
Optimization

� Many more complex models in statistics and machine learning do not
have analytic solutions to ML estimators.

� In most models parameters are learned by some numerical optimization
technique.

min
θ

F(θ)

� How many minima are there?
� How do we find optimal θ?
� Are we guaranteed to find the global optimum θ∗, rather just a local one?
� How efficiently can we solve for θ?
� What if there are constraints?
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Constrained Optimization
� Optimization problems with constraints, e.g.

min
θ∈Rd

F(θ)

subject to gi(θ) ≤ 0 for i = 1, . . . , I
hj(θ) = 0 for j = 1, . . . , J

where gi enforce inequality constraints and hj equality constraints.
� Can write this succinctly:

min
θ∈Rd

F(θ)

subject to g(θ) � 0
h(θ) = 0

where g : Rd → R
I is a vector-valued function with g(θ)i = gi(θ). Similarly

h(θ) : Rd → R
J. x � y iff xi ≤ yi∀i.

� These problems are called programmes.
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Constrained Optimization

min
θ∈Rd

F(θ)

subject to g(θ) � 0
h(θ) = 0

� We can enforce constraints by using Lagrange multipliers or dual
variables λ ∈ R

I and κ ∈ R
J.

� The optimization problem can be written as a mini-max optimization of
the Lagrangian:

min
θ

max
λ�0,κ

L(θ,λ,κ) = min
θ

max
λ�0,κ

F(θ) + λ�g(θ) + κ�h(θ)

� Intuition: For any θ, we have:

max
λ�0,κ

L(θ,λ,κ) =

�
+∞ if there is some unsatisfied constraint,
F(θ) if all constraints are satisfied.

So the outer minimization over θ results in the same optimization problem.
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Convex Optimization

� A function f : Rd → R is convex if

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y)

for all x, y ∈ R
d, α ∈ [0, 1].

� For smooth functions: Equivalent to 2nd
derivative (Hessian) being positive
semidefinite.

� A programme is a convex programme if:
� F(θ) is convex,
� gi(θ) is convex for each i,
� h(θ) = Aθ + b is affine.

� Examples: linear, quadratic, semidefinite
programming.

� Convex programmes have a unique
minimum (typically), which can be
efficiently found.

x yαx+(1-α)y

f(x)

f(y)

αf(x)+(1-α)f(y)

f(αx+(1-α)y)

not convex

Boyd and Vandenberghe, Convex Optimization. 2004. MOOC right now. 199



Convex Duality
� Say the minimum is p∗, and occurred at θ∗.
� The dual programme inverts the order of max and min:

p∗ = min
θ

max
λ�0,κ

L(θ,λ,κ) ≥ max
λ�0,κ

min
θ

L(θ,λ,κ) = d∗

where the dual optimum is d∗.
� Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a

solution θ∗ is the optimal solution of a convex programme, if and only if
there are λ∗ and κ∗ (the dual optimal solution) such that:

� Primal feasible: g(θ∗) � 0, h(θ∗) = 0.
� Dual feasible: λ∗ � 0.
� (θ∗,λ∗,κ∗) is a saddle point of L: For every θ,λ � 0,κ, we have

L(θ∗,λ,κ) ≤ L(θ∗,λ∗,κ∗) ≤ L(θ,λ∗,κ∗)

� ∇θL(θ∗,λ∗,κ∗) = ∇θF(θ∗) + (λ∗)�∇θg(θ∗) + (κ∗)�∇θh(θ∗) = 0
� Complementary slackness: For every i,

λ∗

i gi(θ
∗) = 0
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Linear Classification
� A dataset with {+1,−1} labels is linearly separable if there is a

hyperplane separating two classes.
� Typically there will be an infinite number of such separating

hyperplanes.
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Maximum Margin Classification
� Good choice of separating hyperplane: one with large margin.
� Such a hyperplane will be defined by a number of data vectors close to

the boundary—the support vectors, leading to a method called support
vector machines.
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Support Vector Machines
� A hyperplane can be parametrized as:

g(x) = a + b�x = 0

with the classification given by sign(g(x)).
� Distance and classification of a point xi

from hyperplane is g(xi)/�b�.
� Multiplying a and b by c > 0 does not

affect result. Rescale such that margin
(closest distance of data vectors to
hyperplane) is 1/�b�.

