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Course webpage:
http://www.stats.ox.ac.uk/~teh/smldm.html

Lecturer: Yee Whye Teh
TA for Part C: Thibaut Lienant
TA for MSc: Balaji Lakshminarayanan and Maria Lomeli

Please subscribe to Google Group:
https://groups.google.com/forum/?hl=en-GB#! forum/smldm

Sign up for course using sign up sheets.
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Course Structure

Lectures

» 1400-1500 Mondays in Math Institute L4.
» 1000-1100 Wednesdays in Math Institute L3.
Part C:
» 6 problem sheets.
» Classes: 1600-1700 Tuesdays (Weeks 3-8) in 1 SPR Seminar Room.
» Due Fridays week before classes at noon in 1 SPR.
MSc:
» 4 problem sheets.
» Classes: Tuesdays (Weeks 3, 5, 7, 9) in 2 SPR Seminar Room.
Group A: 1400-1500, Group B: 1500-1600.
Due Fridays week before classes at noon in 1 SPR.
Practical: Week 5 and 7 (assessed) in 1 SPR Computing Lab.
Group A: 1400-1600, Group B: 1600-1800.

v

vV vV



Course Aims

1. Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2. Have ability to identify and use appropriate methods and models for given
data and task.

3. Understand the statistical theory framing machine learning and data
mining.

4. Able to construct appropriate models and derive learning algorithms for
given data and task.



What is Machine Learning?
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What is Machine Learning?

Information
Structure
Prediction
Decisions

Actions

|http://gureckislab.org
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What is Machine Learning?




What is the Difference?

Traditional Problems in Applied Statistics

Well formulated question that we would like to answer.
Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

» Improvements in computers and data storage devices.
» Powerful data capturing devices.

» Lots of data with potentially valuable information available.



What is the Difference?

Data characteristics
Size
Dimensionality
Complexity

Messy

Secondary sources
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Focus on generalization performance

» Prediction on new data
» Action in new circumstances
» Complex models needed for good generalization.

Computational considerations

» Large scale and complex systems



Applications of Machine Learning

» Pattern Recognition
D

aaaaaa

Sorting Cheques
Reading License Plates
Sorting Envelopes

Eye/ Face/ Fingerprint Recognition
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Applications of Machine Learning

» Business applications

» Help companies intelligently find information
Credit scoring

Predict which products people are going to buy
Recommender systems

Autonomous trading
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» Scientific applications

» Predict cancer occurence/type and health of patients/personalized health
» Make sense of complex physical, biological, ecological, sociological models



Further Readings, News and Applications

Links are clickable in pdf. More recent news posted on course webpage.
» Leo Breiman: Statistical Modeling: The Two Cultures
» INY Times: R

INY Times: Career in Statistics

INY Times: Data Mining in Walmart

NY Times: Big Data’s Impact In the World

\[Economist: Data, Data Everywhere

McKinsey: Big data: The Next Frontier for Competition

NY Times: Scientists See Promise in Deep-Learning Programs
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New Yorker: Is “Deep Learning” a Revolution in Atrtificial Intelligence?


http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ss/1009213726
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=0
http://www.nytimes.com/2009/08/06/technology/06stats.html?_r=0
http://www.nytimes.com/2004/11/14/business/yourmoney/14wal.html?_r=0
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?pagewanted=all
http://www.economist.com/node/15557443
http://www.mckinsey.com/features/big_data
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
http://www.newyorker.com/online/blogs/newsdesk/2012/11/is-deep-learning-a-revolution-in-artificial-intelligence.html

Types of Machine Learning

Unsupervised Learning
Uncover structure hidden in ‘unlabelled’ data.
» Given network of social interactions, find communities.

» Given shopping habits for people using loyalty cards: find groups of
‘'similar’ shoppers.

» Given expression measurements of 1000s of genes for 1000s of patients,
find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.



Types of Machine Learning

Supervised Learning
A database of examples along with “labels” (task-specific).
» Given network of social interactions along with their browsing habits,
predict what news might users find interesting.

