Back to Maximum Likelihood
» Given a generative model

[y = k) = mfi(x)

» Using a generative modelling approach, we assume a parametric form for
fi(x) = f(x; &) and compute the MLE 6 of § = (m, o)~ based on the
training data {x;, y:}7_,

» We then use a plug-in approach to perform classification

9 = f (55 0n)

p(Y = k|X =X, K . =~
Z_f:l Tif (x5 ¢5)

» Even for simple models, this can prove difficult; e.g. for LDA,
F(x; ¢x) = N(x; g, X), and the MLE estimate of X is not full rank for p > n.

» One answer: simplify even further, e.g. using axis-aligned covariances,
but this is usually too crude.

» Another answer: regularization.
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Naive Bayes
» Return to the spam classification example with two-class naive Bayes
fxis i) = H¢ (1= gg)' .
The MLE estimates are given by
-~ YLy =Llyi=k . m

¢’kj= T =

ni n

ks
|

where n = >0 I(y; = k).
» If a word j does not appear in class k by chance, but it does appear in a
document x,, then p(x.|y. = k) = 0 and so posterior p(y. = k|x.) = 0.

» Worse things can happen: e.g., probability of document under all classes
can be 0, so posterior is ill-defined.

258

The Bayesian Learning Framework

» Bayes Theorem: Given two random variables X and O,

P(O]X) = p(X|©)p(©)

p(X)
» Likelihood: p(X|O) > Posterior: p(©|X)
> Prior: p(©) » Marginal likelihood: p(X) = [ p(X|©)p(©)d©

» Treat parameters as random variables, and process of learning is just
computation of posterior p(6|X).
» Summarizing the posterior:
> Posterior mode: #M"" = argmax, p(6|X). Maximum a posteriori.

» Posterior mean: 9™ = E[O|X].
» Posterior variance: Var[O|X].

» How to make decisions and predictions? Decision theory.
» How to compute posterior?
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Simple Example: Coin Tosses

» A very simple example: We have a coin with probability ¢ of coming up
heads. Model coin tosses as iid Bernoullis, 1 =head, 0 =tail.

» Learn about ¢ given dataset D = (x;)7_, of tosses.
f(D|g) = ¢" (1 — )"

with nj = 577 1(xi = ).
» Maximum likelihood n

gue —

n

» Bayesian approach: treat unknown parameter as a random variable .
Simple prior: ® ~ UJ0, 1]. Posterior distribution:

(n+1)!
I’l]!l’lo!

1 1
pOID) = o =0, Z= [ g1 —o)mas -

Posterior is a Beta(n; + 1,1 + 1) distribution.
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Simple Example: Coin Tosses

01 02z 03 04 05 06 07 08 09 1 01 02 08 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09
@ 0 )

0 01 02 03 04 05 06 07 08 09 1 05
0 [

Posterior becomes peaked at true value ¢* = .7 as dataset grows.
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Simple Example: Coin Tosses

» Posterior distribution captures all learnt information.

» Posterior mode:
(};MAP _m

» Posterior mean:
amean _m+ 1

T n42

» Posterior variance: |
“mean “mean
1—
o 3¢> (1=9¢™")

» Asymptotically, for large n, variance decreases as 1/n and is given by the
inverse of Fisher’s information.

» Posterior distribution converges to true parameter ¢* as n — oc.
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Simple Example: Coin Tosses

>

>

» We predict on new data by averaging the predictive distribution over the

What about test data?
The posterior predictive distribution is the conditional distribution of
Xog1 given (x;)f:

POy (xi)iz) :/0 PG| @, (xi)icy))p(0](xi)i1))do

1
:Ap@mwmwu%4w¢

_ (amean)x,,“ (1 _ gZmean)lfxwr]

posterior. Accounts for uncertainty about ¢.

Simple Example: Coin Tosses

>

Posterior distribution is a known analytic form. In fact posterior
distribution is in the same beta family as the prior.

» An example of a conjugate prior.

A beta distribution Beta(a, b) with parameters a, b > 0 is an exponential
family distribution with density

Lla+b) ., b1
b — a 1 _ D
polad) = forgy @ 1= 9)
where I'(r) = fooc u'~le~"du is the gamma function.
If the prior is ¢ ~ Beta(a, b), then the posterior distribution is

P((}5|D,a7b) = ¢a+111—1(1 o ¢)h+n0—1

so is Beta(a + ny, b + np).

Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about ¢.
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Beta Distributions
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Bayesian Inference for Multinomials

» Suppose x; € {1,...,K} instead, and we model (x;)"_, as iid multinomials:

K
pom) =[x, =11
k=1

with m = S0 1y = k) and m, > 0, S8 m = 1.
» The conjugate prior is the Dirichlet distribution. Dir(«y, ..., ak) has
parameters oy > 0, and density

on the probability simplex {7 : 7, > 0, > r_, m = 1}.
» The posterior is also Dirichlet, with parameters (ax + )&,

» Posterior mean is
~mean oy + ng

7Tk = =K
D1 0
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Dirichlet Distributions

“\\ .
i Q\o\

LI}

(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for oy, = 10.
(C) Dirichlet density for a; = 0.1.
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Text Classification with (Less) Naive Bayes

» Under the Naive Bayes model, the joint distribution of labels
vi € {1,...,K} and data vectors x; € {0,1}" is

i=1 k=1

K
[Tt [Tt - our—
k=1 j=1

where gy = >0 L(y; = k), ng = > o L(yi = k,x; = 1).

