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Course Information

I Course webpage:
http://www.stats.ox.ac.uk/~teh/smldm.html

I Lecturer: Yee Whye Teh
I TA for Part C: Thibaut Lienant
I TA for MSc: Balaji Lakshminarayanan and Maria Lomeli
I Please subscribe to Google Group:

https://groups.google.com/forum/?hl=en-GB#!forum/smldm

I Sign up for course using sign up sheets.
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Course Structure
Lectures

I 1400-1500 Mondays in Math Institute L4.
I 1000-1100 Wednesdays in Math Institute L3.

Part C:
I 6 problem sheets.
I Classes: 1600-1700 Tuesdays (Weeks 3-8) in 1 SPR Seminar Room.
I Due Fridays week before classes at noon in 1 SPR.

MSc:
I 4 problem sheets.
I Classes: Tuesdays (Weeks 3, 5, 7, 9) in 2 SPR Seminar Room.
I Group A: 1400-1500, Group B: 1500-1600.
I Due Fridays week before classes at noon in 1 SPR.
I Practical: Week 5 and 7 (assessed) in 1 SPR Computing Lab.
I Group A: 1400-1600, Group B: 1600-1800.
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Course Aims

1. Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2. Have ability to identify and use appropriate methods and models for given
data and task.

3. Understand the statistical theory framing machine learning and data
mining.

4. Able to construct appropriate models and derive learning algorithms for
given data and task.
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What is Machine Learning?

sensory

What's out there?
How does world work?

What's going to happen?
What should i do?

data
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What is Machine Learning?

data

Information
Structure
Prediction
Decisions
Actions

http://gureckislab.org 6
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What is Machine Learning?

Machine 
Learning

statistics

computer
science

cognitive
science

psychology

mathematics

engineering
operations
research

physics

biology
genetics

business
finance
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What is the Difference?

Traditional Problems in Applied Statistics
Well formulated question that we would like to answer.
Expensive to gathering data and/or expensive to do computation.
Create specially designed experiments to collect high quality data.

Current Situation
Information Revolution

I Improvements in computers and data storage devices.
I Powerful data capturing devices.
I Lots of data with potentially valuable information available.
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What is the Difference?

Data characteristics
I Size
I Dimensionality
I Complexity
I Messy
I Secondary sources

Focus on generalization performance
I Prediction on new data
I Action in new circumstances
I Complex models needed for good generalization.

Computational considerations
I Large scale and complex systems
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Applications of Machine Learning

I Pattern Recognition

I Sorting Cheques
I Reading License Plates
I Sorting Envelopes
I Eye/ Face/ Fingerprint Recognition
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Applications of Machine Learning

I Business applications
I Help companies intelligently find information
I Credit scoring
I Predict which products people are going to buy
I Recommender systems
I Autonomous trading

I Scientific applications
I Predict cancer occurence/type and health of patients/personalized health
I Make sense of complex physical, biological, ecological, sociological models
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Further Readings, News and Applications

Links are clickable in pdf. More recent news posted on course webpage.
I Leo Breiman: Statistical Modeling: The Two Cultures
I NY Times: R
I NY Times: Career in Statistics
I NY Times: Data Mining in Walmart
I NY Times: Big Data’s Impact In the World
I Economist: Data, Data Everywhere
I McKinsey: Big data: The Next Frontier for Competition
I NY Times: Scientists See Promise in Deep-Learning Programs
I New Yorker: Is “Deep Learning” a Revolution in Artificial Intelligence?
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Types of Machine Learning

Unsupervised Learning
Uncover structure hidden in ‘unlabelled’ data.

I Given network of social interactions, find communities.
I Given shopping habits for people using loyalty cards: find groups of

‘similar’ shoppers.
I Given expression measurements of 1000s of genes for 1000s of patients,

find groups of functionally similar genes.

Goal: Hypothesis generation, visualization.
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Types of Machine Learning

Supervised Learning
A database of examples along with “labels” (task-specific).

I Given network of social interactions along with their browsing habits,
predict what news might users find interesting.

I Given expression measurements of 1000s of genes for 1000s of patients
along with an indicator of absence or presence of a specific cancer,
predict if the cancer is present for a new patient.

I Given expression measurements of 1000s of genes for 1000s of patients
along with survival length, predict survival time.

