
Back to Maximum Likelihood
� Given a generative model

f (x, y = k) = πkfk(x)

� Using a generative modelling approach, we assume a parametric form for
fk(x) = f (x;φk) and compute the MLE �θ of θ = (πk,φk)

K
k=1 based on the

training data {xi, yi}n
i=1.

� We then use a plug-in approach to perform classification

p(Y = k|X = x, �θ) = �πkf (x; �φk)�K
j=1 �πjf (x; �φj)

� Even for simple models, this can prove difficult; e.g. for LDA,
f (x;φk) = N (x;µk,Σ), and the MLE estimate of Σ is not full rank for p > n.

� One answer: simplify even further, e.g. using axis-aligned covariances,
but this is usually too crude.

� Another answer: regularization.
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Naïve Bayes

� Return to the spam classification example with two-class naïve Bayes

f (xi;φk) =
p�

j=1

φ
xij
kj (1 − φkj)

1−xij .

The MLE estimates are given by

�φkj =

�n
i=1 (xij = 1, yi = k)

nk
, �πk =

nk

n

where nk =
�n

i=1 I(yi = k).
� If a word j does not appear in class k by chance, but it does appear in a

document x∗, then p(x∗|y∗ = k) = 0 and so posterior p(y∗ = k|x∗) = 0.
� Worse things can happen: e.g., probability of document under all classes

can be 0, so posterior is ill-defined.
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The Bayesian Learning Framework

� Bayes Theorem: Given two random variables X and Θ,

p(Θ|X) = p(X|Θ)p(Θ)

p(X)

� Likelihood: p(X|Θ)

� Prior: p(Θ)

� Posterior: p(Θ|X)
� Marginal likelihood: p(X) =

�
p(X|Θ)p(Θ)dΘ

� Treat parameters as random variables, and process of learning is just
computation of posterior p(Θ|X).

� Summarizing the posterior:
� Posterior mode: �θMAP = argmaxθ p(θ|X). Maximum a posteriori.
� Posterior mean: �θmean = E[Θ|X].
� Posterior variance: Var[Θ|X].

� How to make decisions and predictions? Decision theory.
� How to compute posterior?
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Simple Example: Coin Tosses

� A very simple example: We have a coin with probability φ of coming up
heads. Model coin tosses as iid Bernoullis, 1 =head, 0 =tail.

� Learn about φ given dataset D = (xi)n
i=1 of tosses.

f (D|φ) = φn1(1 − φ)n0

with nj =
�n

i=1 (xi = j).
� Maximum likelihood

φ̂ML =
n1

n
� Bayesian approach: treat unknown parameter as a random variable Φ.

Simple prior: Φ ∼ U[0, 1]. Posterior distribution:

p(φ|D) =
1
Z
φn1(1 − φ)n0 , Z =

� 1

0
φn1(1 − φ)n0 dφ =

(n + 1)!
n1!n0!

Posterior is a Beta(n1 + 1, n0 + 1) distribution.
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Simple Example: Coin Tosses
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Posterior becomes peaked at true value φ∗ = .7 as dataset grows.
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Simple Example: Coin Tosses

� Posterior distribution captures all learnt information.
� Posterior mode:

�φMAP =
n1

n

� Posterior mean:
�φmean =

n1 + 1
n + 2

� Posterior variance:
1

n + 3
�φmean(1 − �φmean)

� Asymptotically, for large n, variance decreases as 1/n and is given by the
inverse of Fisher’s information.

� Posterior distribution converges to true parameter φ∗ as n → ∞.
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Simple Example: Coin Tosses

� What about test data?
� The posterior predictive distribution is the conditional distribution of

xn+1 given (xi)n
i=1:

p(xn+1|(xi)
n
i=1) =

� 1

0
p(xn+1|φ, (xi)

n
i=1))p(φ|(xi)

n
i=1))dφ

=

� 1

0
p(xn+1|φ)p(φ|(xi)

n
i=1))dφ

= (�φmean)xn+1(1 − �φmean)1−xn+1

� We predict on new data by averaging the predictive distribution over the
posterior. Accounts for uncertainty about φ.
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Simple Example: Coin Tosses

� Posterior distribution is a known analytic form. In fact posterior
distribution is in the same beta family as the prior.

