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The Brain

» Basic computational elements:
neurons.

» Receives signals from other
neurons via dendrites.

» Sends processed signals via
axons.

» Axon-dendrite interactions at
synapses.

» 109 — 10 neurons.
» 10" — 10" synapses.

» Connectionist architecture: the
network and its structure govern
the computations performed.
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A Simple Model of Neural Computations

AL =s (bk + Z ijAj

J
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Modelling Conditional Probabilities

» Data vectors x; € R?, binary labels y; € {0, 1}.

> |npUtS Xily« -+ 5 Xip

» output y; = p(Y = 1|X = x;) y
> Y

hidden unit activations #;;, ..., h;, ‘
» Compute hidden unit activations:
lk = S (bk —|— Z kxl])
» Compute output probability: 7?4 @/
Ny \\»wr«//

- M'M'
» Common nonlinear activation function: N’
the logisitic function /\‘ '/\\

s(2) =

1 4+ exp(—2z)
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A Simple Model of Neural Computations
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A Simple Model of Neural Computations
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Training a Neural Network
» QObjective function: L,-regularized log loss

n X A 1 1 o
= - Zyik)g)’i + (1 —yi)log(1 — i) + 5 Z C|lel<|2 T 5 Z CIWg[?
i=1 jk k
where

yi:s<b0+ZW,€hik> hyy = s +2ka,]
k=1

> Optimize parameters {b},b°, W}, W} by gradient descent.

i :CW,?+ZdJ ay; :CW,§+Z@1

dW? — dy; dWy

dJ L~ dJ dy; dhy

awi, ~ Mt 2 &, dh awi ~ Wit Z Wikl = hae)s
J i=1 ' J

» Backpropagation: gradients computed via chain rule, and propagated
through the network backwards.

» [, regularization often called weight decay.
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Neural Networks

Global solution and local minima Neural network fit with a weight decay of 0.01
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R package implementing neural networks with a single hidden layer: nnet.
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Neural Networks — Discussion

» Nonlinear hidden units introduce modelling flexibility.

» As opposed to user introduced nonlinearities, kernel methods, kNNs,
features are global, and learnt to maximize predictive performance.

» Neural networks with a single hidden layer can model arbitrarily complex
functions (with enough hidden units).

» Highly flexible framework, with many variations to solve different learning
problems and introduce domain knowledge.

» Optimization problem is not convex, and objective function can have
many local optima, plateaus and ridges.

» On large scale problems, often use stochastic gradient descent, along
with a whole host of techniques for optimization, regularization, and
Initialization.

» Strengths of neural networks:

» Flexibility and generalization ability.
» Computational efficiency, parallelizability.

» Recent developments, especially by Geoffrey Hinton, Yann LeCun,
Yoshua Bengio, Andrew Ng and others. See also
http://deeplearning.net/.

243



Neural Networks — Variations

» Other loss functions can be used, e.g. for regression:

n
Z i —)A’ilz
i=1

For multiclass classification, use softmax outputs:

K
b¢ W7 h;
~ €Xp( k_l_ZE lk E) yl7yl E ]1 logylk
k=1

Yik = 5 5

» Other activation functions can be used, e.g. a recent popular one is
called rectified linear activation:

s(z) = log(1 + exp(z))

» Multiple layers of hidden units can be used, called multilayer
perceptrons (MLP) or deep networks.
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Visual Object Recognition
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Visual Processing in the Brain
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Deep Convolutional Neural Networks

Inpuc layer (51) 4 feature maps

. 1 (C1) 4 feature maps (52) & feature maps {C2) & feature maps

| convolution layer | sub-sampling layer l convolution layer | sub-sampling layer l fully connected T"1LF'|

» Inputis a 2D image, X € RP*4,
» Convolution: detects simple object parts or features

A" = (X % W) B=s 0" X Wy
18
» Sub-sampling: incorporates local translation invariance by max-pooling

i = max{Af : |[f —j| <w,|g— k[ < h}
» Learn features/parts of increasing complexity over multiple layers.

LeCun et al, Krizhevsky et al 247



Revisiting Learning Generalization

» Generalization ability is a central concept in machine learning.

» Splitting data into training and test sets allows us to estimate how well our
methods are generalizing.

» Two important factors determining generalization ability:

» Model complexity
» Training data size

» To control overfitting, we need to regularize learning.
» Can we learn the tuning parameters as well?
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Learning Curves

A Overfit A Overfit

Test error

Training error Test error

Prediction error
Prediction error

Training error

Training data size Training data size
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Learning Curves

Overfit

Test
error

Just right

Prediction error

Training error

>

Model complexity/flexibility
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Bias-Variance Tradeoff
» A different perspective on generalization ability.
» Suppose we are in a regression setting, with

Y = f*(X) + N(0,0°)

» Given a dataset D = (x;,y;)"_,, train a model f(x; 6).
» Estimated 6 is a function of data set D.
» How will we do, averaging over data sets of size n?

Ep|(Y — f(X;6(D)))?]
= (F(X) = f*(X))2 + Ep[(f(X) —f(X; 6(D)))?] + (¥ — £*(X))?

VO TV

bias? variance noise

where f(X) = Ep[f(X;0(D)] is average prediction (over data sets).
» Noise: intrinsic difficulty of regression problem.
>

» Variance: How variable is our method if given different datasets? Bias:
How far is our average prediction away from the truth?
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Learning Curve

A Underfit:
high bias Overfit:
low variance low bias

high varianc
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Optimizing Hyperparameters and Model Complexity

>

How can we optimize generalization
ability, via optimizing choice of tuning
parameters, model size, and learning
parameters?

Suppose we have split data into
training/test set.

Test set can be used to determine
generalization ability, and used to choose
best setting of tuning parameters/model
size/learning parameters with best
generalization.

Once these meta-parameters are chosen,
still important to determine generalization
ability, but cannot use performance on
test set to gauge this anymore!

|dea: split data into 3 sets: training set,
test set, and validation set.

Training set

—

Test set

—

generalization
performance
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Validation Set

» For each combination of meta-parameters ~:

» Train our model, obtaining model parameter

(7).
> Evaluate 0(y) on validation set. Validation set Model
complexit
» Pick v* with best performance on validation Py
cor Y P .
» Using ~*, train on both training and
validation set (fold the validation set into the | Training set .o
training set), to obtain optimal 6*.
» Evaluate model with ~*, §* on test set, —
reporting generalization performance. .
» Problem: if we have insufficient data, very Testset L generalization
_ performance
wasteful to split into 3 subsets, and L

estimated generalization performance on
validation set may be too noisy to effectively
choose meta-parameters.

» Solution: cross-validation.
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Cross-Validation

Training
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Cross-Validation

» Basic approach:

» Split training set into V folds.
» Foreachvyandeachv=1,...,V:

» Use fold v as validation set and the rest to train the model parameters ,.

Remp(,y \Fold Z L(yl, Xh )
lEFOId(v)
» Choose ~* which minimizes
-
v=1

» Train model with meta-parameter ~* on all training set.
» Report generalization performance on test set.

» Extreme case: Leave-one-out (LOO) cross validation: one data item per
fold.

» Cross-validation can be computationally very expensive.
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