yi(a + b�xi)/�b� ≥ 1/�b�

yi(a + b�xi) ≥ 1
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b x'

xi

� Constrained optimization problem to solve for a, b:

max
a,b

1/�b�

subject to yi(a + b�xi) ≥ 1
⇔

min
a,b

1
2�b�2

subject to yi(a + b�xi) ≥ 1 for all i
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Support Vector Machines
� Introduce Lagrange multipliers λi ≥ 0 to enforce constraints:

min
a,b

max
λ�0

L(a, b,λ) =
1
2
�b�2 +

n�

i=1

λi(1 − yi(a + b�xi))

� KKT optimality conditions:

Zero derivatives: ∇aL(a∗, b∗,λ∗) = −

n�

i=1

λ∗

i yi = 0

∇bL(a∗, b∗,λ∗) = b∗
−

n�

i=1

λ∗

i yixi = 0

Primal feasibility: yi(a∗ + (b∗)�xi) ≥ 1
Dual feasibility: λ∗

i ≥ 0

Complementary slackness: λ∗

i (1 − yi(a∗ + (b∗)�xi)) = 0
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Support Vector Machines
� Substituting optimal a∗ and b∗ into Lagrangian leads to the dual

optimization problem:

max
λ

n�

i=1

λi −
1
2

n�

i,j=1

λiλjyiyj(xi)
�(xj)

subject to
n�

i=1

λiyi = 0

λ � 0

A quadratic programme. Standard solvers can be used to find optimal
λ∗ in O(n3) cost.

� Those vectors with λi > 0 are called support vectors.
� Complementary slackness implies that if xi does not lie on boundary, then

λi = 0, i.e. not a support vector.
� Discriminant function is

g(x) = a∗ +
n�

i=1

λ∗

i yix�i x

where a∗ can be solved by noting that yjg(xj) = 1 for a support vector xj.
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Soft-Margin Support Vector Machines

� For non-linearly separable datasets, we
can allow for margin violations

ξi =

�
1 − yi(a + b�xi) if margin violated,
0 if not violated.

= max(0, 1 − yi(a + b�xi))

� Penalizing violations by their magnitude,

min
a,b,ξ

1
2
�b�2 + C

n�

i=1

ξi

subject to yi(a + b�xi) ≥ 1 − ξi

ξi ≥ 0

where C is a tuning parameter.
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Soft-Margin Support Vector Machines
� Introduce Lagrange multipliers λi ≥ 0, γi ≥ 0 to enforce constraints:

L(a, b, ξ,λ, γ) =
1
2
�b�2 + C

n�

i=1

ξi +
n�

i=1

λi(1 − ξi − yi(a + b�xi))−
n�

i=1

γiξi

� KKT optimality conditions:

Zero derivatives: ∇aL(a∗, b∗, ξ∗,λ∗, γ∗) = −

n�

i=1

λ∗

i yi = 0

∇bL(a∗, b∗, ξ∗,λ∗, γ∗) = b∗ −
n�

i=1

λ∗

i yixi = 0

∇ξiL(a
∗, b∗, ξ∗,λ∗, γ∗) = C − λ∗

i − γ∗

i = 0

Primal feasibility: yi(a∗ + (b∗)�xi) ≥ 1 − ξ∗i
ξ∗i ≥ 0

Dual feasibility: λ∗

i ≥ 0
γ∗

i ≥ 0

Complementary slackness: λ∗

i (1 − ξ∗i − yi(a∗ + (b∗)�xi)) = 0
γ∗

i ξ
∗

i = 0
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Soft-Margin Support Vector Machines

� Setting derivatives of primal variables to zero leads to the dual
programme:

max
λ

n�

i=1

λi −
1
2

n�

i,j=1

λiλjyiyj(xi)
�(xj)

subject to
n�

i=1

λiyi = 0

0 � λ � C

Only difference is the box constraint on λi ∈ [0,C].
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Soft-Margin Support Vector Machines
� From primal programme, we can first minimize over ξi’s, leading to an

unconstrained convex programme:

min
a,b

1
2
�b�2 + C

n�

i=1

max(0, 1 − yi(a + b�xi))

� Interpretation: regularized empirical risk minimization with the hinge
loss.

