The Brain

- Basic computational elements: neurons.
- Receives signals from other neurons via dendrites.
- Sends processed signals via axons.
- Axon-dendrite interactions at synapses.
- $10^{10} - 10^{11}$ neurons.
- $10^{14} - 10^{15}$ synapses.
- Connectionist architecture: the network and its structure govern the computations performed.

A Simple Model of Neural Computations

Modelling Conditional Probabilities

- Data vectors $x_i \in \mathbb{R}^p$, binary labels $y_i \in \{0, 1\}$.
- Inputs x_1, \ldots, x_p.
- Output $\hat{y}_i = p(Y = 1|X = x_i)$.
- Hidden unit activations h_1, \ldots, h_m.
 - Compute hidden unit activations:
 $$h_k = s \left(b_k^0 + \sum_{j=1}^{p} W_{jk} x_j \right)$$
 - Compute output probability:
 $$\hat{y}_i = s \left(b^0 + \sum_{k=1}^{m} W_k^0 h_k \right)$$
 - Common nonlinear activation function: the logistic function
 $$s(z) = \frac{1}{1 + \exp(-z)}$$
A Simple Model of Neural Computations

Training a Neural Network

- Objective function: L_2-regularized log loss

$$J = -\sum_{i=1}^{n} y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i) + \frac{1}{2} \sum_{jk} C |W_{jk}^m|^2 + \frac{1}{2} \sum_{k} C |W_{o}^k|^2$$

where

$$\hat{y}_i = s \left(b^o + \sum_{k=1}^{m} W_{o}^k h_k \right) \quad h_k = s \left(b^h_k + \sum_{j=1}^{p} W_{hk}^j x_{ij} \right)$$

- Optimize parameters $\{b^h_k, b^o, W_{hk}^j, W_{o}^k\}$ by gradient descent.

$$\frac{dJ}{dW_{o}^k} = C W_{o}^k + \sum_{i=1}^{n} \frac{dJ}{d\hat{y}_i} \frac{d\hat{y}_i}{dW_{o}^k} = C W_{o}^k + \sum_{i=1}^{n} (\hat{y}_i - y_i) h_k$$

$$\frac{dJ}{dW_{hk}^j} = C W_{fh}^j + \sum_{i=1}^{n} \frac{dJ}{d\hat{y}_i} \frac{d\hat{y}_i}{dh_k} \frac{dh_k}{dW_{hk}^j} = C W_{fh}^j + \sum_{i=1}^{n} (\hat{y}_i - y_i) W_{o}^k (1 - h_k) x_{ij}$$

- Backpropagation: gradients computed via chain rule, and propagated through the network backwards.

- L_2 regularization often called weight decay.

Neural Networks – Discussion

- Nonlinear hidden units introduce modelling flexibility.
- As opposed to user introduced nonlinearities, kernel methods, kNNs, features are global, and learnt to maximize predictive performance.
- Neural networks with a single hidden layer can model arbitrarily complex functions (with enough hidden units).
- Highly flexible framework, with many variations to solve different learning problems and introduce domain knowledge.
- Optimization problem is not convex, and objective function can have many local optima, plateaus and ridges.
- On large scale problems, often use stochastic gradient descent, along with a whole host of techniques for optimization, regularization, and initialization.
- Strengths of neural networks:
 - Flexibility and generalization ability.
 - Computational efficiency, parallelizability.
- Recent developments, especially by Geoffrey Hinton, Yann LeCun, Yoshua Bengio, Andrew Ng and others. See also http://deeplearning.net/.

Neural Networks – Variations

- Other loss functions can be used, e.g. for regression:

\[\sum_{i=1}^{n} |y_i - \hat{y}_i|^2 \]

For multiclass classification, use softmax outputs:

\[\hat{y}_k = \frac{\exp(b_k + \sum_{i} W_{ik} h_i)}{\sum_{k'} \exp(b_{k'} + \sum_{i} W_{ik'} h_i)} \quad L(y, \hat{y}) = \sum_{k=1}^{K} \mathbb{1}(y_i = k) \log \hat{y}_k \]

- Other activation functions can be used, e.g. a recent popular one is called rectified linear activation:

\[s(z) = \log(1 + \exp(z)) \]

- Multiple layers of hidden units can be used, called multilayer perceptrons (MLP) or deep networks.

