interesting.

» Given expression measurements of 1000s of genes for 1000s of patients
along with an indicator of absence or presence of a specific cancer,
predict if the cancer is present for a new patient.

» Given expression measurements of 1000s of genes for 1000s of patients
along with survival length, predict survival time.

Goal: Prediction on new examples.

Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize its reward.

OxWaSP

Oxford-Warwick Centre for Doctoral Training in Statistics

» Programme aims to produce EuropeOs future research leaders in
statistical methodology and computational statistics for modern
applications.

» 10 fully-funded (UK, EU) students a year (1 international).
» Website for prospective students.
» Deadline: January 24, 2014



Exploratory Data Analysis

Notation

» Data consists of p measurements (variables/attributes) on n examples
(observations/cases)

» X is an x p-matrix with X;; := the j-th measurement for the i-th example

X1 X2 ... X3y ... Xip
X211 X220 ... ij e sz
X =
Xil X oo X Xjp
L Xnl Xp2 oo Xy ... Xpp |

» Denote the ith data item by x; € R”. (This is transpose of ith row of X)

» Assume xi,...,x, are independently and identically distributed
samples of a random vector X over R”.

Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on:

» the width of the frontal lobe FL,

» the rear width rRw,

the length along the carapace midline CL,

» the maximum width cw of the carapace, and
the body depth BD in mm.

in addition to colour (species) and sex.
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Crabs Data |

## load package MASS containing the data

library (MASS)
## look at data
crabs

## assign predictor and class variables
Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs[,1],crabsl[,2]

## various plots
boxplot (Crabs)

hist (CrabsS$FL,col='red’,breaks=20, xname='Frontal Lobe Size
hist (CrabsS$RW, col='red’,breaks=20, xname='Rear Width

_llll))

(mm) ")

(
hist (Crabs$CL, col='red’ ,breaks=20, xname='Carapace Length (mm)’)
hist (Crabs$CW, col='red’ ,breaks=20, xname='Carapace Width (mm)’)
(

hist (Crabs$BD, col=’'red’ ,breaks=20, xname='Body Depth

plot (Crabs, col=unclass (Crabs.class))

parcoord (Crabs)

Crabs data

sp sex index
1 B M 1
2 B M 2
3 B M 3
4 B M 4
5 B M 5
6 B M 6
7 B M 7
8 B M 8
9 B M 9
10 B M 10
11 B M 11
12 B M 12
13 B M 13
14 B M 14
15 B M 15
16 B M 16
17 B M 17
18 B M 18
19 B M 19
20 B M 20
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Univariate Boxplots
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Univariate Histograms
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Simple Pairwise Scatterplots
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Visualization and Dimensionality Reduction

These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Visualizing higher-dimensional problems:

» We are constrained to view data in 2 or 3 dimensions
» Look for ‘interesting’ projections of X into lower dimensions

» Hope that for large p, considering only k < p dimensions is just as
informative.

Dimensionality reduction
» For each data item x; € R?, find a lower dimensional representation
zi € R with k < p.

» Preserve as much as possible the interesting statistical
properties/relationships of data items.
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Principal Components Analysis (PCA)

» PCA considers interesting directions to be those with greatest variance.
» A linear dimensionality reduction technique:

» Finds an orthogonal basis v;,v,, ..., v, for the data space such that

» The first principal component (PC) v, is the direction of greatest variance of
data.

» The second PC v, is the direction orthogonal to v, of greatest variance, etc.

» The subspace spanned by the first k PCs represents the 'best’ k-dimensional
representation of the data.

» The k-dimensional representation of x; is:

k
Zi — VTX[ = Zv?xi
=1
where V € RP*k,

» For simplicity, we will assume from now on that our dataset is centred, i.e.
we subtract the average x from each x;.
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Principal Components Analysis (PCA)
» Our data set is an iid sample of a random vector X = [X; ...XP]T.
» For the 1* PC, we seek a derived variable of the form
Zy =viXi +viXo + -+ vipX, = v X
where v; = [v11,...,vi,] | € R? are chosen to maximise
Var(Z;).
To get a well defined problem, we fix

v;—vl =1.

» The 2™ PC is chosen to be orthogonal with the 1 and is computed in a
similar way. It will have the largest variance in the remaining p — 1
dimensions, etc.

27

Principal Components Analysis (PCA)

28



Deriving the First Principal Component
» Maximise, subject to v v; = 1:

Var(Z;) = Var(v] X) = v Cov(X)v; ~ v| Sv;

where S € R?*? is the sample covariance matrix, i.e.

I < T I o7 Lo
— l._’ i_7 = X, = X' X.
S E (xi — X)(x; — %) p— iglxxl —

n—14%
i=1

» Reuwriting this as a constrained maximisation problem,
£(V1,>\1) = VTSV] - )\1 (v?—vl - 1) .

» The corresponding vector of partial derivatives yields
aﬁ(\/l ; )\] )

=28v; — 2\ .
o, Vi 11

» Setting this to zero reveals the eigenvector equation, i.e. v; must be an
eigenvector of S and )\, the corresponding eigenvalue.

» Since v Sv; = A\jvv; = )y, the 1¥ PC must be the eigenvector
associated with the largest eigenvalue of S.
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Deriving Subsequent Principal Components

» Proceed as before but include the additional constraint that the 24 PC
must be orthogonal to the 1% PC:

L (va, A, 1) = vasz -\ (v;vz - l) — 1 (V?vz) .

» Solving this shows that v, must be the eigenvector of S associated with
the 2"¢ largest eigenvalue, and so on

» The eigenvalue decomposition of S is given by
S=VAVT
where A is a diagonal matrix with eigenvalues
AM>A2>--2>27,20

and Vis a p x p orthogonal matrix whose columns are the p eigenvectors
of §, i.e. the principal components vy, ..., v,.

30

Properties of the Principal Components

» PCs are uncorrelated

Cov(XTvi,XTv]-) = viTSvj =0fori#j.
» The total sample variance is given by
P
D Si=M+. N,
i=1
so the proportion of total variance explained by the " PC is

Ak
Mttt

k=1,2,....p

» S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.

» Derived variables Z, ..., Z, have variances A, ..., \,.
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R code

This is what we have had before:

library (MASS)

Crabs <- crabs[,4:8]

Crabs.class <- factor (paste(crabs|[,1],crabs[,2],sep=""))
plot (Crabs, col=unclass (Crabs.class))

Now perform PCA with function princomp. (Alternatively, solve for the PCs
yourself using eigen or svd).