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

 

 
Hinge Loss (max(0,1−y(a+b’x)))
Log Loss (log(1+exp(−y(a+b’x))))
0−1 Loss (1/2+sign(−y(a+b’x))/2)
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Support Vector Machines – Discussion
� Multiclass classification: If there are more than two classes, there are

multiclass generalizations of the SVM.
� A simple practical idea: treat a multiclass problem as multiple binary

classification problems.
� One-vs-one: train K(K − 1) binary SVMs, for each pair of classes. At test

time, predict class that got the most votes.
� One-vs-rest: train K binary SVMs, one for each class vs all other classes. At

test time, predict class with largest discriminant value ak + b�

k x.
� Optimization for large scale problems:

� Standard quadratic programme solvers not scalable.
� Sequential minimal optimization (SMO): iterative solve pairs of λi’s.
� Pegasos : stochastic gradient descent on regularized hinge loss objective.

� L2 regularization controls overfitting.
� Not probabilistic and cannot produce uncertainty estimates.
� Statistical learning theory foundations.
� Further readings:

� Bishop, Chapter 6.
� Christopher Burgess, A Tutorial on Support Vector Machines for Pattern

Recognition. 1998.
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Nonlinear Methods

� Decision boundaries and
regression functions often need to
be nonlinear.

� One general approach: transform
data x �→ φ(x).

� A global approach. Decisions and
optimal parameters depend on
whole training dataset.

� Alternative approach:
p(Y = 1|X = x) or f (x) depends
only on data cases in local
neighbourhood of x.
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Local Methods

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−4
−2

0
2

4

212



k-Nearest Neighbours
� A simple, local, nonlinear,

non-model-based, method.
� Prediction at a data vector x is

simply determined by the k
nearest neighbours nek(x) of x
among the training set.

� Classification: predict the
majority vote of the neighbours:

f kNN(x) = argmax
l

|{j ∈ nek(x) : yj = l}|.

� Regression: predict the average
among the neighbours:

f kNN(x) =

�
j∈nek(x) yj�
j∈nek(x) 1

.
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k-Nearest Neighbours

� Nearest neighbours are simple and essentially model-free methods for
classification.

� Weaker modelling assumptions than e.g. LDA, Naïve Bayes and logistic
regression.

� These methods are not very useful for understanding relationships
between attributes and class predictions.

� As black box classification methods however, they are often perform
reasonably on real life problems and provide a good benchmark.

� Can break down in high-dimensional data:
� Effectively, partitions input space into regions each containing k data points,

and prediction in each region estimated separately.
� In a space of dimension p � 0, number of regions needed is R = mp, so size

of dataset needed is kmp.
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo – R Code I
library(MASS)
## load crabs data data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
## project into first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- as.matrix(cb.ldp$x[,1:2])
y <- as.numeric(crabs[,2])-1
x <- x + rnorm(dim(x)[1]*dim(x)[2])*1.5
eqscplot(x,pch=2*y+1,col=1)

k <- 3

kNN <- function(k,x,y,gridsize=100) {

n <- length(y)
p <- dim(x)[2]
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)
train <- (1:n)[i]
test <- (1:n)[!i]
trainx <- x[train,]
trainy <- y[train]
testx <- x[test,]
testy <- y[test]

trainn <- dim(trainx)[1]
testn <- dim(testx)[1]

gridx1 <- seq(min(x[,1]),max(x[,2]),length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix(expand.grid(gridx1,gridx2))
gridn <- dim(gridx)[1]

