Optimization

» Many more complex models in statistics and machine learning do not
have analytic solutions to ML estimators.

» |In most models parameters are learned by some numerical optimization

technique.
ngn F(0)
» How many minima are there?
» How do we find optimal 6?
» Are we guaranteed to find the global optimum 6*, rather just a local one?
» How efficiently can we solve for 67?
» What if there are constraints?
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Constrained Optimization
» Optimization problems with constraints, e.g.

in  F(6
o FO)
subjectto  g;(0) <0 fori=1,...,1

hJ(H):O fijZl,...,J

where g; enforce inequality constraints and 4; equality constraints.
» Can write this succinctly:

in F(6
pin, £
subjectto  g(60) <0

h(6) =0

where g : R — R’ is a vector-valued function with g(8); = g;(#). Similarly
h(f): R4 — R, x < yiff x; < y,Vi.
» These problems are called programmes.
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Constrained Optimization

in  F(0

iy F(0)
subjectto  g(0) <0
h(6) =0

» We can enforce constraints by using Lagrange multipliers or dual
variables \ ¢ R/ and x ¢ R’.

» The optimization problem can be written as a mini-max optimization of
the Lagrangian:

: o r T T
min ){Itl%?(KE(H, A, K) min max (0)+ X g(0)+ K h(B)

» Intuition: For any 6, we have:

max L(0,\, k) =

{—l—oo if there is some unsatisfied constraint,
A~0,k

F(#) if all constraints are satisfied.

So the outer minimization over 6 results in the same optimization problem.
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Convex Optimization

» A function f : RY — R is convex if

flax+ (1 —a)y) < af(x) + (1 —a)f ()

for all x,y € R?, o € [0, 1].
» For smooth functions: Equivalent to 2nd f(x)

derivative (Hessian) being positive of)+(1-00fly)

semidefinite. floox-+(1-0)y) fly)
» A programme is a convex programme if: X axr(l-wy y

» F(0) is convex,
» g;(0) is convex for each i,
» h(0) = AfB + b is affine.

» Examples: linear, quadratic, semidefinite
programming.

» Convex programmes have a unique
minimum (typically), which can be
efficiently found.

not convex

Boyd and Vandenberghe, Convex Optimization. 2004. MOOC right now. 199



Convex Duality

» Say the minimum is p*, and occurred at 6*.
» The dual programme inverts the order of max and min:
p* =min max L(0,\, k) > max min L(O, \, k) = d”
6 >0,k A=0,k 6

where the dual optimum is d*.

» Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a
solution 6* is the optimal solution of a convex programme, if and only if
there are \* and «* (the dual optimal solution) such that:

» Primal feasible: g(6*) < 0, h(6") = 0.
» Dual feasible: \* > 0.
» (0%,\", k™) is a saddle point of £: For every 6, \ >~ 0, x, we have

LOFNK) <LOSN KT < LON KT

> VoLl(0%, X, k%) = VoF(0*) + (\*) ' Vog(0*) + (*) ' Voh(6*) =0
» Complementary slackness: For every i,

A gi(07) =0
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Linear Classification

» A dataset with {+1, —1} labels is linearly separable if there is a
hyperplane separating two classes.
» Typically there will be an infinite number of such separating

hyperplanes.
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Maximum Margin Classification

» (Good choice of separating hyperplane: one with large margin.
» Such a hyperplane will be defined by a number of data vectors close to

the boundary—the support vectors, leading to a method called support

vector machines.
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Support Vector Machines
» A hyperplane can be parametrized as:

gx)=a+b'x=0

with the classification given by sign(g(x)). }

» Distance and classification of a point x;
from hyperplane is g(x;)/||b]|.