Crabs.pca <- princomp (Crabs, cor=FALSE)
plot (Crabs.pca)
pairs (predict (Crabs.pca), col=unclass (Crabs.class))

32



Original Crabs Data
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PC2vs PC3
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PCA on European Genetic Variation
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Comments on the use of PCA

v

v

v

v

PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two moments.
Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

PCA commonly used for lossy compression of high dimensional data.
Emphasis on variance is where the weaknesses of PCA stem from:

» The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from Corr(X) instead of Cov(X).

» Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.

38

Eigenvalue Decomposition (EVD)

Eigenvalue decomposition plays a significant role in PCA. PCs are
eigenvectors of § = ﬁXTX and PCA properties are derived from those of
eigenvectors and eigenvalues.

» For any p x p symmetric matrix S, there exists p eigenvectors vy, ..., v,
that are pairwise orthogonal and p associated eigenvalues A;,..., \,
which satisfy the eigenvalue equation Sv; = \v; Vi.

» S can be written as S = VAV where

> V =|[vi,...,v] is ap x p orthogonal matrix
> A=diag{\i,...., N}
» If Sis a real-valued matrix, then the eigenvalues are real-valued as well,
Ai € RVi
» To compute the PCA of a dataset X, we can:
» First estimate the covariance matrix using the sample covariance S.
» Compute the EVD of S using the R command eigen.

Singular Value Decomposition (SVD)

Though the EVD does not always exist, the singular value decomposition is
another matrix factorization technique that always exist, even for non-square
matrices.
» X can be written as X = UDV T where
» U is an n x n matrix with orthogonal columns.
» Dis an x p matrix with decreasing non-negative elements on the diagonal
(the singular values) and zero off-diagonal elements.
» Vis ap x p matrix with orthogonal columns.
» SVD can be computed using very fast and numerically stable algorithms.
The relevant R command is svd.

39
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Some Properties of the SVD

» Let X = UDVT be the SVD of the n x p data matrix X.
» Note that

n—1S=X"X=(upv")"(ubv")=vD"UTUDVT =VvD"DVT,
using orthogonality (UT U = I,,) of U.

» The eigenvalues of S are thus the diagonal entries of —-D? and the

n—1

columns of the orthogonal matrix V are the eigenvectors of S.
» We also have

XX" = (upv")y(ubv")T =ubv'vD"UT =UDD"UT,

using orthogonality (V' V = 1,) of V.
» SVD also gives the optimal low-rank approximations of X:

min ||X — X||*  s.t. X has maximum rank r < n, p.
X

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.

4

Biplots

» PCA plots show the data items (as rows of X) in the PC space.

» Biplots allow us to visualize the original variables (as columns X) in the
same plot.

» As for PCA, we would like the geometry of the plot to preserve as much
of the covariance structure as possible.

42

Biplots

Recall that X = [Xj,...,X,]" and X = UDV is the SVD of the data matrix.
» The PC projection of x; is:

Zi = VTX,' = DUIT = [DHU,'], e ,DkkUik]T.

» The jth unit vector e; € R” points in the direction of X;. Its PC projection is
V" = Ve, the jth row of V.

» The projection of the variable indicates the weighting each PC gives to
the original variables.

» Dot products between the projections gives entries of the data matrix:
4

xj =Y UaDuVi = (DU, V"),
k=1

» Distance of projected points from projected variables gives original
location.
» These relationships can be plotted in 2D by focussing on first two PCs.

43

Biplots
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Biplots

» There are other projections we can consider for biplots:

14
xj= Y UaDuVi = (DU, V") = (D'~*U] ,D*V]T).

k=1

where 0 < a < 1. The a = 1 case has some nice properties.

» Covariance of the projected points is:

n—-li

n—1

! Zn:U,TU,: L
=1

Projected points are uncorrelated and dimensions are equi-variance.

» The covariance between X; and X, is:

1
Var(X;X;) = m(DVjT,DV[ )

So the angle between the projected variables gives the correlation.
» When using k < p PCs, quality depends on the proportion of variance

explained by the PCs.

Biplots

Comp.2

pc <- princomp (x)
biplot (pc, scale=0)
biplot (pc, scale=1)

-0.1 0.0 0.1 0.2
I

-0.2
I

45

30 55 g3
59 25

X1 28 43

Y AR
7080 5o~

61174 59
89~ SB15954

8
66~ 46 99
571

X2
92
25 o

90

77

18
5
6 82
ey 94@1%65520
a ¥
%0 125
1 19
84
2% 49 7
64

88
73

2 58 93
[t &7

69

62

S

616
7 STES
76

4
9% | 2
T

T T
-0.2 -0.1

T T
0.0 0.1

Comp.1

46

Iris Data

50 sample from 3 species of iris: iris setosa,
versicolor, and virginica

Each measuring the length and widths of

both sepal and petals

Collected by E. Anderson (1935) and

analysed by R.A. Fisher (1936)

Using again function princomp and biplot.

irisl <- iris

irisl <- irisl[,-5]

biplot (princomp (irisl, cor=T))

Iris Data
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests, cor=T)
plot (usarrests.pca)

pairs (predict (usarrests.pca))
biplot (usarrests.pca)
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US Arrests Data Pairs Plot
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US Arrests Data Biplot
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Multidimensional Scaling

Suppose there are n points X in R”, but we are only given the n x n matrix D of
inter-point distances.

Can we reconstruct X?
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Multidimensional Scaling

Rigid transformations (translations, rotations and reflections) do not change
inter-point distances so cannot recover X exactly. However X can be
recovered up to these transformations!

» Let d; = ||lx; — x;]|» be the distance between points x; and x;.
d; = |xi—xl3

= (%) (x—x)

_ T T T,
= X X+x x—2x x

» Let B =XX" be the n x n matrix of dot-products, b; = x; x;. The above
shows that D can be computed from B.

» Some algebraic exercise shows that B can be recovered from D if we
assume > | x; =0.

53

Multidimensional Scaling

» If we knew X, then SVD gives X = UDV . As X has rank k = min(n, p),
we have at most k singular values in D and we can assume U € R"*,
D € R¥P and vV € RP>P,

» The eigendecomposition of B is then:

B=XX'=UDD"U" = UAU".

» This eigendecomposition can be obtained from B without knowledge of X!
» Letx = U;A? be the ith row of UAz. Pad & with Os so that it has length p.

