Optimization

» Many more complex models in statistics and machine learning do not
have analytic solutions to ML estimators.

» |In most models parameters are learned by some numerical optimization

technique.
ngn F(0)
» How many minima are there?
» How do we find optimal 6?
» Are we guaranteed to find the global optimum 6*, rather just a local one?
» How efficiently can we solve for 67?
» What if there are constraints?

196

Constrained Optimization
» Optimization problems with constraints, e.g.

in F(6
o FO)
subjectto g;(0) <0 fori=1,...,1

hJ(H):O fijZl,...,J

where g; enforce inequality constraints and 4; equality constraints.
» Can write this succinctly:

in F(6
pin, £
subjectto g(60) <0

h(6) =0

where g : R — R’ is a vector-valued function with g(8); = g;(#). Similarly
h(f): R4 — R, x < yiff x; < y,Vi.
» These problems are called programmes.

197

Constrained Optimization

in F(0

iy F(0)
subjectto g(0) <0
h(6) =0

» We can enforce constraints by using Lagrange multipliers or dual
variables \ ¢ R/ and x ¢ R’.

» The optimization problem can be written as a mini-max optimization of
the Lagrangian:

: o r T T
min){Itl%?(KE(H, A, K) min max (0)+ X g(0)+ K h(B)

» Intuition: For any 6, we have:

max L(0,\, k) =

{—l—oo if there is some unsatisfied constraint,
A~0,k

F(#) if all constraints are satisfied.

So the outer minimization over 6 results in the same optimization problem.

198

Convex Optimization

» A function f : RY — R is convex if

flax+ (1 —a)y) < af(x) + (1 —a)f ()

for all x,y € R?, o € [0, 1].
» For smooth functions: Equivalent to 2nd f(x)

derivative (Hessian) being positive of)+(1-00fly)

semidefinite. floox-+(1-0)y) fly)
» A programme is a convex programme if: X axr(l-wy y

» F(0) is convex,
» g;(0) is convex for each i,
» h(0) = AfB + b is affine.

» Examples: linear, quadratic, semidefinite
programming.

» Convex programmes have a unique
minimum (typically), which can be
efficiently found.

not convex

Boyd and Vandenberghe, Convex Optimization. 2004. MOOC right now. 199

Convex Duality

» Say the minimum is p*, and occurred at 6*.
» The dual programme inverts the order of max and min:
p* =min max L(0,\, k) > max min L(O, \, k) = d”
6 >0,k A=0,k 6

where the dual optimum is d*.

» Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a
solution 6* is the optimal solution of a convex programme, if and only if
there are * and «* (the dual optimal solution) such that:

» Primal feasible: g(6*) < 0, h(6") = 0.
» Dual feasible: * > 0.
» (0%,\", k™) is a saddle point of £: For every 6, \ >~ 0, x, we have

LOFNK) <LOSN KT < LON KT

> VoLl(0%, X, k%) = VoF(0*) + (*) ' Vog(0*) + (*) ' Voh(6*) =0
» Complementary slackness: For every i,

A gi(07) =0

200

Linear Classification

» A dataset with {+1, —1} labels is linearly separable if there is a
hyperplane separating two classes.
» Typically there will be an infinite number of such separating

hyperplanes.

201

Maximum Margin Classification

» (Good choice of separating hyperplane: one with large margin.
» Such a hyperplane will be defined by a number of data vectors close to

the boundary—the support vectors, leading to a method called support

vector machines.

202

Support Vector Machines
» A hyperplane can be parametrized as:

gx)=a+b'x=0

with the classification given by sign(g(x)). }

» Distance and classification of a point x;
from hyperplane is g(x;)/||b]|.

» Multiplying @ and b by ¢ > 0 does not
affect result. Rescale such that margin
(closest distance of data vectors to
hyperplane) is 1/||b||.

vila+b'x) /bl > 1/||p|
yi(a + bTx,-) > 1

» Constrained optimization problem to solve for a, b:

1/|b in 35|
max /10| - e Aldl

subjectto yi(a+b'x) > 1 subjectto yi(a+b'x;)) >1 foralli

203

Support Vector Machines

» Introduce Lagrange multipliers)\; > 0 to enforce constraints:

Lo T
nanbm}\lf_%(ﬁ(a b, \) HbH +Z)\ a-+b x;))

» KKT optimality conditions:

Zero derivatives: VoL(a® b* X)) == Ny =
i=1
VpLl(a®,b*,*) =b" — Z Afyix; =0
Primal feasibility: yi(a* + (b*)Tx,-) > 1
Dual feasibility: AP >0

Complementary slackness: AF(1—yi(a* + (b*) 'x)) =

204

Support Vector Machines

» Substituting optimal a* and »* into Lagrangian leads to the dual
optimization problem:

max Z Ai — Z Ai\yiyi(x) " (xj)

lJl

subject to Z Ay =0
i=1

A=0
A gquadratic programme. Standard solvers can be used to find optimal
A*in O(n’) cost.
» Those vectors with)\; > 0 are called support vectors.

» Complementary slackness implies that if x; does not lie on boundary, then
A = 0, i.e. not a support vector.
» Discriminant function is

)=a" —I—Z)\ Vix; x

where a* can be solved by noting that y]-g(xj) = 1 for a support vector x;.

205

Soft-Margin Support Vector Machines

» For non-linearly separable datasets, we
can allow for margin violations

[— 1 —vyi(a+b'"x;) if margin violated,
o if not violated.

= max(0,1 — yi(a+b'x;)) o .

» Penalizing violations by their magnitude,

1 n
in —[[p||*+C> &
min S||b]* + ;f |

subjectto y;(a+b'x) > 1§
§& >0

where C is a tuning parameter.

206

Soft-Margin Support Vector Machines

» Introduce Lagrange multipliers A; > 0, +; > 0 to enforce constraints:
L(a,b,&,N,7) = —HbH2+cZa+ZA (a+b"x)) Z%@

» KKT optimality conditions:

Zero derivatives: Vo L(a*, b, N ~v") Z Ayi=0
VpLl(a®,b*, &, X\, ~v") Z)*y,x, =0
Vgiﬁ(a*,b*,f*, ALY =C—)‘;k -7 =0

Primal feasibility: yila* + (b*)'x) > 1 - ¢
& =0
Dual feasibility: AT >0
i =0
Complementary slackness: A1 — & —yi(a* + (") ' x)) =0

& =0

207

Soft-Margin Support Vector Machines

» Setting derivatives of primal variables to zero leads to the dual
programme:

n 1 n
IIl)?.X Z)\i — 5 Z)\i)\jYiyj(xi)T(xj)
i=1 ij=1
subject to Z Ayi =0
i=1

0=AN=XC

Only difference is the box constraint on \; € [0, C].

208

Soft-Margin Support Vector Machines

» From primal programme, we can first minimize over &;’s, leading to an
unconstrained convex programme:

2 T
" 1 — ! !
m1bn HbH +C Elmax (0,1 —yi(a+b x))

» [nterpretation: regularized empirical risk minimization with the hinge

loss.
"""" Hinge Loss (max(0,1-y(a+b’x)))
4 Log Loss (log(1+exp(-y(a+b’x)))) |
----- 0-1 Loss (1/2+sign(-y(a+b’x))/2)

209

Support Vector Machines — Discussion

>

>

vV v. vy

Multiclass classification: If there are more than two classes, there are
multiclass generalizations of the SVM.
A simple practical idea: treat a multiclass problem as multiple binary
classification problems.
» One-vs-one: train K(K — 1) binary SVMs, for each pair of classes. At test
time, predict class that got the most votes.
» One-vs-rest: train K binary SVMs, one for each class vs all other classes. At
test time, predict class with largest discriminant value a; + b, x.
Optimization for large scale problems:

» Standard quadratic programme solvers not scalable.
» Sequential minimal optimization (SMO): iterative solve pairs of \;’s.
» Pegasos : stochastic gradient descent on regularized hinge loss objective.

L, regularization controls overfitting.
Not probabilistic and cannot produce uncertainty estimates.
Statistical learning theory foundations.

Further readings:

» Bishop, Chapter 6.
» Christopher Burgess, A Tutorial on Support Vector Machines for Pattern
Recognition. 1998.

210

Nonlinear Methods

» Decision boundaries and
regression functions often need to
be nonlinear.

» One general approach: transform
data x — ¢(x).

» A global approach. Decisions and
optimal parameters depend on
whole training dataset.

» Alternative approach:
p(Y = 1|X = x) or f(x) depends
only on data cases in local
neighbourhood of x.