» Multiplying @ and b by ¢ > 0 does not
affect result. Rescale such that margin
(closest distance of data vectors to
hyperplane) is 1/||b||.

vila+b'x) /bl > 1/||p|
yi(a + bTx,-) > 1

» Constrained optimization problem to solve for a, b:

1/|b in 35|
max /10| - e Aldl

subjectto  yi(a+b'x) > 1 subjectto  yi(a+b'x;)) >1 foralli
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Support Vector Machines

» Introduce Lagrange multipliers )\; > 0 to enforce constraints:

Lo T
nanbm}\lf_%(ﬁ(a b, \) HbH +Z)\ a-+b x;))

» KKT optimality conditions:

Zero derivatives: VoL(a® b* X)) == Ny =
i=1
VpLl(a®,b*,\*) =b" — Z Afyix; =0
Primal feasibility: yi(a* + (b*)Tx,-) > 1
Dual feasibility: AP >0

Complementary slackness: AF(1—yi(a* + (b*) 'x)) =
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Support Vector Machines

» Substituting optimal a* and »* into Lagrangian leads to the dual
optimization problem:

max Z Ai — Z Ai\yiyi( x) " (xj)

lJl

subject to Z Ay =0
i=1

A=0
A gquadratic programme. Standard solvers can be used to find optimal
A*in O(n’) cost.
» Those vectors with )\; > 0 are called support vectors.

» Complementary slackness implies that if x; does not lie on boundary, then
A = 0, i.e. not a support vector.
» Discriminant function is

)=a" —I—Z)\ Vix; x

where a* can be solved by noting that y]-g(xj) = 1 for a support vector x;.
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Soft-Margin Support Vector Machines

» For non-linearly separable datasets, we
can allow for margin violations

[ — 1 —vyi(a+b'"x;) if margin violated,
o if not violated.

= max(0,1 — yi(a+b'x;)) o .

» Penalizing violations by their magnitude,

1 n
in —[[p||*+C> &
min  S||b]* + ;f |

subjectto  y;(a+b'x) > 1§
§& >0

where C is a tuning parameter.
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Soft-Margin Support Vector Machines

» Introduce Lagrange multipliers A; > 0, +; > 0 to enforce constraints:
L(a,b,&,N,7) = —HbH2+cZa+ZA (a+b"x)) Z%@

» KKT optimality conditions:

Zero derivatives: Vo L(a*, b, N ~v") Z Ayi=0
VpLl(a®,b*, &, X\, ~v") Z)\*y,x, =0
Vgiﬁ(a*,b*,f*, ALY =C— )‘;k -7 =0

Primal feasibility: yila* + (b*)'x) > 1 - ¢
& =0
Dual feasibility: AT >0
i =0
Complementary slackness: A1 — & —yi(a* + (") ' x)) =0

& =0
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Soft-Margin Support Vector Machines

» Setting derivatives of primal variables to zero leads to the dual
programme:

n 1 n
IIl)?.X Z )\i — 5 Z )\i)\jYiyj(xi)T(xj)
i=1 ij=1
subject to Z Ayi =0
i=1

0=AN=XC

Only difference is the box constraint on \; € [0, C].
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Soft-Margin Support Vector Machines

» From primal programme, we can first minimize over &;’s, leading to an
unconstrained convex programme:

2 T
" 1 — ! !
m1bn HbH +C Elmax (0,1 —yi(a+b x))

» [nterpretation: regularized empirical risk minimization with the hinge

loss.
"""" Hinge Loss (max(0,1-y(a+b’x)))
4 Log Loss (log(1+exp(-y(a+b’x)))) |
----- 0-1 Loss (1/2+sign(-y(a+b’x))/2)
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Support Vector Machines — Discussion

>

>

vV v. vy

Multiclass classification: If there are more than two classes, there are
multiclass generalizations of the SVM.
A simple practical idea: treat a multiclass problem as multiple binary
classification problems.
» One-vs-one: train K(K — 1) binary SVMs, for each pair of classes. At test
time, predict class that got the most votes.
» One-vs-rest: train K binary SVMs, one for each class vs all other classes. At
test time, predict class with largest discriminant value a; + b, x.
Optimization for large scale problems:

» Standard quadratic programme solvers not scalable.
» Sequential minimal optimization (SMO): iterative solve pairs of \;’s.
» Pegasos : stochastic gradient descent on regularized hinge loss objective.

L, regularization controls overfitting.
Not probabilistic and cannot produce uncertainty estimates.
Statistical learning theory foundations.

Further readings:

» Bishop, Chapter 6.
» Christopher Burgess, A Tutorial on Support Vector Machines for Pattern
Recognition. 1998.
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Nonlinear Methods

» Decision boundaries and
regression functions often need to
be nonlinear.