» For conjugate prior, we can use Dir((ay)r_,) for w, and Beta(a, b) for ¢y
independently.

» Because the likelihood factorizes, the posterior distribution over = and
(¢4;) also factorizes, and posterior for 7 is Dir((ay + nx)K_,), and for ¢; is
Beta(a + nyj, b + nx — nyj).

]]-()x—k)
[1pGi ) HH (wkﬂ% (1—gy)'~ )
i=1
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Text Classification with (Less) Naive Bayes

» For prediction give D = (x;,y;)"_, we can calculate

p(x0,y0 = k|D) = p(yo = k|D)p(xo|yo = k, D)

with
g + ng
pyo=kD) = ——x—
n+d
plxo; = 1lyo =k,D) = Sttty
/ ’ a+b+n

» Predicted class is

p(yo = k|D)p(xolyo = k, D)
p(yo = klxo|D) =
Do = Khol) PolD)
» Compared to ML plug-in estimator, pseudocounts help to regularize
probabilities away from extreme values.
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Bayesian Learning and Regularization

» Consider a Bayesian approach to logistic regression: introduce a
multivariate normal prior for 5, and uniform (improper) prior for a. The
prior density is:

pla,b) = (2mo?) ~Se = Ml

» The posterior is

1 n
p(a,b|D) x exp <—202|h|§ - Zlog(l + exp(—yi(a + bTxi)))>
i=1

» The posterior mode is the parameters maximizing the above, equivalent
to minimizing the L,-regularized empirical risk.
» Regularized empirical risk minimization is (often) equivalent to having a
prior and finding the maximum a posteriori (MAP) parameters.
» L, regularization - multivariate normal prior.
» L; regularization - multivariate Laplace prior.
» From a Bayesian perspective, the MAP parameters are just one way to
summarize the posterior distribution.
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Bayesian Learning — Discussion

» Clear separation between models, which frame learning problems and
encapsulates prior information, and algorithms, which computes
posteriors and predictions.

» Bayesian computations — Most posteriors are intractable, and algorithms
needed to efficiently approximate posterior:

» Monte Carlo methods (Markov chain and sequential varieties).
» Variational methods (variational Bayes, belief propagation etc).

» No optimization — no overfitting (!) but there can still be model misfit.

» Tuning parameters ¥ can be optimized (without need for
cross-validation).

p(X|W) = /'p<x|9>p<e|we

p(X[¥)p(¥)
p(X)
» Be Bayesian about ¥ — compute posterior.
» Type Il maximum likelihood — find ¥ maximizing p(X|¥).

p(Y[X) =
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Bayesian Learning — Further Readings

» Zoubin Ghahramani. Bayesian Learning. Graphical models.
Videolectures.

» Gelman et al. Bayesian Data Analysis.
» Kevin Murphy. Machine Learning: a Probabilistic Perspective.
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Gaussian Processes

R ost
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» Suppose we are given a dataset consisting of n inputs x = (x;)7_, and n

outputs y = ()i

» Regression: learn the underlying function f(x).

Gaussian Processes

» We can model response as noisy
version of an underlying function f(x):

yilf(xi) ~ N (f(x:),07)

» Typical approach: parametrize f(x; 3),
and learn 3, e.g.,

d

Fx) =" Bagi(x)

j=1

» More direct approach: since f(x) is
unknown, we take a Bayesian
approach, introduce a prior over
functions, and compute a posterior
over functions.
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"o ot 02 03 04 05 06 07

» Instead of trying to work with
the whole function, just work
with the function values at the
inputs

f=(F(x1),. . f(x)) "
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Gaussian Processes

» The prior p(f) encodes our prior
knowledge about the function. s
» What properties of the function can
we incorporate?
» Multivariate normal assumption:

f~ N(0,G)
» Use a kernel function « to define G:

Gij = k(xi, x})

» Expect regression functions to be
smooth: If x and x" are close by, then
f(x) and f(x") have similar values, i.e.
strongly correlated.

()~ () (% %))
In particular, want
K(x,x') &~ k(x,x) = k(X' x").

» Model:

f~ N(0,G)
yilfi ~ N(fi, )
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Gaussian Processes

» What does a multivariate normal prior mean?
» Imagine x forms a very dense grid of data space. Simulate prior draws

f~ N(0,G)

Plotf;vs x;fori=1,...,n.
» The prior over functions is called a Gaussian process (GP).

L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

http://www.gaussianprocess.org/ 276



Gaussian Processes Gaussian Processes
» Different kernels lead to different function characteristics.
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Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006. 277 279

Gaussian Processes

fjx ~ N(0,G)
ylf ~ N(£,0°1)

» Posterior distribution:
fly ~ N(G(G+0’1)"'y,G — G(G + 0°I)G)

» Posterior predictive distribution: Suppose x’ is a test set. We can extend
our model to include the function values f’ at the test set:

f ’ 0 Kyx Kyxr
()= () (k22 &)
ylf ~ N (£ 0%1)

where K, is matrix with ijth entry x(z;, 7j). Kxx = G-
» Some manipulation of multivariate normals gives:

fl|y ~N (Kx’x(Kxx + 0'2[)71y7KX’x’ - Kx'x(Kxx + 021)71Kxx’)
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