Visual Object Recognition

![ImageNet](https://example.com/image.png)

Cow

- Nature female of mammals of which the male is called "bull".

Visual Processing in the Brain

![Brain Diagram](https://example.com/brain_diagram.png)

Dorsal stream

- "how/where"

Primary visual cortex

V1

V2

V4

Ventral stream

- "what"

Deep networks
Deep Convolutional Neural Networks

- Input is a 2D image, $X \in \mathbb{R}^{p \times q}$.
- Convolution: detects simple object parts or features
 \[A^m = s(X * W^m) \quad A^m_{jk} = s(b^m + \sum_{f} X_{j-f, k-g}W^m_{fg}) \]
- Sub-sampling: incorporates local translation invariance by max-pooling
 \[B^m_{jk} = \max\{A^m_{fg} : |f - j| \leq w, |g - k| \leq h\} \]
- Learn features/parts of increasing complexity over multiple layers.

LeCun et al, Krizhevsky et al

Revisiting Learning Generalization

- Generalization ability is a central concept in machine learning.
- Splitting data into training and test sets allows us to estimate how well our methods are generalizing.
- Two important factors determining generalization ability:
 - Model complexity
 - Training data size
- To control overfitting, we need to regularize learning.
- Can we learn the tuning parameters as well?

Learning Curves
Bias-Variance Tradeoff

- A different perspective on generalization ability.
- Suppose we are in a regression setting, with
 \[Y = f^*(X) + \mathcal{N}(0, \sigma^2) \]
- Given a dataset \(D = (x_i, y_i)_{i=1}^n \), train a model \(f(x; \theta) \).
- Estimated \(\hat{\theta} \) is a function of data set \(D \).
- How will we do, averaging over data sets of size \(n \)?
 \[
 E_D[(Y - f(X; \hat{\theta}(D)))^2] = \underbrace{(\bar{f}(X) - f^*(X))^2}_{\text{bias}} + \underbrace{E_D[(\bar{f}(X) - f(X; \hat{\theta}(D)))^2]}_{\text{variance}} + \underbrace{(Y - f^*(X))^2}_{\text{noise}}
 \]
 where \(\bar{f}(X) = E_D[f(X; \hat{\theta}(D))] \) is average prediction (over data sets).
- **Noise**: intrinsic difficulty of regression problem.
- **Variance**: How variable is our method if given different datasets? **Bias**: How far is our average prediction away from the truth?

Optimizing Hyperparameters and Model Complexity

- How can we optimize generalization ability, via optimizing choice of tuning parameters, model size, and learning parameters?
- Suppose we have split data into training/test set.
- Test set can be used to determine generalization ability, and used to choose best setting of tuning parameters/model size/learning parameters with best generalization.
- Once these meta-parameters are chosen, still important to determine generalization ability, but cannot use performance on test set to gauge this anymore!
- Idea: split data into 3 sets: training set, test set, and **validation set**.

Validation Set

- For each combination of meta-parameters \(\gamma \):
 - Train our model, obtaining model parameter \(\theta(\gamma) \).
 - Evaluate \(\theta(\gamma) \) on validation set.
 - Pick \(\gamma^* \) with best performance on validation set.
 - Using \(\gamma^* \), train on both training and validation set (fold the validation set into the training set), to obtain optimal \(\theta^* \).
 - Evaluate model with \(\gamma^*, \theta^* \) on test set, reporting generalization performance.
 - Problem: if we have insufficient data, very wasteful to split into 3 subsets, and estimated generalization performance on validation set may be too noisy to effectively choose meta-parameters.
 - Solution: **cross-validation**.
Cross-Validation

- Basic approach:
 - Split training set into V folds.
 - For each γ and each $v = 1, \ldots, V$:
 - Use fold v as validation set and the rest to train the model parameters $\hat{\theta}_v$.

 $$R^\text{emp}_v(\gamma) = \frac{1}{\text{size}(\text{fold}(v))} \sum_{i \in \text{fold}(v)} L(y_i, \hat{Y}(x_i; \hat{\theta}_v))$$

 - Choose γ^* which minimizes

 $$\frac{1}{V} \sum_{v=1}^{V} R^\text{emp}_v(\gamma)$$

 - Train model with meta-parameter γ^* on all training set.
 - Report generalization performance on test set.
- Extreme case: **Leave-one-out (LOO)** cross validation: one data item per fold.
- Cross-validation can be computationally very expensive.