» Given expression measurements of 1000s of genes for 1000s of patients
along with an indicator of absence or presence of a specific cancer,
predict if the cancer is present for a new patient.

» Given expression measurements of 1000s of genes for 1000s of patients
along with survival length, predict survival time.

Goal: Prediction on new examples.



Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize its reward.



OxWaSP

Oxford-Warwick Centre for Doctoral Training in Statistics

» Programme aims to produce EuropeOs future research leaders in
statistical methodology and computational statistics for modern
applications.

» 10 fully-funded (UK, EU) students a year (1 international).
» Website for prospective students.
» Deadline: January 24, 2014



http://www.stats.ox.ac.uk/prospective_students/research_degrees/oxwasp_-_the_oxford_warwick_statistics_programme/oxwasp_at_a_glance

Exploratory Data Analysis

Notation

» Data consists of p measurements (variables/attributes) on n examples

(observations/cases)

» X is an x p-matrix with X;; := the j-th measurement for the i-th example

X11 - X12
X211 X22
X =
Xi1t X2
L Xnl  Xn2

X1
X2j

Xij

xnj

xlp
X2p

Xip

Xnp

» Denote the ith data item by x; € R?. (This is transpose of ith row of X)
» Assume xi,...,x, are independently and identically distributed samples

of a random vector X over RP.



Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on:

» the width of the frontal lobe F1,,
» the rear width RwW,
» the length along the carapace midline C1,
» the maximum width cw of the carapace, and
» the body depth BD in mm.
in addition to colour (species) and sex.



Crabs Data |

## load package MASS containing the data
library (MASS)

## look at data

crabs

## assign predictor and class variables
Crabs <- crabs[,4:8]
Crabs.class <- factor (paste(crabs([,1l],crabs[,2],sep=""))

## various plots
boxplot (Crabs)
hist (Crabs$FL, col='red’,breaks=20, xname='Frontal Lobe Size (mm)’)

hist (Crabs$RW, col="red’,breaks=20, xname="Rear Width (mm)"’)
hist (Crabs$CL, col='red’,breaks=20, xname='Carapace Length (mm)’)
hist (Crabs$CW,col="red’,breaks=20, xname='Carapace Width (mm)’)
hist (Crabs$BD, col="red’,breaks=20, xname="Body Depth (mm)’)

plot (Crabs, col=unclass (Crabs.class))
parcoord (Crabs)



Crabs data
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Univariate Boxplots
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Univariate Histograms

Histogram of Frontal Lobe Size
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Simple Pairwise Scatterplots
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Parallel Coordinate Plots
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Visualization and Dimensionality Reduction

These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Visualizing higher-dimensional problems:

» We are constrained to view data in 2 or 3 dimensions
» Look for ‘interesting’ projections of X into lower dimensions
» Hope that for large p, considering only k < p dimensions is just as
informative.
Dimensionality reduction
» For each data item x; € R?, find a lower dimensional representation
y; € RF with k < p.

» Preserve as much as possible the interesting statistical
properties/relationships of data items.

25



Principal Components Analysis (PCA)

» PCA considers interesting directions to be those with greatest variance.
» A linear dimensionality reduction technique:

» Finds an orthogonal basis vi,vs, ..., v, for the data space such that

» The first principal component (PC) v, is the direction of greatest variance of
data.

» The second PC v, is the direction orthogonal to v, of greatest variance, etc.

» The subspace spanned by the first k PCs represents the ’best’ k-dimensional
representation of the data.

» The k-dimensional representation of x; is:

k
T
zi=Vxi = E Vo Xi
=1

» For simplicity, we will assume from now on that our dataset is centred, i.e.
we subtract the average x from each x;.