� An example of a conjugate prior.
� A beta distribution Beta(a, b) with parameters a, b > 0 is an exponential

family distribution with density

p(φ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

φa−1(1 − φ)b−1

where Γ(t) =
�∞

0 ut−1e−udu is the gamma function.
� If the prior is φ ∼ Beta(a, b), then the posterior distribution is

p(φ|D, a, b) =∝ φa+n1−1(1 − φ)b+n0−1

so is Beta(a + n1, b + n0).
� Hyperparameters a and b are pseudo-counts, an imaginary initial

sample that reflects our prior beliefs about φ.
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Beta Distributions
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Bayesian Inference for Multinomials
� Suppose xi ∈ {1, . . . ,K} instead, and we model (xi)n

i=1 as iid multinomials:

p(D|π) =
n�

i=1

πxi =
K�

k=1

πnk
k

with nk =
�n

i=1 (xi = k) and πk > 0,
�K

k=1 πk = 1.
� The conjugate prior is the Dirichlet distribution. Dir(α1, . . . ,αK) has

parameters αk > 0, and density

p(π) =
Γ(

�K
k=1 αk)�K

k=1 Γ(αk)

K�

k=1

παk−1
k

on the probability simplex {π : πk > 0,
�K

k=1 πk = 1}.
� The posterior is also Dirichlet, with parameters (αk + nk)K

k=1.
� Posterior mean is

�πmean
k =

αk + nk�K
j=1 αj + nj
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Dirichlet Distributions

(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for αk = 10.
(C) Dirichlet density for αk = 0.1.
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Text Classification with (Less) Naïve Bayes

� Under the Naïve Bayes model, the joint distribution of labels
yi ∈ {1, . . . ,K} and data vectors xi ∈ {0, 1}p is

n�

i=1

p(xi, yi) =
n�

i=1

K�

k=1



πk

p�

j=1

φ
xij
kj (1 − φkj)

1−xij




(yi=k)

=
K�

k=1

πnk
k

p�

j=1

φ
nkj
kj (1 − φkj)

nk−nkj

where nk =
�n

i=1 (yi = k), nkj =
�n

i=1 (yi = k, xij = 1).
� For conjugate prior, we can use Dir((αk)K

k=1) for π, and Beta(a, b) for φkj
independently.

� Because the likelihood factorizes, the posterior distribution over π and
(φkj) also factorizes, and posterior for π is Dir((αk + nk)K

k=1), and for φkj is
Beta(a + nkj, b + nk − nkj).
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Text Classification with (Less) Naïve Bayes
� For prediction give D = (xi, yi)n

i=1 we can calculate

p(x0, y0 = k|D) = p(y0 = k|D)p(x0|y0 = k,D)

with

p(y0 = k|D) =
αk + nk

n +
�K

l=1 αl

p(x0j = 1|y0 = k,D) =
a + nkj

a + b + nk

� Predicted class is

p(y0 = k|x0|D) =
p(y0 = k|D)p(x0|y0 = k,D)

p(x0|D)

� Compared to ML plug-in estimator, pseudocounts help to regularize
probabilities away from extreme values.
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Bayesian Learning and Regularization
� Consider a Bayesian approach to logistic regression: introduce a

multivariate normal prior for b, and uniform (improper) prior for a. The
prior density is:

p(a, b) = (2πσ2)−
p
2 e−

1
2σ2 �b�2

2

� The posterior is

p(a, b|D) ∝ exp

�
− 1

2σ2 �b�2
2 −

n�

i=1

log(1 + exp(−yi(a + b�xi)))

�

� The posterior mode is the parameters maximizing the above, equivalent
to minimizing the L2-regularized empirical risk.

� Regularized empirical risk minimization is (often) equivalent to having a
prior and finding the maximum a posteriori (MAP) parameters.