=T~ _ T _ ——
X X = UAU; = b = x; x;

and we have found a set of vectors with dot-products given by B.

» The vectors ; differs from x; only via the orthogonal matrix V so are
equivalent up to rotation and reflections.
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US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric
MDS finds a configuration with the same distance matrix.

ATLA CHIG DENV HOUS LA MIAM NY SF SEAT DC

0 587 1212 701 1936 604 748 2139 2182 543
587 O 920 940 1745 1188 713 1858 1737 597
1212 920 O 879 831 1726 1631 949 1021 1494
701 940 879 O 1374 968 1420 1645 1891 1220
1936 1745 831 1374 0 2339 2451 347 959 2300
604 1188 1726 968 2339 0 1092 2594 2734 923
748 713 1631 1420 2451 1092 O 2571 2408 205
2139 1858 949 1645 347 2594 2571 0 678 2442
2182 1737 1021 1891 959 2734 2408 678 O 2329

543 597 1494 1220 2300 923 205 2442 2329 0
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US City Flight Distances

library (MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/smldm/data/uscities.csv")

## use classical MDS to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale (d=us, k=2)

plot (us.classical)
text (us.classical, labels=names (us))
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US City Flight Distances
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In classical MDS derivation, we used all eigenvalues in the

eigendecomposition of B to reconstruct

X = U,‘A5 .

We can use only the largest k < min(n, p) eigenvalues and eigenvectors in the
reconstruction, giving the ‘best’ k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of XX are

used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same

result.
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Crabs Data

library (MASS)
Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs[,1],crabs[,2],sep=""))

crabsmds <- cmdscale (d= dist (Crabs), k=2)

plot (crabsmds, pch=20,

cex=2,col=unclass (Crabs

.class))

MDS 2
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Crabs Data

Compare with previous PCA analysis.
Classical MDS solution corresponds to the first 2 PCs.

Comp.1

Compa || Sgdihe

Comp.s
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Example: Language data

Presence or absence of 2867 homologous traits in 87 Indo-European

languages.
> X[1:15,1:16]

V1 v2 V3 v4 V5 V6 V7 v8 V9 V10 V11 v12 V13

Irish_A o 0o 0 0 1 0 0 0 o0 0
Irish_B o 0o 0 0 1 0 0 0 O 0
Welsh_N o 0 01 0 O 0O 0 O 0
Welsh_ C o 0o 0 1 0 O 0 0 O 0
Breton_List o 0o 0 0 1 0 0 0 O 0
Breton_SE o o0 o o 1 o 0 0 o 0
Breton_ST o 0 o o 1 O 0 o0 o 0
Romanian_List o 1 0 o O O O 0 oO 0
Vlach o1 0 O O O 0O 0 O 0
Italian o 1 0 O 0O O 0 0 o0 0
Ladin o 1 0 O 0O O 0 0 o0 0
Provencal o 1 0 0O 0O O 0 0 o0 0
French o 1 0 0O 0O O 0 0 o0 0
Walloon o 1 0 0O O O 0 0 O 0
French_Creocle_.C 0 1 0 0O O O O 0 O 0
Example: Language data
Using MDS with non-metric scaling.
& Panjabi_sf> Gypsy_Gk
< Bengali & Lahnda 3 Ossetic
© O Gujarati ¢ Hindi * Tywbersia*whm
°© & Nepalighistarathi & Singhalese
< Khaskura & Kashmiri 2 Ao BRI ¥ Afghan
< ® Armenian M:m * Wakhi
[S] & Albanian_K -
& Albanian_C X Bulgatfalfiacedonian
~ & Albanian_T A Catalan
S & Albanian_Top X Czech_E X;uf::;r"gr%{bﬂcmaﬂan A Sardinian N A Provencal
A Ladin A Fren
& Abanian G < RN zech A Sardinian G A French,
g X Byelorussigfovak X Slovenian A Sardingghiian & Walloon

-0.4 -0.2

-0.6

« poidh RUSSian
o HiTe A Spanigh Portugu
A Viach A Braziian
X Lithuanian_O A Romanian_List
@ TOCHARIAN.E thuanian_ST
X Latvian
@® TOCHARIAN_A

O Breton_Si

+ Frisian
BR1Erele. ST

o Duteh_List o BRiBicl

 Greek iireek K + Danish  + Flemish
+ Afrikaans O Welsh G

v %'Eeaké”gk o + Riksmal s O Welsh_N

L erman_ST
v Greek_Mod + sweaist il — Penn_Dutch
+ Faroese O tish B

+ leeleni§acgh Up, — o Irish_A
T T
-0.5 0.0 0.5

0

O O O OO OO0 OO oo oo

0

O O O O OO OO0 oOoo oo o

O O O OO OO0 OO0 oo oo

2
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Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which
represents data points xy, ... ,x, € R” in a lower-dimensional space
21, ...,2, € RF which tries to preserve inter-point (dis)similarities.

» |t requires only the matrix D of pairwise dissimilarities
dlj = d(xi,dj).
For example we can use Euclidean distance d; = ||x; — x;||». Other
dissimilarities are possible. Conversely, it can use a matrix of similarities.

» MDS finds representations zi, . .. ,z, € R* such that

d(x;, %) ~ dy = d(z;,3)),

where d represents dissimilarity in the reduced k-dimensional space, and
differences in dissimilarities are measured by a stress function S(d;, d;;).

Varieties of MDS

Choices of (dis)similarities and stress functions lead to different objective
functions and different algorithms.

» Classical - preserves similarities instead

S(Z) = (si— (z—25-2)

i#j

» Metric Shepard-Kruskal

S(Z) =" (dy -

7]

» Sammon - preserves shorter distances more

S(Z) = Z (dj — llzi — ll2)?

7

» Non-Metric Shepard-Kruskal - ignores actual distance values, only ranks

> (edy) — llzi — zll2)?
”

S(Z) = min
g increasing <—
i#j

llzi —

djj

5ll2)*
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:

» To visualize the (dis)similarities among items in a dataset, where these
(dis)disimilarities may not have Euclidean geometric interpretations.
» To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).

high-dim distribution high-dim samples estimated manifold
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Isomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs in its estimate of distances dj;.

