
The Brain

235

The Brain

� Basic computational elements:
neurons.

� Receives signals from other
neurons via dendrites.

� Sends processed signals via
axons.

� Axon-dendrite interactions at
synapses.

� 1010 − 1011 neurons.
� 1014 − 1015 synapses.
� Connectionist architecture: the

network and its structure govern
the computations performed.

236

A Simple Model of Neural Computations

Ak = s



bk +
�

j

WjkAj





Aj
Wjk

237

Modelling Conditional Probabilities
� Data vectors xi ∈ R

p, binary labels yi ∈ {0, 1}.
� Inputs xi1, . . . , xip

� output ŷi = p(Y = 1|X = xi)
� hidden unit activations hi1, . . . , him

� Compute hidden unit activations:

hik = s



bh
k +

p�

j=1

Wh
jkxij





� Compute output probability:

ŷi = s

�
bo +

m�

k=1

Wo
k hik

�

� Common nonlinear activation function:
the logisitic function

s(z) =
1

1 + exp(−z)

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4 hi5 hi6 hi7

ŷi

238

A Simple Model of Neural Computations

xi1

xi2

239

A Simple Model of Neural Computations

xi1

xi2

240

Training a Neural Network
� Objective function: L2-regularized log loss

J = −

n�

i=1

yi log ŷi + (1 − yi) log(1 − ŷi) +
1
2

�

jk

C|Wh
jk|

2 +
1
2

�

k

C|Wo
k |

2

where

ŷi = s

�
bo +

m�

k=1

Wo
k hik

�
hik = s



bh
k +

p�

j=1

Wh
jkxij





� Optimize parameters {bh
k , bo,Wh

jk,Wo
k } by gradient descent.

dJ
dWo

k
= CWo

k +
n�

i=1

dJ
dŷi

dŷi

dWo
k
= CWo

k +
n�

i=1

(ŷi − yi)hik

dJ
dWh

jk
= CWh

jk +
n�

i=1

dJ
dŷi

dŷi

dhik

dhik

dWh
jk
= CWh

jk +
n�

i=1

(ŷi − yi)Wo
k hik(1 − hik)xij

� Backpropagation: gradients computed via chain rule, and propagated
through the network backwards.

� L2 regularization often called weight decay.
241

Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Solution (global minimum)
Local minimum 1
Local minimum 2
Local minimum 3

Global solution and local minima

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x1

x2

Neural network fit with a weight decay of 0.01

R package implementing neural networks with a single hidden layer: nnet.

242

Neural Networks – Discussion
� Nonlinear hidden units introduce modelling flexibility.
� As opposed to user introduced nonlinearities, kernel methods, kNNs,

features are global, and learnt to maximize predictive performance.
� Neural networks with a single hidden layer can model arbitrarily complex

functions (with enough hidden units).
� Highly flexible framework, with many variations to solve different learning

problems and introduce domain knowledge.
� Optimization problem is not convex, and objective function can have

many local optima, plateaus and ridges.
� On large scale problems, often use stochastic gradient descent, along

with a whole host of techniques for optimization, regularization, and
initialization.

� Strengths of neural networks:
� Flexibility and generalization ability.
� Computational efficiency, parallelizability.

� Recent developments, especially by Geoffrey Hinton, Yann LeCun,
Yoshua Bengio, Andrew Ng and others. See also
http://deeplearning.net/.

243

Neural Networks – Variations
� Other loss functions can be used, e.g. for regression:

n�

i=1

|yi − ŷi|
2

For multiclass classification, use softmax outputs:

ŷik =
exp(bo

k +
�

� Wo
lkhi�)�

k� exp(bo
k� +

�
� Wo

lk�hi�)
L(yi, ŷi) =

K�

k=1

(yi = k) log ŷik

� Other activation functions can be used, e.g. a recent popular one is
called rectified linear activation:

s(z) = log(1 + exp(z))

� Multiple layers of hidden units can be used, called multilayer
perceptrons (MLP) or deep networks.

244

Visual Object Recognition

245

Visual Processing in the Brain

Dorsal stream
"how/where"

Primary
visual cortex

Ventral stream
"what"

V2
V4

IT

V1

246

Deep Convolutional Neural Networks

� Input is a 2D image, X ∈ R
p×q.