� L2 regularization - multivariate normal prior.
� L1 regularization - multivariate Laplace prior.

� From a Bayesian perspective, the MAP parameters are just one way to
summarize the posterior distribution.
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Bayesian Learning – Discussion
� Clear separation between models, which frame learning problems and

encapsulates prior information, and algorithms, which computes
posteriors and predictions.

� Bayesian computations — Most posteriors are intractable, and algorithms
needed to efficiently approximate posterior:

� Monte Carlo methods (Markov chain and sequential varieties).
� Variational methods (variational Bayes, belief propagation etc).

� No optimization — no overfitting (!) but there can still be model misfit.
� Tuning parameters Ψ can be optimized (without need for

cross-validation).

p(X|Ψ) =

�
p(X|θ)p(θ|Ψ)dθ

p(Ψ|X) = p(X|Ψ)p(Ψ)

p(X)
� Be Bayesian about Ψ — compute posterior.
� Type II maximum likelihood — find Ψ maximizing p(X|Ψ).
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Bayesian Learning – Further Readings

� Zoubin Ghahramani. Bayesian Learning. Graphical models.
Videolectures.

� Gelman et al. Bayesian Data Analysis.
� Kevin Murphy. Machine Learning: a Probabilistic Perspective.
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Gaussian Processes
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� Suppose we are given a dataset consisting of n inputs x = (xi)n
i=1 and n

outputs y = (yi)n
i=1.

� Regression: learn the underlying function f (x).
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Gaussian Processes

� We can model response as noisy
version of an underlying function f (x):

yi|f (xi) ∼ N (f (xi),σ
2)

� Typical approach: parametrize f (x;β),
and learn β, e.g.,

f (x) =
d�

j=1

βdφj(x)

� More direct approach: since f (x) is
unknown, we take a Bayesian
approach, introduce a prior over
functions, and compute a posterior
over functions.
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� Instead of trying to work with
the whole function, just work
with the function values at the
inputs

f = (f (x1), . . . , f (xn))
�
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Gaussian Processes
� The prior p(f) encodes our prior

knowledge about the function.
� What properties of the function can

we incorporate?
� Multivariate normal assumption:

f ∼ N (0,G)

� Use a kernel function κ to define G:

Gij = κ(xi, xj)

� Expect regression functions to be
smooth: If x and x� are close by, then
f (x) and f (x�) have similar values, i.e.
strongly correlated.

�
f (x)
f (x�)

�
∼ N

��
0
0

�
,

�
κ(x, x) κ(x, x�)
κ(x�, x) κ(x�, x�)

��

In particular, want
κ(x, x�) ≈ κ(x, x) = κ(x�, x�).
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� Model:

f ∼ N (0,G)

yi|fi ∼ N (fi,σ2)
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Gaussian Processes
� What does a multivariate normal prior mean?
� Imagine x forms a very dense grid of data space. Simulate prior draws

f ∼ N (0,G)

Plot fi vs xi for i = 1, . . . , n.
� The prior over functions is called a Gaussian process (GP).
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Gaussian Processes
� Different kernels lead to different function characteristics.

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006. 277

Gaussian Processes

f|x ∼ N (0,G)

y|f ∼ N (f,σ2I)

� Posterior distribution:

f|y ∼ N (G(G + σ2I)−1y,G − G(G + σ2I)G)

� Posterior predictive distribution: Suppose x� is a test set. We can extend
our model to include the function values f� at the test set:

�
f
f�
�
|x, x� ∼ N

��
0
0

�
,

�
Kxx Kxx�

Kx�x Kx�x�

��

y|f ∼ N (f,σ2I)

where Kzz� is matrix with ijth entry κ(zi, z�j). Kxx = G.
� Some manipulation of multivariate normals gives:

f�|y ∼ N
�
Kx�x(Kxx + σ2I)−1y,Kx�x� − Kx�x(Kxx + σ2I)−1Kxx�

�
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Gaussian Processes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

279