1. Calculate distances d;; fori,j = 1,...,n between all data points, using the
Euclidean distance.

2. Form a graph G with the n samples as nodes, and edges between the
respective K nearest neighbours.

3. Replace distances d;; by shortest-path distance on graph dg and perform
classical MDS, using these distances.

A

Examples from Tenenbaum et al. (2000).
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Handwritten Characters
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Other Nonlinear Dimensionality Reduction Techniques Neural Spike Waveforms
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Clustering

>

v

v

v

v

Many datasets consist of multiple heterogeneous subsets. Cluster
analysis is a range of methods that reveal this heterogeneity by
discovering clusters of similar points.
Model-based clustering:

» Each cluster is described using a probability model.
Model-free clustering:

» Defined by similarity among points within clusters (dissimilarity among points

between clusters).

Partition-based clustering methods:

» Allocate points into K clusters.
» The number of cluster is usually fixed beforehand or investigated for various
values of K as part of the analysis.

Hierarchy-based clustering methods:

» Allocate points into clusters and clusters into super-clusters forming a
hierarchy.

» Typically the hierarchy forms a binary tree (a dendrogram) where each
cluster has two “children”.
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Hierarchical Clustering

>

Hierarchically structured data can be found everywhere (measurements
of different species and different individuals within species), hierarchical
methods attempt to understand data by looking for clusters.
There are two general strategies for generating hierarchical clusters.
Both proceed by seeking to minimize some measure of dissimilarity.

» Agglomerative / Bottom-Up / Merging

» Divisive / Top-Down / Splitting
Hierarchical clusters are generated where at each level, clusters are
created by merging clusters at lower levels. This process can easily be
viewed by a dendogram/tree.
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Measuring Dissimilarity
To find hierarchical clusters, we need some way to measure the dissimilarity
between clusters

» Given two points x; and ;, it is straightforward to measure their
dissimilarity, say d(x;, x;) = ||x; — x;|2.

» It is unclear however how to extend this to measure dissimilarity between
clusters, D(C;, C;) for clusters C; and C;.

Many such proposals though no concensus as to which is best.
(a) Single Linkage
D(C;, Cj) = min (d(x,y)|x € Ci,y € C))
X,y

(b) Complete Linkage
D(C;, Cj) = max (d(x,y)|x € Ci,y € Cj)
X,y

(c) Average Linkage
D(Ci, ) = avg, , (d(x,y)lx € Ci,y € C))
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Measuring Dissimilarity

Cluster Distance

d15

d13+d14+d15+d23+d24+d25
[
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Hierarchical Clustering on Artificial Dataset

—40
L

77

Hierarchical Clustering on Artificial Dataset

#start afresh
dat=xclara #3000 x 2
library (cluster)

#plot the data
plot (dat, type="n")
text (dat, labels=row.names (dat))

plot (agnes (dat, method="single"))

plot (agnes (dat,method="complete"))
plot (agnes (dat,method="average"))
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Hierarchical Clustering on Artificial Dataset

Height

Hierarchical Clustering on Artificial Dataset

Height

140

120

100

80

Dendrogram of agnes(x = dat, method ="single")

dat
Agglomerative Coefficient = 0.93

Dendrogram of agnes(x = dat, method ="complete”)

dat
Agglomerative Coefficient = 0.99
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Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "average")

40

Height

i

dat
Agglomerative Coefficient = 0.99
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Using Dendograms

Different ways of measuring dissimilarity result in different trees.

Dendograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.

Dendograms show hierarchical clusters with respect to increasing values
of dissimilarity between clusters, cutting a dendogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects. Cutting horizontally
effectively reveals the state of the clustering algorithm when the
dissimilarity value between clusters is no more than the value cut at.

Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendograms that
allow clusters in high-dimensional data to be better understood.
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Hierarchical Clustering on Indo-European Languages
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K-means
Partition-based methods seek to divide data points into a pre-assigned
number of clusters Cy,. .., Cx where for all k, k" € {1,...,K},
K
Ccoc{1,....n}, CNCu =0 Vk#K, Ua={1....n}.
k=1

For each cluster, represent it using a prototype or cluster centre ;.
We can measure the quality of a cluster with its within-cluster deviance

W(Cr ) = D |l — puel3.

ieCy

The overall quality of the clustering is given by the total within-cluster

deviance:
K

W= Z W(Cr, pig)-

k=1

The overall objective is to choose both the cluster centres and allocation of
points to minimize the objective function.
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K-means

n

K
W=l — sl =D ki — a3

k=1 ieCy i=1

where ¢; = kif and only if i € C;.
» Given partition {C,}, we can find the optimal prototypes easily by

differentiating W with respect to y:

oW 1
—zZZ(x,-—uk)zo éﬂk:—in
om i e

» Given prototypes, we can easily find the optimal partition by assigning

each data point to the closest cluster prototype:

¢; = argmin ||x; — /l/kH%
k

But joint minimization over both is computationally difficult.
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K-means

The K-means algorithm is a well-known method that locally optimizes the
objective function W.

Iterative and alternating minimization.

1.
2.

Randomly fix K cluster centres py, ..., uk.
Foreachi=1,...,n, assign each x; to the cluster with the nearest centre,

¢; := argmin ||x; — Nk”g
k

Set C := {i : ¢; = k} for each k.

Move cluster centres u4, ..., ux to the average of the new clusters:
>
Mk = 747 Xi
|Gl i€Cy
Repeat steps 2 to 4 until there is no more changes.

Return the partition {Cy,...,Cx} and means pu, ..., ux at the end.
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K-means

Some notes about the K-means algorithm.

» The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the
number of iterations cannot exceed this.

» The K-means algorithm need not converge to global optimum.
K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick best
clustering.
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K-means on Crabs

Looking at the Crabs data again.

library (MASS)
library(lattice)
data (crabs)

splom(~log(crabs[,4:8]),
col=as.numeric (crabs([,1]),
pch=as.numeric(crabs[,2]),
main="circle/triangle is gender, black/red is species")
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K-means on Crabs

circle/triangle is gender, black/red is species

T T
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r25pBp25

20 2520
1 1

O30 T T 1T
\- 2.8 2.2.0.8.(
26
+24RW24

2.2
2re.24 50
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2.4 -

PR22622 4
1111204

Scatter Plot Matrix

K-means on Crabs

Apply K-means with 2 clusters and plot results.

cl <- kmeans( log(crabs[,4:8]), 2, nstart=1, iter.max=10)

splom(~log(crabs[,4:8]),
col=cl$cluster+2,
main="blue/green is cluster finds big/small")
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K-means on Crabs

blue/green is cluster finds big/small
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Scatter Plot Matrix
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K-means on Crabs

‘Whiten’ or ‘sphere’! the data using PCA.

pcp <- princomp( log(crabs[,4:8]) )
spc <— pcp$scores %*% diag(l/pcpS$Ssdev)
splom( ~spc[,1:3],
col=as.numeric (crabs([,1]),
pch=as.numeric(crabs[,2]),
main="circle/triangle is gender, black/red is species")

And apply K-means again.

cl <- kmeans(spc, 2, nstart=1l, iter.max=20)
splom( ~spcl[,1:3],
col=cl$cluster+2, main="blue/green is cluster")

1 Apply a linear transformation so that covariance matrix is identity.
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K-means on Crabs

circle/triangle is gender, black/red is species blue/green is cluster

Scatter Plot Matrix Scatter Plot Matrix

Discovers gender difference...
Results depends crucially on sphering the data first.