211

Local Methods

< o)
o) Q o)
oozo
o) o o o
O ®) fe)
o © %2)80 %o GDooo &
@)O% 6 ® o
o — oo g 8 © &,
o) © og © ©
o © o4 & 09
(@] & o) o
co O © (&) ©
ok o)
o - o+ © o o
o) o o +
o) + 5 ¥e)
8 % &° ¥
° ®o © +_tHT-+F’-_I'__ i +
A @) O -|—_|_
[o] @ O + + +
° O&%é)% 8 © ++—ﬁ: " +
oo ° yUREE S
+
o -
. X *
o -
+
o
[[[[[
-4 -2 2 4 6

212

kK-Nearest Neighbours

» A simple, local, nonlinear,
non-model-based, method.

» Prediction at a data vector x is
simply determined by the k
nearest neighbours ne;(x) of x
among the training set.

» Classification: predict the
majority vote of the neighbours:

o -

kaN(x) = argmax |[{j € nex(x) : y; =l}|. o

[

» Regression: predict the average
among the neighbours:

ZjEnek(x) Yj

P () = -
2 ienen(x) |

213

k-Nearest Neighbours

» Nearest neighbours are simple and essentially model-free methods for
classification.

» Weaker modelling assumptions than e.g. LDA, Naive Bayes and logistic
regression.

» These methods are not very useful for understanding relationships
between attributes and class predictions.

» As black box classification methods however, they are often perform
reasonably on real life problems and provide a good benchmark.
» Can break down in high-dimensional data:

» Effectively, partitions input space into regions each containing k data points,
and prediction in each region estimated separately.

» In a space of dimension p > 0, number of regions needed is R = m”, so size
of dataset needed is km”.

214

k-Nearest Neighbour Demo

w_
+
®_
o+ 4
+ + + +
+ + + T n +
q—_
o+ F T yor
+ o+ + +, t
+ ¢+ - + + i +
+
o + :+++:':+ ++ + +H#4+ + +
+
N + 4+ . ° %o o +J9FTF|—"¢++% + *
a) o 4+ o ¥
o 4+ 0 o o) o
+ + o +O%+
© 0 + +'P +
o 0 00po o o 0‘*% N °o
o 0O o O > L +
R °© 5o o°¢ " o to o
f)) O O o o) OO
00 o © Cpo © ©Oo © (0]
@o (@) o
¥ 4 ° g o o ©o” o
o o @©°
©)
T o
o
I I I
-5 0 5
LD1

Data

215

k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 1NN

216

k-Nearest Neighbour Demo

trainx|, 2]

trainx[, 1]

Result of 3NN

217

[g ‘Ixuren

k-Nearest Neighbour Demo

trainx[, 1]

Result of 5NN

218

k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 11NN

219

k-Nearest Neighbour Demo

trainx[, 2]

trainx[, 1]

Result of 21NN

220

k-Nearest Neighbour Demo

trainx|, 2]

trainx[, 1]

Result of 31NN

221

k-Nearest Neighbour Demo

trainx|, 2]

trainx[, 1]

Result of 51NN

222

kK-Nearest Neighbour Demo — R Code |

library (MASS)

load crabs data data(crabs)

ct <- as.numeric(crabs[,1])-1+2x (as.numeric(crabs[,2])-1)
project into first two LD

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict(cb.lda)

x <— as.matrix(cb.ldp$x[,1:21])

y <— as.numeric(crabs[,2])-1

X <= x + rnorm(dim(x) [1]*dim(x) [2])*1.5

egscplot (x,pch=2*y+1, col=1)

k <= 3

kNN <- function(k,x,y,gridsize=100) {

n <- length (y)

P <- dim(x) [2]

i <- sample (rep (c (TRUE, FALSE) ,each=n/2),n, replace=FALSE)
train <- (l:n)[1]

test <= (1l:n)['1i]

trainx <- x[train,]

trainy <- yl[train]

testx <- xX[test,]

testy <- yl[test]

trainn <- dim(trainx) [1]
testn <- dim(testx) [1]

gridxl <- seq(min(x[,1]),max(x[,2]),length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix (expand.grid(gridxl,gridx2))
gridn <- dim(gridx) [1]

calculate distances, smart and intelligently.
trainxx <- t((trainxxtrainx) %$x%$ matrix(l,p,1))