» One general approach: transform
data x — ¢(x).

» A global approach. Decisions and
optimal parameters depend on
whole training dataset.

» Alternative approach:
p(Y = 1|X = x) or f(x) depends
only on data cases in local . . . . . .
neighbourhood of x.

211



Local Methods
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kK-Nearest Neighbours

» A simple, local, nonlinear,
non-model-based, method.

» Prediction at a data vector x is
simply determined by the k
nearest neighbours ne;(x) of x
among the training set.

» Classification: predict the
majority vote of the neighbours:

o -

kaN(x) = argmax |[{j € nex(x) : y; =l}|. o

[

» Regression: predict the average
among the neighbours:

ZjEnek(x) Yj

P () = -
2 ienen(x) |
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k-Nearest Neighbours

» Nearest neighbours are simple and essentially model-free methods for
classification.

» Weaker modelling assumptions than e.g. LDA, Naive Bayes and logistic
regression.

» These methods are not very useful for understanding relationships
between attributes and class predictions.

» As black box classification methods however, they are often perform
reasonably on real life problems and provide a good benchmark.
» Can break down in high-dimensional data:

» Effectively, partitions input space into regions each containing k data points,
and prediction in each region estimated separately.

» In a space of dimension p > 0, number of regions needed is R = m”, so size
of dataset needed is km”.
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k-Nearest Neighbour Demo

w_
+
®_
o+ 4
+ + + +
+ + + T n +
q—_
o+ F T yor
+ o+ + +, t
+ ¢+ - + + i +
+
o + :+++:':+ ++ + +H#4+ + +
+
N + 4+ . ° %o o +J9FTF|—"¢++% + *
a) o 4+ o ¥
o 4+ 0 o o) o
+ + o +O%+
© 0 + +'P +
o 0 00po o o 0‘*% N °o
o 0O o O > L +
R °© 5o o°¢ " o to o
f)) O O o o) OO
00 o © Cpo © ©Oo © (0]
@o (@) o
¥ 4 ° g o o ©o” o
o o @©°
© )
T o
o
I I I
-5 0 5
LD1

Data

215



k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 1NN
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k-Nearest Neighbour Demo

trainx|, 2]

trainx[, 1]

Result of 3NN
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[g ‘Ixuren

k-Nearest Neighbour Demo

trainx[, 1]

Result of 5NN
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k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 11NN
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k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 21NN
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k-Nearest Neighbour Demo

trainx|, 2]

trainx[, 1]

Result of 31NN
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k-Nearest Neighbour Demo

trainx|, 2]

trainx[, 1]

Result of 51NN
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kK-Nearest Neighbour Demo — R Code |

library (MASS)

## load crabs data data(crabs)

ct <- as.numeric(crabs[,1])-1+2x (as.numeric(crabs[,2])-1)
## project into first two LD

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict(cb.lda)

x <— as.matrix(cb.ldp$x[,1:21])

y <— as.numeric(crabs[,2])-1

X <= x + rnorm(dim(x) [1]*dim(x) [2])*1.5

egscplot (x,pch=2*y+1, col=1)

k <= 3

kNN <- function(k,x,y,gridsize=100) {

n <- length (y)

P <- dim(x) [2]

i <- sample (rep (c (TRUE, FALSE) ,each=n/2),n, replace=FALSE)
train <- (l:n)[1]

test <= (1l:n)['1i]

trainx <- x[train,]

trainy <- yl[train]

testx <- xX[test,]

testy <- yl[test]

trainn <- dim(trainx) [1]
testn <- dim(testx) [1]

gridxl <- seq(min(x[,1]),max(x[,2]),length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix (expand.grid(gridxl,gridx2))
gridn <- dim(gridx) [1]

# calculate distances, smart and intelligently.
trainxx <- t((trainxxtrainx) %$x%$ matrix(l,p,1))
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k-Nearest Neighbour Demo — R Code |l

testxx <- (testxxtestx) % matrix(l,p,1)

gridxx <- (gridxxgridx) % matrix(l,p,1)

testtraindist <- matrix(l,testn,1l) %x% trainxx +
testxx %$*% matrix(l,1,trainn)
2% (testx %*% t(trainx))

gridtraindist <- matrix(l,gridn,l) %$*% trainxx +
gridxx %$*% matrix(l,1,trainn) -
2% (gridx %*% t(trainx))