K-means on Crabs

Using 4 cluster centers.

circle/triangle is gender, black/red is species colors are clusters

Scatter Plot Matrix Scatter Plot Matrix
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7

K-means on Spike Waveforms

library (MASS)

library (lattice)

spikespca <- read.table("spikes.txt")
cl <- kmeans (data, 6,nstart=20)
splom(data,col=cl$cluster)

K-means on Spike Waveforms

Scatter Plot Matrix
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Stochastic Optimization

>

Each iteration of K-means requires a pass through whole dataset. In
extremely large datasets, this can be computationally prohibitive.

Stochastic optimization: update cluster means after assigning each data
point to the closest cluster.
Repeat for r = 1,2, ... until satisfactory convergence:

1. Pick data item x; either randomly or in order.
2. Assign x; to the cluster with the nearest centre,

¢ += argmin [ —
k

3. Update cluster centre:
Mk = A o (X — i)
where «, > 0 are step sizes.

Algorithm stochastically minimizes the objective function. Convergence
requires slowly decreasing step sizes:

o oo
E ap = 00 E atZ < o0
=1 =1
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Vector Quantization

v

A related algorithm developed in the signal processing literature for lossy
data compression.

If K < n, we can store the codebook of codewords ., ..., ug, and each
vector x; is encoded using c;, which only requires [log K| bits.

As with K-means, K must be specified. Increasing K improves the quality
of the compressed image but worsens the data compression rate, so
there is a clear tradeoff.

» Some audio and video codecs use this method.
» Stochastic optimization algorithm for K-means was originally developed

for VQ.

98

VQ Image Compression

3 x 3 block VQ: View each block of 3 x 3 pixels as single observation

H-N
Nt/

VQ Image Compression

Original image (24 bits/pixel, uncompressed size 1,402 kB)
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VQ Image Compression VQ Image Compression

Codebook length 1024 (1.11 bits/pixel, total size 88kB) Codebook length 16 (0.44 bits/pixel, total size 27kB)
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VQ Image Compression K-means Additional Comments
» Sensitivity to distance measure. Euclidean distance can be greatly
Codebook length 128 (0.78 bits/pixel, total size 50kB) affected by measurement unit and by strong correlations. Can use

Mahalanobis distance,

e = 3llr = /=) M x )

where M is positive semi-definite matrix, e.g. sample covariance.

» Other partition based methods. There are many other partition based
methods that employ related ideas. For example K-medoids differs from
K-means in requiring cluster centres 1, to be an observation x;2,
K-medians (use median in each dimension) and K-modes (use mode).

» Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means®, use

K
W=l — w3+ MK

k=1i€Cy

2See also Affinity propagation.
3DP-means paper.
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Probabilistic Methods

» Algorithmic approach:

Algorithm

Data - Analysis/

Interpretation

» Probabilistic modelling approach:

Generative
Model
——
Unobserved Data
process <
Analysis

Interpretation

Mixture Models
» Mixture models suppose that our dataset was created by sampling iid
from K distinct populations (called mixture components).

» Typical samples in population k can be modelled using a distribution
F(#x) with density f(x|¢x). For a concrete example, consider a Gaussian
with unknown mean ¢, and known symmetric covariance 0?1,

_r 1
olon) = 2o exp (=50 -l )
a
» Generative process: fori =1,2,...,n
» First determine which population item i came from (independently):
Z; ~ Discrete(m, . .., Tk) ie. P(Zi=k) = m

where mixing proportions are 7, > 0 for each k and Zf:, e = 1.
» If Z =k, then X; = (Xu1,...,X;,) " is sampled (independently) from
corresponding population distribution:

Xi|Zi = k ~ F(¢x)

» We observe that X; = x; for each i, and would like to learn about the
unknown parameters of the process.
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Mixture Models

» Unknowns to learn given data are

» Parameters: «,..., 7k, ¢1,..., ¢k, as well as
» Latent variables: z,, . .., z.

» The joint probability over all cluster indicator variables {Z;} are:

n K

Z, i= 1 H Tz = H H Wlil(Zi:k)

i=1 k=1

» The joint density at observations X; = x; given Z; = z; are:
px(()imi|(Zi HHf i) =)
i=1 k=1
» So the joint probability/density* is:
n K
pXZ xUZl i= l HH ﬂ—kf |¢k l(ZI %)

i=1 k=1

4In this course we will treat probabilities and densities equivalently for notational simplicity. In
general, the quantity is a density with respect to the product base measure, where the base
measure is the counting measure for discrete variables and Lebesgue for continuous variables.
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Mixture Models - Posterior Distribution

» Suppose we know the parameters (m, ¢y )X_,.

» Z;is a random variable, so the posterior distribution given data set X tells
us what we know about it:

Zi =k, x; mif (x;

Q;k —P( _ k\x,) p( i l) _ ka( t|(/)k)

p(xi) 21 mif (xil )

where the marginal probability is:
K
Z (xi[ ;)

» The posterior probability Q; of Z; = k is called the responsibility of
mixture component & for data point x;.

» The posterior distribution softly partitions the dataset among the k
components.
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Mixture Models - Maximum Likehood

» How can we learn about the parameters 6 = (m, ¢x)X_, from data?

» Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

» The log likelihood is the log marginal probability of the data:

Zlomef x| ¢;)

Z((kabk)k 1) = log p((xi)i=; I( 7Tk:¢k k=1)

i (aldo)
; ZJKZ| ij(xi‘()bj)

= Z 0V, log f(xi|dx)

i=1

Vol (T, )ie=1) = Vo, log f (x| )

» A difficult equation to solve, as Q; depends implicitly on ¢...