Goal: Prediction on new examples.
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Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning
A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning
An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize its reward.
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OxWaSP

Oxford-Warwick Centre for Doctoral Training in Statistics
I Programme aims to produce EuropeÕs future research leaders in

statistical methodology and computational statistics for modern
applications.

I 10 fully-funded (UK, EU) students a year (1 international).
I Website for prospective students.
I Deadline: January 24, 2014
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Exploratory Data Analysis

Notation
I Data consists of p measurements (variables/attributes) on n examples

(observations/cases)
I X is a n× p-matrix with Xij := the j-th measurement for the i-th example

X =



x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp


I Denote the ith data item by xi ∈ Rp. (This is transpose of ith row of X)
I Assume x1, . . . , xn are independently and identically distributed samples

of a random vector X over Rp.
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Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on:

I the width of the frontal lobe FL,
I the rear width RW,
I the length along the carapace midline CL,
I the maximum width CW of the carapace, and
I the body depth BD in mm.

in addition to colour (species) and sex.
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Crabs Data I

## load package MASS containing the data
library(MASS)
## look at data
crabs

## assign predictor and class variables
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))

## various plots
boxplot(Crabs)
hist(Crabs$FL,col=’red’,breaks=20,xname=’Frontal Lobe Size (mm)’)
hist(Crabs$RW,col=’red’,breaks=20,xname=’Rear Width (mm)’)
hist(Crabs$CL,col=’red’,breaks=20,xname=’Carapace Length (mm)’)
hist(Crabs$CW,col=’red’,breaks=20,xname=’Carapace Width (mm)’)
hist(Crabs$BD,col=’red’,breaks=20,xname=’Body Depth (mm)’)
plot(Crabs,col=unclass(Crabs.class))
parcoord(Crabs)
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Crabs data
sp sex index FL RW CL CW BD

1 B M 1 8.1 6.7 16.1 19.0 7.0
2 B M 2 8.8 7.7 18.1 20.8 7.4
3 B M 3 9.2 7.8 19.0 22.4 7.7
4 B M 4 9.6 7.9 20.1 23.1 8.2
5 B M 5 9.8 8.0 20.3 23.0 8.2
6 B M 6 10.8 9.0 23.0 26.5 9.8
7 B M 7 11.1 9.9 23.8 27.1 9.8
8 B M 8 11.6 9.1 24.5 28.4 10.4
9 B M 9 11.8 9.6 24.2 27.8 9.7
10 B M 10 11.8 10.5 25.2 29.3 10.3
11 B M 11 12.2 10.8 27.3 31.6 10.9
12 B M 12 12.3 11.0 26.8 31.5 11.4
13 B M 13 12.6 10.0 27.7 31.7 11.4
14 B M 14 12.8 10.2 27.2 31.8 10.9
15 B M 15 12.8 10.9 27.4 31.5 11.0
16 B M 16 12.9 11.0 26.8 30.9 11.4
17 B M 17 13.1 10.6 28.2 32.3 11.0
18 B M 18 13.1 10.9 28.3 32.4 11.2
19 B M 19 13.3 11.1 27.8 32.3 11.3
20 B M 20 13.9 11.1 29.2 33.3 12.1
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Univariate Boxplots
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Univariate Histograms
Histogram of Frontal Lobe Size
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Simple Pairwise Scatterplots

FL
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Parallel Coordinate Plots

FL RW CL CW BD
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Visualization and Dimensionality Reduction

These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Visualizing higher-dimensional problems:

I We are constrained to view data in 2 or 3 dimensions
I Look for ‘interesting’ projections of X into lower dimensions
I Hope that for large p, considering only k� p dimensions is just as

informative.

Dimensionality reduction
I For each data item xi ∈ Rp, find a lower dimensional representation

yi ∈ Rk with k� p.
I Preserve as much as possible the interesting statistical

properties/relationships of data items.
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Principal Components Analysis (PCA)

I PCA considers interesting directions to be those with greatest variance.
I A linear dimensionality reduction technique:
I Finds an orthogonal basis v1, v2, . . . , vp for the data space such that

I The first principal component (PC) v1 is the direction of greatest variance of
data.

I The second PC v2 is the direction orthogonal to v1 of greatest variance, etc.
I The subspace spanned by the first k PCs represents the ’best’ k-dimensional

representation of the data.
I The k-dimensional representation of xi is:

zi = Vxi =

k∑
`=1

v>` xi

I For simplicity, we will assume from now on that our dataset is centred, i.e.
we subtract the average x̄ from each xi.
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Principal Components Analysis (PCA)

I Our data set is an iid sample of a random vector X = [X1 . . .Xp]
>.