26



Principal Components Analysis (PCA)
» Our data set is an iid sample of a random vector X = [X;...X,] .
» For the 1 PC, we seek a derived variable of the form
Zi=viXi +viaXo 4+ -+ vipX, = v X
where v; = [vy1,...,v1,] | € R” are chosen to maximise
Var(Z;).
To get a well defined problem, we fix

vrvl =1

» The 2" PC is chosen to be orthogonal with the 1* and is computed in a
similar way. It will have the largest variance in the remaining p — 1
dimensions, etc.
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Principal Components Analysis (PCA)
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Deriving the First Principal Component
» Maximise, subject to v/ v; = 1:
Var(Z,) = Var(v{ X) = v, Cov(X)v; =~ v Sv,

where S € R?*? is the sample covariance matrix, i.e.

n

S:niIZ(x,-—)’c)(x —n_IZxx 7XTX.

i=1

» Rewriting this as a constrained maximisation problem,
L, A) =] Sy — X\ (v;rvl -1).

» The corresponding vector of partial derivatives yields
AL, A
7(‘}17 1) = 2SV1 - 2)\11)1.
3\/1
» Setting this to zero reveals the eigenvector equation, i.e. vi must be an
eigenvector of S and )\, the corresponding eigenvalue.
» Since v Sv; = A\jv]v; = Ay, the 1 PC must be the eigenvector
associated with the largest eigenvalue of S.

29



Deriving Subsequent Principal Components

» Proceed as before but include the additional constraint that the 2"¢ PC
must be orthogonal to the 1* PC:

L (v, A, ) = v;sz -\ (v;rvz — 1) — i (v;—vz) .

» Solving this shows that v, must be the eigenvector of S associated with
the 2" largest eigenvalue, and so on

» The eigenvalue decomposition of S is given by
S=VAV'
where A is a diagonal matrix with eigenvalues
M2 2> 2>2720

and V is a p x p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components vy, ..., v,.

30



Properties of the Principal Components

» PCs are uncorrelated

Cov(X v, X "v;) v/ Sv; = 0 for i # j.
» The total sample variance is given by
P
DoSi=M+... 4N,
i=1
so the proportion of total variance explained by the ¥ PC is

Ak
/\1+)\2—|—...+>\p

k=1,2,...,p

» S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.

» Derived variables Z,, ..., Z, have variances A, ..., \,.

31



R code

This is what we have had before:

library (MASS)

Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs[,1l],crabs[,2],sep=""))
plot (Crabs, col=unclass (Crabs.class))

Now perform PCA with function princomp. (Alternatively, solve for the PCs
yourself using eigen or svd).

Crabs.pca <- princomp (Crabs, cor=FALSE)
plot (Crabs.pca)
pairs (predict (Crabs.pca),col=unclass (Crabs.class))

32



Original crabs data
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PCs of crabs data
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PC2vs PC3
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PCA on Face Images

\http://vismod.media.mit .edu/vismod/demos/facerec/basic.html
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PCA on European Genetic Variation
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\http://www.nature.com/nature/journal/v456/n7218/full/nature0733l.html
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Comments on the use of PCA

v

PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two moments.

Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

PCA commonly used for lossy compression of high dimensional data.
Emphasis on variance is where the weaknesses of PCA stem from:

» The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from Corr(X) instead of Cov(X).

» Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.

v

v

v
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Eigenvalue Decomposition (EVD)

Eigenvalue decomposition plays a significant role in PCA. PCs are
eigenvectors of § = nl—lXTX and PCA properties are derived from those of

eigenvectors and eigenvalues.

» For any p x p symmetric matrix S, there exists p eigenvectors vi,...,v,
that are pairwise orthogonal and p associated eigenvalues Ay, ..., A,
which satisfy the eigenvalue equation Sv; = \v; Vi.

» S can be written as S = VAV where

» V=1[v,...,n]is ap x p orthogonal matrix
» A =diag{\i,..., \}
» If Sis a real-valued matrix, then the eigenvalues are real-valued as well,
i € RVi
» To compute the PCA of a dataset X, we can:
» First estimate the covariance matrix using the sample covariance S.
» Compute the EVD of S using the R command eigen.
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Singular Value Decomposition (SVD)

Though the EVD does not always exist, the singular value decomposition is
another matrix factorization technique that always exist, even for non-square
matrices.
» X can be written as X = UDV " where
» U is an n x n matrix with orthogonal columns.