Mixture Models - Maximum Likehood

> iV, logf(xilér) = 0

i=1

» What if we ignore the dependence of Q; on the parameters?
» Taking the mixture of Gaussian with covariance 027 as example,

- p 2 1 2
> 0uVa (Sinel gl -l
1 n
:ﬁ Z Qik(xl -
i=1

n

PMLE? 72;‘:1 Quxi
- n

Zi= 1 Qik

0=~ (S Q)

— % (Z?=1 Qik)) =0

Mixture Models - Maximum Likehood

» The estimate is a weighted average of data points, where the estimated
mean of cluster k uses its responsibilities to data points as weights.

wier  Dorey Qi
MLE? _ i) X
2:1:1 Qik

» Makes sense: Suppose we knew that data point x; came from population
z. Then Q;., = 1 and Qy = 0 for k # z; and:

TMLE _ Zi:z:‘:k Xi
g Zi:z,:k 1

» Our best guess of the originating population is given by Q.
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Mixture Models - Maximum Likehood

» For the mixing proportions, we can similarly derive an estimator.
» Include a Lagrange multiplier A to enforce constraint 3, m = 1.

Viogm (£((me, 80)1) = MEH m— 1)

7ka (xi|px) _
,21: J | mif (xi ¢))

:ZQik—)\Fk:()

n
MLE? _ Zi:l Qi

k
n

» Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population «.
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Mixture Models - The EM Algorithm

» Putting all the derivations together, we get an iterative algorithm for
learning about the unknowns in the mixture model.

» Start with some initial parameters (7., ¢{”)X_,.

> lteratefort=1,2,...:
» Expectation Step:
m O Gl )

of =
Z . —1 —1
S T (il )

» Maximization Step:

n (1) n (1)
>z Qic (1 _Ei:l Qi Xi

(0 _
T == = (i

n >, oy

» Will the algorithm converge?
» What does it converge to?
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Likelihood Surface for a Simple Example

145 |

-105 | J
185 \
\ /

I L L L L L L L
-155 -105 -55 -05 45 95 145 195
m,

(left) n = 200 data points from a mixture of two 1D Gaussians with

m =m =0.5,0=5and pu; =10, u, = —10.

(right) Log likelihood surface ¢ (u1, i12), all the other parameters being
assumed known.
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Example: Mixture of 3 Gaussians
An example with 3 clusters.
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Example: Mixture of 3 Gaussians
After 1st E and M step.

Iteration 1
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Example: Mixture of 3 Gaussians
After 2nd E and M step.

Iteration 2
.:.. .: (]
o ‘s> ©
B o8
: ® ° e ® ® @
® ., ..~. ° ’ .%: ®
© o ® ® . %.~ ...
oo ié: °e ‘?
e®® o © ®
S J : 10
data[,1]
Example: Mixture of 3 Gaussians
After 3rd E and M step.
Iteration 3
. ek
X
: ® ® e ® ® 4
. BenT 0 e .
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data[,1]
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Example: Mixture of 3 Gaussians

After 4th E and M step.

Iteration 4
)
P e e
LX) ®
0® O
o] L
»® o0
@ o
So %% ©
)
°
° o. ¢ e e 4
®
® ® X
& )
BRI RIS
® % ® ‘h
%o o) e °
0o ® b
T T T T
-5 0 5 10
datal,1]

Example: Mixture of 3 Gaussians

After 5th E and M step.

Iteration 5
o
T
© 0]
o.. oo
[T '*. °
o B o8
@ o
o.o %% ©
8
g o
hel
) °
. ° o ® 0
° )
° ® LR
®
e A
L4 o® ® UMY ®
°® [}
AT oe oo °
0% o ® °
T T T T
-5 0 5 10
datal,1]
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The EM Algorithm

» In a maximum likelihood framework, the objective function is the log

likelihood,

=D _log > mf(xl¢)

Direct maximization is not feasible.
» Consider another objective function F (0, ¢) such that:

F(0,q) < (0) for all 9, ¢,
max F(6,q) = £(0)
q

F(0,q) is a lower bound on the log likelihood.
» We can construct an alternating maximization algorithm as follows:

Forr=1,2... until convergence:
q" = argmax F(#'V ¢)
q
0" := argmax F(6,q")
0
EM Algorithm

» The lower bound we use is called the variational free energy.
> ¢ is a probability mass function for some distribution over (Z;) and

F(0,q) =E

q [log

[

p((xi z0)iz1) — logq((z)iz)]

D> 1z = k) (logm + 1ogf<xi|<z>k>>> ~ log q@)}

i=1 k=1

i=1 k=1

-3 4(2) [(Z 1(z = k) (log ¢ + 1ogf<x,-|¢k>>> - 1ogq<z)}

Using z := (z;)_, to shorten notation.
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EM Algorithm - Solving for ¢

» Introducing Lagrange multiplier to enforce 3, ¢(z) = 1, and setting
derivatives to 0,

vq(z)]:(aa q)

q*(z) =

n

> 1z = k) (logm + logf (xil¢x)) — logg(z) — 1 — A

=Y (logm, + logf(xi|¢,)) —logg(z) =1 = A =0

. f (xilpz,)
Zk mf xl|¢k

H? | TS (xi]¢2,) H

Zl xl7
Zz’ Hz 17, (x,|¢>z HP |

» Optimal ¢* is simply the posterior distribution.
» Plugging in optimal ¢* into the variational free energy,

Zlogzmjx,kbk ) = 4(6)
i=1
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EM Algorithm - Solving for 0

» Setting derivative with respect to ¢, to 0,

v

v

v

v

Vo F

ZqZ

= ZQ(Zi = k)Vg, logf(xi|p) =0

i=1

= k)V g, logf(xi|¢x)

This equation can be solved quite easily. E.g., for mixture of Gaussians,

o = iz 4z =K
Y@=k

If it cannot be solved exactly, we can use gradient ascent algorithm:

$ =t +a)_ qlz =KV logf(xlo)
i=1

This leads to generalized EM algorithm. Further extension using
stochastic optimization method leads to stochastic EM algorithm.
Similar derivation for optimal 7, as before.
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EM Algorithm

» Start with some initial parameters (7

> lteratefort=1,2,...:
» Expectation Step:

q(') (zi=k) :=

—1 —1
Vel ")

» Maximization Step:

o > gz =k
T 7#

» Each step increases the log likelihood:

000Dy = FoU=D 40y < ]:(9(7)76](’)) < F(OD, gDy = ¢(90).