# calculate distances, smart and intelligently.
trainxx <- t((trainx*trainx) %*% matrix(1,p,1))
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k-Nearest Neighbour Demo – R Code II

testxx <- (testx*testx) %*% matrix(1,p,1)
gridxx <- (gridx*gridx) %*% matrix(1,p,1)
testtraindist <- matrix(1,testn,1) %*% trainxx +

testxx %*% matrix(1,1,trainn) -
2*(testx %*% t(trainx))

gridtraindist <- matrix(1,gridn,1) %*% trainxx +
gridxx %*% matrix(1,1,trainn) -
2*(gridx %*% t(trainx))

# predict
testp <- numeric(testn)
gridp <- numeric(gridn)
for (j in 1:testn) {

nearestneighbors <- order(testtraindist[j,])[1:k]
testp[j] <- mean(trainy[nearestneighbors])

}
for (j in 1:gridn) {

nearestneighbors <- order(gridtraindist[j,])[1:k]
gridp[j] <- mean(trainy[nearestneighbors])

}
predy <- as.numeric(testp>.5)

plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,lwd=.5)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=seq(.1,.9,.1),lwd=.5,add=TRUE)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=c(.5),lwd=2,add=TRUE)
}
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Asymptotic Performance of 1NN
� Let (xi, yi)

n
i=1 be training data where xi ∈ R

p and yi ∈ {1, 2, ...,K}.
� We define

�yBayes (x) = arg max
l∈{1,...,K}

πlfl (x)

and
�y1NN (x) = y (nearest neigbour of x) .

� The (optimal) Bayes risk and 1NN risk are:

RBayes = E [I (Y �= �yBayes (X))]

R1NN = E

�
I

�
Y �= �Y1NN (X)

��

� As n → ∞, we have the following powerful result

RBayes ≤ R1NN ≤ 2RBayes −
K

K − 1
R2

Bayes.
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K-Nearest Neighbours – Discussion

� kNN is sensitive to distances: normalize data and find suitable metric.
� Choice of k important: controls flexibility of model.
� Computational cost of kNN is very high.

� Need to store all training data.
� Need to compare each test data vector to all training data.
� Need a lot of data in high dimensions.

� Mitigation techniques:
� Compute approximate nearest neighbours, using kd-trees, cover trees,

random forests.
� Apply K-means to data in each class, to reduce size of data (need to use

large K).
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Non-linear Problems

� Linear methods (PCA, LDA, linear and logistic
regression) are simple and effective
techniques to learn from data “to first order”.

� To capture more intricate information from
data, flexible, non-linear methods are often
needed.

� Explicit non-linear transformations x �→ φ(x).
� Local methods like kNN.

� Kernel methods: introduce non-linearities
through implicit non-linear transforms, often
local in nature.
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The Kernel Method
� Back to the soft-margin SVM. The dual objective is:

max
λ

n�

i=1

λi −
1
2

n�

i,j=1

λiλjyiyjφ(xi)
�φ(xj) subject to

��n
i=1 λiyi = 0

0 � λ � C

� Suppose p = 2, and we would like to introduce quadratic non-linearities,

φ(xi) = (1,
√

2xi1,
√

2xi2, x2
i1, x2

i2, xi1xi2)
�

Then

φ(xi)
�φ(xj) = 1 + 2xi1xj1 + 2xi2xj2 + x2

i1x2
j1 + x2

i2x2
j2 + xi1xi2xj1xj2

= (1 + x�i xj)
2

� Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly!

� Generally, m-order interactions can be implemented simply by
φ(xi)�φ(xj) = (1 + x�i xj)m. This is called a polynomial kernel.
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The Kernel Method

� The Gram matrix is the matrix of dot-products, Bij = φ(xi)�φ(xj).