223

k-Nearest Neighbour Demo — R Code |l

testxx <- (testxxtestx) % matrix(l,p,1)

gridxx <- (gridxxgridx) % matrix(l,p,1)

testtraindist <- matrix(l,testn,1l) %x% trainxx +
testxx %$*% matrix(l,1,trainn)
2% (testx %*% t(trainx))

gridtraindist <- matrix(l,gridn,l) %$*% trainxx +
gridxx %$*% matrix(l,1,trainn) -
2% (gridx %*% t(trainx))

predict

testp <- numeric(testn)

gridp <- numeric (gridn)

for (j in 1l:testn) {
nearestneighbors <- order (testtraindist[j,]) [1:k]
testp[j] <- mean(trainy[nearestneighbors])

}

for (j in 1l:gridn) {
nearestneighbors <- order (gridtraindist[j,]) [1:k]
gridp[j] <- mean (trainy[nearestneighbors])

}

predy <- as.numeric(testp>.5)

plot (trainx[,1],trainx[,2],pch=trainy*3+1,col=4, 1lwd=.5)

points (testx[,1],testx[,2],pch=testyx3+1,col=2+ (predy==testy), lwd=3)

contour (gridxl,gridx2,matrix (gridp,gridsize,gridsize),
levels=seqg(.1,.9,.1),1lwd=.5, add=TRUE)

contour (gridxl,gridx2,matrix (gridp,gridsize,gridsize),
levels=c(.5), 1lwd=2, add=TRUE)

224

Asymptotic Performance of 1NN

» Let (x;,y;);_, be training data where x; € R” and y; € {1,2,...,K}.
» We define
YBayes (X) = argmax mf; (x)

and
yiNN (x) = y (nearest neigbour of x) .

» The (optimal) Bayes risk and 1NN risk are:

RBayes — E[H (Y%a’\BayeS (X))]
Riny = E {H (Y# Y1NN (X))}

» As n — oo, we have the following powerful result

2
RBayes < RINN < 2RBayes — ﬁRBayeS°

225

K-Nearest Neighbours — Discussion

» kNN is sensitive to distances: normalize data and find suitable metric.

» Choice of k important: controls flexibility of model.

» Computational cost of KNN is very high.

» Need to store all training data.
» Need to compare each test data vector to all training data.
» Need a lot of data in high dimensions.

» Mitigation techniques:

» Compute approximate nearest neighbours, using kd-trees, cover trees,
random forests.

» Apply K-means to data in each class, to reduce size of data (need to use
large K).

226

Non-linear Problems

» Linear methods (PCA, LDA, linear and logistic
regression) are simple and effective .
techniques to learn from data “to first order”.

» To capture more intricate information from

data, flexible, non-linear methods are often .
needed.

» Explicit non-linear transformations x — ¢(x).
» Local methods like kNN.

» Kernel methods: introduce non-linearities
through implicit non-linear transforms, often
local in nature.

227

The Kernel Method

» Back to the soft-margin SVM. The dual objective is:

{271 Aiyi =0

m>2\1X ; A — 5 Z >\i>\jyiyj¢(xi)—r<b(xj) subject to 0<\A=<C

i,j=1
» Suppose p = 2, and we would like to introduce quadratic non-linearities,
Cb(xi) — (1, ﬂxil; \/ixi2>xi217xi227xi1xi2)—r
Then
gb(x,-)Tgb(xj) = 14 2x;1x51 + 2x0Xj2 + xl-zlx]zl — xizzszz + Xi1Xi2Xj1 X2
= (14 x x)°

» Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly!

» Generally, m-order interactions can be implemented simply by
o(x;)) ' o(x;) = (1 +x x;,)™. This is called a polynomial kernel.

228

The Kernel Method

» The Gram matrix is the matrix of dot-products, B;; = ¢(x;) " ¢(x;).

(— d(xr) " —)

: | | |
B=| —¢x)" — X(cb(xl) e olg) ¢(xn>)

_ gb(xn)—l_ _)
» Since B = ®d ', it is symmetric and positive semidefinite.
» The Gram matrix is sufficient for training the soft-margin SVM.