# predict

testp <- numeric(testn)

gridp <- numeric (gridn)

for (j in 1l:testn) {
nearestneighbors <- order (testtraindist[j,]) [1:k]
testp[j] <- mean(trainy[nearestneighbors])

}

for (j in 1l:gridn) {
nearestneighbors <- order (gridtraindist[j,]) [1:k]
gridp[j] <- mean (trainy[nearestneighbors])

}

predy <- as.numeric(testp>.5)

plot (trainx[,1],trainx[,2],pch=trainy*3+1,col=4, 1lwd=.5)

points (testx[,1],testx[,2],pch=testyx3+1,col=2+ (predy==testy), lwd=3)

contour (gridxl,gridx2,matrix (gridp,gridsize,gridsize),
levels=seqg(.1,.9,.1),1lwd=.5, add=TRUE)

contour (gridxl,gridx2,matrix (gridp,gridsize,gridsize),
levels=c(.5), 1lwd=2, add=TRUE)

224



Asymptotic Performance of 1NN

» Let (x;,y;);_, be training data where x; € R” and y; € {1,2,...,K}.
» We define
YBayes (X) = argmax mf; (x)

and
yiNN (x) = y (nearest neigbour of x) .

» The (optimal) Bayes risk and 1NN risk are:

RBayes — E[H (Y%a’\BayeS (X))]
Riny = E {H (Y# Y1NN (X))}

» As n — oo, we have the following powerful result

2
RBayes < RINN < 2RBayes — ﬁRBayeS°
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K-Nearest Neighbours — Discussion

» kNN is sensitive to distances: normalize data and find suitable metric.

» Choice of k important: controls flexibility of model.

» Computational cost of KNN is very high.

» Need to store all training data.
» Need to compare each test data vector to all training data.
» Need a lot of data in high dimensions.

» Mitigation techniques:

» Compute approximate nearest neighbours, using kd-trees, cover trees,
random forests.

» Apply K-means to data in each class, to reduce size of data (need to use
large K).
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Non-linear Problems

» Linear methods (PCA, LDA, linear and logistic
regression) are simple and effective .
techniques to learn from data “to first order”.

» To capture more intricate information from

data, flexible, non-linear methods are often .
needed.

» Explicit non-linear transformations x — ¢(x).
» Local methods like kNN.

» Kernel methods: introduce non-linearities
through implicit non-linear transforms, often
local in nature.
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The Kernel Method

» Back to the soft-margin SVM. The dual objective is:

{271 Aiyi =0

m>2\1X ; A — 5 Z >\i>\jyiyj¢(xi)—r<b(xj) subject to 0<\A=<C

i,j=1
» Suppose p = 2, and we would like to introduce quadratic non-linearities,
Cb(xi) — (1, ﬂxil; \/ixi2>xi217xi227xi1xi2)—r
Then
gb(x,-)Tgb(xj) = 14 2x;1x51 + 2x0Xj2 + xl-zlx]zl — xizzszz + Xi1Xi2Xj1 X2
= (14 x x)°

» Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly!

» Generally, m-order interactions can be implemented simply by
o(x;)) ' o(x;) = (1 +x x;,)™. This is called a polynomial kernel.
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The Kernel Method

» The Gram matrix is the matrix of dot-products, B;; = ¢(x;) " ¢(x;).

(— d(xr) " —)

: | | |
B=| —¢x)" — X(cb(xl) e olg) ¢(xn>)

\_ gb(xn)—l_ _)
» Since B = ®d ', it is symmetric and positive semidefinite.
» The Gram matrix is sufficient for training the soft-margin SVM.