I For the 1st PC, we seek a derived variable of the form

Z1 = v11X1 + v12X2 + · · ·+ v1pXp = v>1 X

where v1 = [v11, . . . , v1p]> ∈ Rp are chosen to maximise

Var(Z1).

To get a well defined problem, we fix

v>1 v1 = 1.

I The 2nd PC is chosen to be orthogonal with the 1st and is computed in a
similar way. It will have the largest variance in the remaining p− 1
dimensions, etc.

27



Principal Components Analysis (PCA)
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Deriving the First Principal Component
I Maximise, subject to v>1 v1 = 1:

Var(Z1) = Var(v>1 X) = v>1 Cov(X)v1 ≈ v>1 Sv1

where S ∈ Rp×p is the sample covariance matrix, i.e.

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)> =
1

n− 1

n∑
i=1

xix>i =
1

n− 1
X>X.

I Rewriting this as a constrained maximisation problem,

L (v1, λ1) = v>1 Sv1 − λ1
(
v>1 v1 − 1

)
.

I The corresponding vector of partial derivatives yields

∂L(v1, λ1)

∂v1
= 2Sv1 − 2λ1v1.

I Setting this to zero reveals the eigenvector equation, i.e. v1 must be an
eigenvector of S and λ1 the corresponding eigenvalue.

I Since v>1 Sv1 = λ1v>1 v1 = λ1, the 1st PC must be the eigenvector
associated with the largest eigenvalue of S.
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Deriving Subsequent Principal Components

I Proceed as before but include the additional constraint that the 2nd PC
must be orthogonal to the 1st PC:

L (v2, λ2, µ) = v>2 Sv2 − λ2
(
v>2 v2 − 1

)
− µ

(
v>1 v2

)
.

I Solving this shows that v2 must be the eigenvector of S associated with
the 2nd largest eigenvalue, and so on

I The eigenvalue decomposition of S is given by

S = VΛV>

where Λ is a diagonal matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

and V is a p× p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components v1, . . . , vp.
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Properties of the Principal Components
I PCs are uncorrelated

Cov(X>vi,X>vj) ≈ v>i Svj = 0 for i 6= j.

I The total sample variance is given by

p∑
i=1

Sii = λ1 + . . .+ λp,

so the proportion of total variance explained by the kth PC is

λk

λ1 + λ2 + . . .+ λp
k = 1, 2, . . . , p

I S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.

I Derived variables Z1, . . . ,Zp have variances λ1, . . . , λp.
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R code

This is what we have had before:

library(MASS)
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))
plot(Crabs,col=unclass(Crabs.class))

Now perform PCA with function princomp. (Alternatively, solve for the PCs
yourself using eigen or svd).

Crabs.pca <- princomp(Crabs,cor=FALSE)
plot(Crabs.pca)
pairs(predict(Crabs.pca),col=unclass(Crabs.class))
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Original crabs data
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PCs of crabs data

Comp.1
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PC 2 vs PC 3
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PCA on Face Images

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html 36
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PCA on European Genetic Variation

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html 37
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Comments on the use of PCA

I PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two moments.

I Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

I PCA commonly used for lossy compression of high dimensional data.
I Emphasis on variance is where the weaknesses of PCA stem from:

I The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from Corr(X) instead of Cov(X).

I Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.
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Eigenvalue Decomposition (EVD)

Eigenvalue decomposition plays a significant role in PCA. PCs are
eigenvectors of S = 1

n−1 X>X and PCA properties are derived from those of
eigenvectors and eigenvalues.

I For any p× p symmetric matrix S, there exists p eigenvectors v1, . . . , vp

that are pairwise orthogonal and p associated eigenvalues λ1, . . . , λp

which satisfy the eigenvalue equation Svi = λivi ∀i.
I S can be written as S = VΛV> where

I V = [v1, . . . , vp] is a p× p orthogonal matrix
I Λ = diag {λ1, . . . , λp}
I If S is a real-valued matrix, then the eigenvalues are real-valued as well,
λi ∈ R ∀i

I To compute the PCA of a dataset X, we can:
I First estimate the covariance matrix using the sample covariance S.
I Compute the EVD of S using the R command eigen.