� Convolution: detects simple object parts or features

Am = s(X ∗ Wm) Am
jk = s



bm +
�

fg

Xj−f ,k−gWm
fg





� Sub-sampling: incorporates local translation invariance by max-pooling

Bm
jk = max{Am

fg : |f − j| ≤ w, |g − k| ≤ h}

� Learn features/parts of increasing complexity over multiple layers.

LeCun et al, Krizhevsky et al 247

Revisiting Learning Generalization

� Generalization ability is a central concept in machine learning.
� Splitting data into training and test sets allows us to estimate how well our

methods are generalizing.
� Two important factors determining generalization ability:

� Model complexity
� Training data size

� To control overfitting, we need to regularize learning.
� Can we learn the tuning parameters as well?

248

Learning Curves

Training data size

Pr
ed

ic
tio

n
er

ro
r

Overfit

Training error

Test error

Training data size

Pr
ed

ic
tio

n
er

ro
r

Overfit

Training error

Test error

249

Learning Curves

Model complexity/flexibility

Pr
ed

ic
tio

n
er

ro
r

Underfit

Overfit

Just right

Training error

Test
error

250

Bias-Variance Tradeoff
� A different perspective on generalization ability.
� Suppose we are in a regression setting, with

Y = f ∗(X) +N (0, σ2)

� Given a dataset D = (xi, yi)n
i=1, train a model f (x; θ).

� Estimated θ̂ is a function of data set D.
� How will we do, averaging over data sets of size n?

ED[(Y − f (X; θ̂(D)))2]

= (f̄ (X)− f ∗(X))2
� �� �

bias2

+ED[(f̄ (X)− f (X; θ̂(D)))2]� �� �
variance

+(Y − f ∗(X))2
� �� �

noise

where f̄ (X) = ED[f (X; θ̂(D)] is average prediction (over data sets).
� Noise: intrinsic difficulty of regression problem.
�
� Variance: How variable is our method if given different datasets? Bias:

How far is our average prediction away from the truth?
251

Learning Curve

Model complexity/flexibility

Pr
ed

ic
tio

n
er

ro
r

Underfit:
high bias

low variance
Overfit:
low bias

high variance

Just right

Training error

Test
error

252

Optimizing Hyperparameters and Model Complexity
� How can we optimize generalization

ability, via optimizing choice of tuning
parameters, model size, and learning
parameters?

� Suppose we have split data into
training/test set.

� Test set can be used to determine
generalization ability, and used to choose
best setting of tuning parameters/model
size/learning parameters with best
generalization.

� Once these meta-parameters are chosen,
still important to determine generalization
ability, but cannot use performance on
test set to gauge this anymore!

� Idea: split data into 3 sets: training set,
test set, and validation set.

Training set

Test set

θ

generalization
performance

253

Validation Set
� For each combination of meta-parameters γ:

� Train our model, obtaining model parameter
θ(γ).

� Evaluate θ(γ) on validation set.
� Pick γ∗ with best performance on validation

set.
� Using γ∗, train on both training and

validation set (fold the validation set into the
training set), to obtain optimal θ∗.

� Evaluate model with γ∗, θ∗ on test set,
reporting generalization performance.

� Problem: if we have insufficient data, very
wasteful to split into 3 subsets, and
estimated generalization performance on
validation set may be too noisy to effectively
choose meta-parameters.

� Solution: cross-validation.

Training set

Test set

θ

generalization
performance

Validation set Model
complexity

254

Cross-Validation

Training Training Training Validation Test

TrainingTraining Training Validation Test

TrainingTrainingTraining Validation Test

Training TrainingTrainingValidation Test

255

Cross-Validation

� Basic approach:
� Split training set into V folds.
� For each γ and each v = 1, . . . ,V:

� Use fold v as validation set and the rest to train the model parameters θ̂v.

Remp
v (γ) =

1
|Fold(v)|

�

i∈Fold(v)

L(yi, Ŷ(xi; θ̂v))

� Choose γ∗ which minimizes

1
V

V�

v=1

Remp
v (γ)

� Train model with meta-parameter γ∗ on all training set.
� Report generalization performance on test set.

� Extreme case: Leave-one-out (LOO) cross validation: one data item per
fold.

� Cross-validation can be computationally very expensive.

256