» Dis an x p matrix with decreasing non-negative elements on the diagonal
(the singular values) and zero off-diagonal elements.
» Vis ap x p matrix with orthogonal columns.

» SVD can be computed using very fast and numerically stable algorithms.
The relevant R command is svd.

40



Some Properties of the SVD

>

>

Let X = UDV" be the SVD of the n x p data matrix X.
Note that

mn—1)S=X"X=(upbv")"(ubv")=vD"U"UDV" = VDDV,

using orthogonality (U U = 1,) of U.

The eigenvalues of S are thus the diagonal entries of —-D* and the
columns of the orthogonal matrix V are the elgenvectors of S.

We also have
XX" = (upv")(ubv")T =upv'VvD'UT =UDD'U",

using orthogonality (V'V = 1,) of V.
SVD also gives the optimal low-rank approximations of X:

min || X — X|*>  s.t. X has maximum rank r < n, p.
X

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.
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Biplots

» PCA plots show the data items (as rows of X) in the PC space.

» Biplots allow us to visualize the original variables (as columns X) in the
same plot.

» As for PCA, we would like the geometry of the plot to preserve as much
of the covariance structure as possible.
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Biplots

Recall that X = [X;,...,X,]" and X = UDV" is the SVD of the data matrix.
» The PC projection of x; is:

i = VT)C,' = D[Jl—r = [DllUilv e ,DkkUik]T.

» The jth unit vector e; € R” points in the direction of X;. lts PC projection is
V" = VTe, the jth row of V.

> The projection of the variable indicates the weighting each PC gives to
the original variables.

» Dot products between the projections gives entries of the data matrix:

P
xj =Y UxDuVi = (DU, V).
k=1

» Distance of projected points from projected variables gives original
location.

» These relationships can be plotted in 2D by focussing on first two PCs.
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Biplots
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Biplots

» There are other projections we can consider for biplots:

P
X = Z UDVie = (DU, V") = (D'~ U, D*V]T).
=1

where 0 < a < 1. The a = 1 case has some nice properties.
» Covariance of the projected points is:

- 1
U'u, = I.
n—1; ! n—1

Projected points are uncorrelated and dimensions are equi-variance.
» The covariance between X; and X, is:

1
Var(X;X,) = meﬁDVJ )

So the angle between the projected variables gives the correlation.

» When using k < p PCs, quality depends on the proportion of variance
explained by the PCs.
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Biplots
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pc <- princomp (x)
biplot (pc, scale=0)
biplot (pc, scale=1)
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Iris Data

50 sample from 3 species of iris: iris setosa,
versicolor, and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.
irisl <- iris

irisl <- irisl[,-5]

biplot (princomp (irisl, cor=T))
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Iris Data
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests, cor=T)
plot (usarrests.pca)

pairs (predict (usarrests.pca))
biplot (usarrests.pca)
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US Arrests Data Pairs Plot
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US Arrests Data Biplot
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Further Readings

Venables and Ripley, Chapter 11.
Hastie et al, Chapter 14.
James et al, Chapter 10.

‘Tukey, John W. (1980). We need both exploratory and confirmatory. The
'/American Statistician 34 (1): 23-25.

vV v v Vv

52


http://www.tandfonline.com/doi/abs/10.1080/00031305.1980.10482706
http://www.tandfonline.com/doi/abs/10.1080/00031305.1980.10482706

	Administrivia
	Introduction
	What is Machine Learning?
	Machine Learning vs Traditional Statistics
	Applications of Machine Learning
	Types of Machine Learning

	Unsupervised Learning
	Exploratory Data Analysis
	Principal Components Analysis
	Singular Value Decomposition
	Biplots