! I o . iz Ay =0
m)E\lX ; )\i — 5 Z )\i)\jyiijij Sllb_]@Ct to {O j ;\ j C

i,j=1
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The Kernel Method

» A kernel is a function s : X x X — R such that:
» Symmetric: x(x,x") = x(x, x).
» Positive semidefinite: given any finite set {x;}_, C X, the matrix B € R"*"
with entries B;; = k(x;, x;j) is positive definite. Equivalently, for any ¢ € R”,

i i cicik(xi, xj) > 0

i=1 j=1

» Mercer’s Theorem: if x is continuous, symmetric and positive
semidefinite, then there is a function ¢ : X — H into a Hilbert space H
with inner product (-, -, ) such that

K’(xa xl) — <¢(X>7 ¢<xl>>
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The Kernel Method

» We do not need to compute the features ever—the Gram matrix is
sufficient for learning and prediction. The discriminant function
(absorbing a into b) is

g(x) = > ANyio(n) To(x) = > A yir(xi, x)
i=1 i=1

» The function ¢ can be interpreted as non-linear features of our data
vectors x € X.

» Generally, the Hilbert space can be infinite-dimensional, so we are
effectively computing an infinite number of features of our data, and
learning a SVM based on all features.

» There are an infinite number of parameters in the SVM—a
nonparametric method.

» The L, regularization of SVMs is very important to prevent overfitting.
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Examples of Kernels

» Polynomial kernel:
k(x,x") = (1 +xTx’)m

» Gaussian, radial-basis function (RBF), or squared-exponential
kernel:

1
ol ) = exp (—5 e 1

This leads to a discriminant function of form
g(x) = n Ay, exp —lllxi — x|3
— 2

A local method very similar to KNN.
» If k; and k, are both kernels, then so are kernels defined by

232



Kernel SVM Demo

library (MASS)

library (el071)

## load crabs data, project onto LD space, add noise.

data (crabs)

ct <- as.numeric(crabs[,1])-1+2* (as.numeric(crabs[,2])-1)

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict (cb.lda)

X <—- as.matrix(cb.ldp$x[,1:2])

y <- as.numeric(crabs[,2])-1

X <— x + rnorm(dim(x) [1]+dim(x) [2])*1.5

gridsize <- 100

x1lim <- c(min(x[,1]),max(

ylim <- c(min(x[,2]),max (
[
[

(,11))
[,21))
gridxl <- seqg(xlim[l],x1im[2],length=gridsize)
gridx2 <- seq(ylim[1l],ylim[2], length=gridsize)
gridx <- as.matrix(expand.grid(gridxl,gridx2))
gridn <- dim(gridx) [1]

plot (x,pch=2xy+1l,col=1,xlim=x1lim,ylim=ylim)

X
X
2
2

n <- length (y)

P <- dim(x) [2]

i <- sample (rep (c (TRUE, FALSE) ,each=n/2),n, replace=FALSE)
train <- (l:n) [1]

test <= (l:n)['i]

trainx <- x[train,]

trainy <- yl[train]

testx <- x[test, ]

testy <- yl[test]

svmdemo <- function (kernel,gamma=1,coef0=0, cost=1,degree=3) {
model <- svm(trainx,trainy,kernel=kernel, gamma=gamma, coefO=coef0,degree=degree, cost=cost)
gridp <- predict (model, gridx)
predy <- as.numeric (predict (model, testx)>.5)

plot (trainx[,1],trainx[,2],pch=trainy*3+1,col=4,1lwd=.5,xlim=x1im,ylim=ylim)

points (testx[,1],testx[,2],pch=testyx3+1,col=2+ (predy==testy), lwd=3)

contour (gridxl,gridx2,matrix (gridp,gridsize,gridsize), levels=seq(.1l,.9,.1),1lwd=.5,add=TRUE)
contour (gridxl,gridx2,matrix (gridp, gridsize,gridsize), levels=c(.5),1lwd=2, add=TRUE)
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Kernel Methods — Discussion

» The kernel method allows for very flexible and powerful machine learning
models.

» Kernels can be defined over much more complex structures than vectors,
e.g. graphs, strings.
» Can be hard to interpret.

» O(n’) computation and O(n*) memory cost can be prohibitive.
» Further readings:

» Bishop, Chapter 6.

» Christopher Burgess, A Tutorial on Support Vector Machines for Pattern
Recognition. 1998.

» Rasmussen and Williams, Gaussian Processes for Machine Learning. 2006.
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