» Additional assumption, that V2 F (6, ¢() are negative definite with
eigenvalues < —¢ < 0, implies that #) — #* where 6* is a local MLE.

Notes on Probabilistic Approach and EM Algorithm

Some good things:

» Guaranteed convergence to locally optimal parameters.
» Formal reasoning of uncertainties, using both Bayes Theorem and

maximum likelihood theory.

=K .. 06— []]-(Z[ = k)]
— — p(zilxi,0¢—1))
S T ey

0 :Z:’:] q(” (zi = k)xi
> 4V (z=k)
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» Rich language of probability theory to express a wide range of generative

models, and straightforward derivation of algorithms for ML estimation.

Some bad things:

» Can get stuck in local minima so multiple starts are recommended.
» Slower and more expensive than K-means.
» Choice of K still problematic, but rich array of methods for model

selection comes to rescue.
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Flexible Gaussian Mixture Models

» We can allow each cluster to have its own mean and covariance structure
allows greater flexibility in the model.

Different covariances

Identical covariances

.G
=g .0
of gacin

) N2
&£

Probabilistic PCA

Different, but diagonal covariances

_-0-62
] AN
a®8%0

127

» A probabilistic model related to PCA has the following generative model:

fori=1,2,...,n:
> Letk < n,p be given.

» Let Y; be a k-dimensional normally distributed random variable with 0 mean

and identity covariance:

Yi ~ N(0, It)

» We model the distribution of the ith data point given Y; as a p-dimensional

normal:

Xi ~ N (p+ LY;, 0°1)
where the parameters are a vector 1 € R?, a matrix L € R”** and ¢* > 0.
» EM algorithm can be used for ML estimation, but PCA can more directly
give a MLE (note this is not unique).
> Let \; > --- > ), be the eigenvalues of the sample covariance and let
V € RP** have columns given by the eigenvectors of the top k&
eigenvalues. Let R € R*** be orthogonal. Then a MLE is:

pME = x (0%)

MLE _ 1 7 .
T p—k Zj:kJrl )\]

IME = Vdiag(0 — (@)L (v = (@M E) DR
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Mixture of Probabilistic PCAs

» We have learnt two types of unsupervised learning techniques:

» Dimensionality reduction, e.g. PCA, MDS, Isomap.
» Clustering, e.g. K-means, linkage and mixture models.

» Probabilistic models allow us to construct more complex models from
simpler pieces.

» Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(my, . .., Tg)
Y; ~ N(0,1y)
Xi|Z; = k,Y; = yi ~ N (e + Ly;, 0°1,)

» Allows flexible modelling of covariance structure without using too many
parameters.

Ghahramani and Hinton 1996 129

Mixture of Probabilistic PCAs
» PCA can reconstruct x given low dimensional embedding z, but is linear.
» Isomap is non-linear, but cannot reconstruct x given any z.

A . -
H @ EE B E
N 4 E]
o2 RN -
@ E B =
8 P N —° - .
0 ' d 9 M
]
o N e © >
EH B E ¢ .
g ., RO - ——
—— R —
- b dg = |
[‘] > e d
__§
o

» We can learn a probabilistic mapping between the k-dimensional Isomap
embedding space and the p-dimensional data space.

» Demo: [Using LLE instead of Isomap, and Mixture of factor analysers
instead of Mixture of PPCAs.]

Teh and Roweis 2002 130

Further Readings—Unsupervised Learning

Hastie et al, Chapter 14.

James et al, Chapter 10.

Venables and Ripley, Chapter 11.

Tukey, John W. (1980). We need both exploratory and confirmatory. The
American Statistician 34 (1): 23-25.

vV v.v vy

Supervised Learning

Unsupervised learning:
» To “extract structure” and postulate hypotheses about data generating
process from observations xi, . .., x,.
» Visualize, summarize and compress data.
We have seen how response or grouping variables are used to validate the
usefulness of the extracted structure.

Supervised learning:
» In addition to the n observations of X, we also have a response variable

Ye).
» Techniques for predicting Y given X.
» Classification: discrete responses, e.g. Y = {+1,—1}or {1,...,K}.
» Regression: a numerical value is observed and ) = R.
Given training data (x;,y:), i = 1,...,n, the goal is to accurately predict the

class or response Y on new observations of X.
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Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv being the
response variable Y.

cri
zn

ind
cha

nox
rm

age
dis
rad
tax
ptr

1st
med

m

us
S

atio

at
v

per capita crime rate by town

proportion of residential land zoned for lots

over 25,000 sqg.ft

proportion of non-retail business acres per town
Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)

nitric oxides concentration (parts per 10 million)
average number of rooms per dwelling

proportion of owner-occupied units built prior to 1940
weighted distances to five Boston employment centers
index of accessibility to radial highways

full-value property-tax rate per USD 10,000
pupil-teacher ratio by town

1000(B - 0.63)"2 where B is the proportion of blacks by tc
percentage of lower status of the population

median value of owner-occupied homes in USD 1000’s
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Regression Example: Boston Housing

> s

"data.frame’:

B3

v vr A Ur A Uy iy Uy A

> s

tr (X)

crim
zZn
indus
chas
nox
rm
age
dis
rad
tax
ptrat
black
lstat

tr(Y)

506 obs. of 13 variables:
num 0.00632 0.02731 0.02729 0.03237 0.06905
num 18 0 0 0 0 0 12.5 12.5 12.5 12.5
num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.8"
int 0000O0O0O0O0O0O0O ...
num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 (
num 6.58 6.42 7.18 7.00 7.15
num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
num 4.09 4.97 4.97 6.06 6.06
int 1223335555 ...
: num 296 242 242 222 222 222 311 311 311 311
io: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.Z
num 397 397 393 395 397 ...
num 4.98 9.14 4.03 2.94 5.33

num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9

Goal: predict median house price Y(X), given 13 predictor variables X of a
new district.
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Classification Example: Lymphoma

We have gene expression measurements X of n = 62 patients for p = 4026
genes. For each patient, Y denotes one of two subtypes of cancer. Goal:

predict cancer subtype Y(X) € {0, 1}, given gene expressions of a new
patient.