39



Singular Value Decomposition (SVD)

Though the EVD does not always exist, the singular value decomposition is
another matrix factorization technique that always exist, even for non-square
matrices.

I X can be written as X = UDV> where
I U is an n× n matrix with orthogonal columns.
I D is a n× p matrix with decreasing non-negative elements on the diagonal

(the singular values) and zero off-diagonal elements.
I V is a p× p matrix with orthogonal columns.

I SVD can be computed using very fast and numerically stable algorithms.
The relevant R command is svd.
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Some Properties of the SVD
I Let X = UDV> be the SVD of the n× p data matrix X.
I Note that

(n− 1)S = X>X = (UDV>)>(UDV>) = VD>U>UDV> = VD>DV>,

using orthogonality (U>U = In) of U.
I The eigenvalues of S are thus the diagonal entries of 1

n−1 D2 and the
columns of the orthogonal matrix V are the eigenvectors of S.

I We also have

XX> = (UDV>)(UDV>)> = UDV>VD>U> = UDD>U>,

using orthogonality (V>V = Ip) of V.
I SVD also gives the optimal low-rank approximations of X:

min
X̃
‖X̃ − X‖2 s.t. X̃ has maximum rank r < n, p.

This problem can be solved by keeping only the r largest singular values
of X, zeroing out the smaller singular values in the SVD.
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Biplots

I PCA plots show the data items (as rows of X) in the PC space.
I Biplots allow us to visualize the original variables (as columns X) in the

same plot.
I As for PCA, we would like the geometry of the plot to preserve as much

of the covariance structure as possible.
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Biplots
Recall that X = [X1, . . . ,Xp]> and X = UDV> is the SVD of the data matrix.

I The PC projection of xi is:

zi = V>xi = DU>i = [D11Ui1, . . . ,DkkUik]
>.

I The jth unit vector ej ∈ Rp points in the direction of Xj. Its PC projection is
V>j = V>ej, the jth row of V.

I The projection of the variable indicates the weighting each PC gives to
the original variables.

I Dot products between the projections gives entries of the data matrix:

xij =

p∑
k=1

UikDkkVjk = 〈DU>i ,V
>
j 〉.

I Distance of projected points from projected variables gives original
location.

I These relationships can be plotted in 2D by focussing on first two PCs.
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Biplots

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

X1

X
2

−5 0 5 10
−

5
0

5
10

Comp.1

C
om

p.
2

1
2

3
4

5
6

7
8

9

10

11

1213 14
15

16
17

18

1920
21

22
23

24

25
26

27

28

29

30

3132 3334

3536

37
38

39
40

41

4243 44

45

46

47 48

49

50
51

52
53

54

55 56

57
58

59
60

61

62 63 64

65

66 67
68

69

70 71

72

73

74
75 76

77

787980

81

8283

84

85

86

87
88

89

90
9192

93

94

95

96
97

98
99

100

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

X1

X2

44



Biplots
I There are other projections we can consider for biplots:

xij =

p∑
k=1

UikDkkVjk = 〈DU>i ,V
>
j 〉 = 〈D1−αU>i ,D

αV>j 〉.

where 0 ≤ α ≤ 1. The α = 1 case has some nice properties.
I Covariance of the projected points is:

1
n− 1

n∑
i=1

U>i Ui =
1

n− 1
I.

Projected points are uncorrelated and dimensions are equi-variance.
I The covariance between Xj and X` is:

Var(XjX`) =
1

n− 1
〈DV>j ,DV>` 〉

So the angle between the projected variables gives the correlation.
I When using k < p PCs, quality depends on the proportion of variance

explained by the PCs.
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Biplots
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pc <- princomp(x)
biplot(pc,scale=0)
biplot(pc,scale=1)
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Iris Data

50 sample from 3 species of iris: iris setosa,
versicolor, and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.

iris1 <- iris
iris1 <- iris1[,-5]
biplot(princomp(iris1,cor=T))

47



Iris Data
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs(USArrests)
usarrests.pca <- princomp(USArrests,cor=T)
plot(usarrests.pca)

pairs(predict(usarrests.pca))
biplot(usarrests.pca)
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US Arrests Data Pairs Plot
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US Arrests Data Biplot
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Further Readings

I Venables and Ripley, Chapter 11.
I Hastie et al, Chapter 14.
I James et al, Chapter 10.
I Tukey, John W. (1980). We need both exploratory and confirmatory. The

American Statistician 34 (1): 23-25.
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