! I o . iz Ay =0
m)E\lX ;)\i — 5 Z)\i)\jyiijij Sllb_]@Ct to {O j ;\ j C

i,j=1

229

The Kernel Method

» A kernel is a function s : X x X — R such that:
» Symmetric: x(x,x") = x(x, x).
» Positive semidefinite: given any finite set {x;}_, C X, the matrix B € R"*"
with entries B;; = k(x;, x;j) is positive definite. Equivalently, for any ¢ € R”,

i i cicik(xi, xj) > 0

i=1 j=1

» Mercer’s Theorem: if x is continuous, symmetric and positive
semidefinite, then there is a function ¢ : X — H into a Hilbert space H
with inner product (-, -,) such that

K’(xa xl) — <¢(X>7 ¢<xl>>

230

The Kernel Method

» We do not need to compute the features ever—the Gram matrix is
sufficient for learning and prediction. The discriminant function
(absorbing a into b) is

g(x) = > ANyio(n) To(x) = > A yir(xi, x)
i=1 i=1

» The function ¢ can be interpreted as non-linear features of our data
vectors x € X.

» Generally, the Hilbert space can be infinite-dimensional, so we are
effectively computing an infinite number of features of our data, and
learning a SVM based on all features.

» There are an infinite number of parameters in the SVM—a
nonparametric method.

» The L, regularization of SVMs is very important to prevent overfitting.

231

Examples of Kernels

» Polynomial kernel:
k(x,x") = (1 +xTx’)m

» Gaussian, radial-basis function (RBF), or squared-exponential
kernel:

1
ol) = exp (—5 e 1

This leads to a discriminant function of form
g(x) = n Ay, exp —lllxi — x|3
— 2

A local method very similar to KNN.
» If k; and k, are both kernels, then so are kernels defined by

232

Kernel SVM Demo

library (MASS)

library (el071)

load crabs data, project onto LD space, add noise.

data (crabs)

ct <- as.numeric(crabs[,1])-1+2* (as.numeric(crabs[,2])-1)

cb.lda <- lda(log(crabs[,4:8]),ct)

cb.ldp <- predict (cb.lda)

X <—- as.matrix(cb.ldp$x[,1:2])

y <- as.numeric(crabs[,2])-1

X <— x + rnorm(dim(x) [1]+dim(x) [2])*1.5

gridsize <- 100

x1lim <- c(min(x[,1]),max(

ylim <- c(min(x[,2]),max (
[
[

(,11))
[,21))
gridxl <- seqg(xlim[l],x1im[2],length=gridsize)
gridx2 <- seq(ylim[1l],ylim[2], length=gridsize)
gridx <- as.matrix(expand.grid(gridxl,gridx2))
gridn <- dim(gridx) [1]

plot (x,pch=2xy+1l,col=1,xlim=x1lim,ylim=ylim)

X
X
2
2

n <- length (y)

P <- dim(x) [2]

i <- sample (rep (c (TRUE, FALSE) ,each=n/2),n, replace=FALSE)
train <- (l:n) [1]

test <= (l:n)['i]

trainx <- x[train,]

trainy <- yl[train]

testx <- x[test,]

testy <- yl[test]

svmdemo <- function (kernel,gamma=1,coef0=0, cost=1,degree=3) {
model <- svm(trainx,trainy,kernel=kernel, gamma=gamma, coefO=coef0,degree=degree, cost=cost)
gridp <- predict (model, gridx)
predy <- as.numeric (predict (model, testx)>.5)

plot (trainx[,1],trainx[,2],pch=trainy*3+1,col=4,1lwd=.5,xlim=x1im,ylim=ylim)

points (testx[,1],testx[,2],pch=testyx3+1,col=2+ (predy==testy), lwd=3)

contour (gridxl,gridx2,matrix (gridp,gridsize,gridsize), levels=seq(.1l,.9,.1),1lwd=.5,add=TRUE)
contour (gridxl,gridx2,matrix (gridp, gridsize,gridsize), levels=c(.5),1lwd=2, add=TRUE)

233

Kernel Methods — Discussion

» The kernel method allows for very flexible and powerful machine learning
models.

» Kernels can be defined over much more complex structures than vectors,
e.g. graphs, strings.
» Can be hard to interpret.

» O(n’) computation and O(n*) memory cost can be prohibitive.
» Further readings:

» Bishop, Chapter 6.

» Christopher Burgess, A Tutorial on Support Vector Machines for Pattern
Recognition. 1998.

» Rasmussen and Williams, Gaussian Processes for Machine Learning. 2006.

234