> str (X)

"data.frame’ : 62 obs. of 4026 variables:

$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868

$ Gene 2 num -0.953 -1.286 0.657 -1.328 -1.330

$ Gene 3 num -0.776 -0.588 0.409 -0.991 -1.517

$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604

$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595

$ Gene 6 num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 num -1.8755 -1.8187 0.3175 0.3873 0.0414
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668

$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458

$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848

$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541

$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358

> str(Y)

num [1:62] 0 0 01 00 10O0O0

Decision Theory

» Suppose we made a prediction ¥ € ) based on observation of X.
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» How good is the prediction? We can use a loss function L: ) x ) — RT

to formalize the quality of the prediction.
» Typical loss functions:
» Misclassification loss (or 0-1 loss) for classification

~

L(Y,f/):{ (1) f,

Sl

» Squared loss for regression

L(Y,Y)= (Y - V)~

» Alternative loss functions are often useful (later). For example, weighted

misclassification error often appropriate. Or log-likelihood loss

(sometimes shortened as log loss) L(Y,p) = —logp(Y), where p(k) is the

estimated probability of class k € V.
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Decision Theory

» For a given loss function L, the risk R of a learner is given by the

expected loss

where the expectation is with respect to the true (unknown) joint

distribution (X, Y).

» The risk is unknown, but we can estimate it by the empirical risk:

R(Y)

The Bayes Classifier

v

v

f(X)

where, fork=1,...,K,

> the prior probabilities over classes are P(Y = k) = m
» and distributions of X, conditional on Y =k, is fi(X).

The Bayes classifier Y(X) — {1,...,K} is the one with minimum risk:

v

R(Y) =E [L(y, ?(x))] =E [E[L(y, (o)X = x]]

5/EPWj@MX:4ﬂﬂw
X

v

v

R(Y) = E(L(Y, Y(X))),

What is the optimal classifier if the joint distribution (X, Y) were known?
The joint distribution f of X can be written as a mixture

D AXOP(Y = k),

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, ¥ (x)) |X = x| separately for each x suffices.
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The Bayes Classifier

argmax P(Y = k|X = x) = arg max

argmax mgfi(x).

The Bayes Classifier

A simple two Gaussians example: Suppose X ~ N (uy, 1), where p; = —1 and
w2 = 1 and assume equal priors m; = m, = 1/2.

fl(x):\/%exp <-7> and  f(x) = \/lz?exp <—(x‘21)2).

» Consider the situation of the 0-1 loss.
» The risk simplifies to:

K

E[L(Y, Y()|X = x} =3 Lk Y(0))P(Y = kX =)
k=1
1-P(Y =Y(x)|X =x)

» The risk is minimized by choosing the class with the greatest posterior

Tifie(x)
k=1, K Sor_, mife(x)
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DENSITY

05

04

DENSITY
03

0.2

Optimal classification is ¥(x) = arg max

1 ifx<O,
2 ifx>0.
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The Bayes Classifier

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?

1.2
I

1
5e-02
I

0.8

DENSITY
0.6
I
DENSITY
5e-03

0.4
I

0.2

0.0
I

1e-04  5e-04

Looking at density in a log-scale, optimal classification is class 2 if and only if
x € [—0.39,2.15].
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Plug-in Classification

» The Bayes Classifier chooses the class with the greatest posterior
probability

Y(x) = argmaxmfi(x).
k=1,....K

» Unfortunately, we usually know neither the conditional class probabilities
nor the prior probabilities.

» We can estimate the joint distribution with:

> estimates 7 formeand k= 1,...,K and
» estimates fi(x) of conditional class probabilities,

» The plug-in classifiers chooses the class

Y (x) = arg max fi (x).
k=1,...,K

» Linear Discriminant Analysis will be an example of plug-in
classification.
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Linear Discriminant Analysis

» LDA is the most well-known and simplest example of plug-in
classification.

» Assume a multivariate Normal form for f; (x) for each class k:
XY =k~ N(u, 2),

where

» each class can have a different mean /.
» but all classes share the same covariance .

» For an observation x,
logP(Y = k|X = x) = k + log mifi(x)
1 _
= +logm — 5 (x — )" (o = )

The quantity (x — 1)"X 7! (x — 1) is called the Malahanobis distance. It
measures the distance between x and 1 in the metric given by X.

» If ¥ =1, and 7 = &, ¥(x) simply chooses the class k with the nearest (in
the Euclidean sense) mean.
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Linear Discriminant Analysis
» Expanding the discriminant (x — )"~ (x — ),

1
logP(Y = k|x) = k + log(m) — 5 (u,{Z*luk —2urs "ty —&—xTE*lx)

= K+ log(m) — %NZE_IW +uiEx
» Setting a; = log(mi) — Spf ¥~ e and b = £~ 'y, we obtain
logP(Y = k|X =x) = k + a + bl x
i.e. a linear discriminant function.
» Consider choosing class k over k’:
ar+bix+K>ap +bux+rK & a, +blx >0

where a, = ay — Ay’ and b, = by — by
» The Bayes classifier partitions X" into regions with the same class
predictions via separating hyperplanes.

» The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.
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Parameter Estimation

» The final piece of the puzzle is to estimate the parameters of the LDA
model.

» We can achieve this by maximum likelihood.
> Let n, = #{j : yj = k} be the number of observations in class .

(), D) = w4 30 togme— 2 (1914 0 — )57 (5 — )

k=1 jiyj=k
Then:
. ny . 1
Tk = — M = — Z Xj
n n .
Jyi=k
1 K
S N ANT
DE DD — ) g — i)
k=1 j:yj=k
Iris Dataset
20 25 30 35 40 05 10 15 20 25
?@n o
Sepal.Length %‘”’nﬁ“@
ity o 200
P ob” e

g8

library (MASS)
data (iris)

:;;@* qg@n .| | sepal.width

20 25 30 35 40

##save class labels

ct <- rep(l:3,each=50)
##pairwise plot
pairs(iris[,1:4],col=ct)

Petal.Width

05 10 15 20 25

45 55 65 75
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Iris Dataset
Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot (iris.data,col=ct+1l,pch=20,cex=1.5,cex.lab=1.4)

..:... ..
N eooe o o
o LN ] L]
e o e o0 o
L] L]
~ L]
§ o
S .
©
‘6 .
a o |
e e
T T T T T T T
1 2 3 4 5 6 7
Petal.Length
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Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)

<- seqg(-4,4,0.02)

<- as.matrix(expand.grid(x,y),0)
length (x)
<- length(y)

858 NK
A
|

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict (iris.lda,z)$class
contour (x,y,matrix (iris.ldp,m, n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)
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Iris Dataset
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