B =





−− φ(x1)� −−

...
−− φ(xi)� −−

...
−− φ(xn)� −−




×




| | |

φ(x1) · · · φ(xj) · · · φ(xn)
| | |





� Since B = ΦΦ�, it is symmetric and positive semidefinite.
� The Gram matrix is sufficient for training the soft-margin SVM.

max
λ

n�

i=1

λi −
1
2

n�

i,j=1

λiλjyiyjBij subject to

��n
i=1 λiyi = 0

0 � λ � C
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The Kernel Method

� A kernel is a function κ : X × X → R such that:
� Symmetric: κ(x, x�) = κ(x�, x).
� Positive semidefinite: given any finite set {xi}n

i=1 ⊂ X , the matrix B ∈ R
n×n

with entries Bij = κ(xi, xj) is positive definite. Equivalently, for any c ∈ R
n,

n�

i=1

n�

j=1

cicjκ(xi, xj) ≥ 0

� Mercer’s Theorem: if κ is continuous, symmetric and positive
semidefinite, then there is a function φ : X → H into a Hilbert space H

with inner product �·, ·, � such that

κ(x, x�) = �φ(x),φ(x�)�
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The Kernel Method

κ(x, x�) = �φ(x),φ(x�)�

� We do not need to compute the features ever—the Gram matrix is
sufficient for learning and prediction. The discriminant function
(absorbing a into b) is

g(x) =
n�

i=1

λ∗

i yiφ(xi)
�φ(x) =

n�

i=1

λ∗

i yiκ(xi, x)

� The function φ can be interpreted as non-linear features of our data
vectors x ∈ X .

� Generally, the Hilbert space can be infinite-dimensional, so we are
effectively computing an infinite number of features of our data, and
learning a SVM based on all features.

� There are an infinite number of parameters in the SVM—a
nonparametric method.

� The L2 regularization of SVMs is very important to prevent overfitting.
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Examples of Kernels
� Polynomial kernel:

κ(x, x�) = (1 + x�x�)m

� Gaussian, radial-basis function (RBF), or squared-exponential
kernel:

κ(x, x�) = exp
�
−

1
2
�x − x��2

M

�

This leads to a discriminant function of form

g(x) =
n�

i=1

λ∗

i yi exp
�
−

1
2
�xi − x�2

M

�

A local method very similar to kNN.
� If κ1 and κ2 are both kernels, then so are kernels defined by

κ3(x, x�) = κ1(x, x�) + κ2(x, x�)
κ4(x, x�) = κ1(x, x�)× κ2(x, x�)
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Kernel SVM Demo
library(MASS)
library(e1071)
## load crabs data, project onto LD space, add noise.
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- as.matrix(cb.ldp$x[,1:2])
y <- as.numeric(crabs[,2])-1
x <- x + rnorm(dim(x)[1]*dim(x)[2])*1.5
gridsize <- 100
xlim <- c(min(x[,1]),max(x[,1]))
ylim <- c(min(x[,2]),max(x[,2]))
gridx1 <- seq(xlim[1],xlim[2],length=gridsize)
gridx2 <- seq(ylim[1],ylim[2],length=gridsize)
gridx <- as.matrix(expand.grid(gridx1,gridx2))
gridn <- dim(gridx)[1]
plot(x,pch=2*y+1,col=1,xlim=xlim,ylim=ylim)

n <- length(y)
p <- dim(x)[2]
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)
train <- (1:n)[i]
test <- (1:n)[!i]
trainx <- x[train,]
trainy <- y[train]
testx <- x[test,]
testy <- y[test]

svmdemo <- function(kernel,gamma=1,coef0=0,cost=1,degree=3) {
model <- svm(trainx,trainy,kernel=kernel,gamma=gamma,coef0=coef0,degree=degree,cost=cost)
gridp <- predict(model,gridx)
predy <- as.numeric(predict(model,testx)>.5)

plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,lwd=.5,xlim=xlim,ylim=ylim)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),levels=seq(.1,.9,.1),lwd=.5,add=TRUE)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),levels=c(.5),lwd=2,add=TRUE)

}
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Kernel Methods – Discussion

� The kernel method allows for very flexible and powerful machine learning
models.

� Kernels can be defined over much more complex structures than vectors,
e.g. graphs, strings.

� Can be hard to interpret.
� O(n3) computation and O(n2) memory cost can be prohibitive.
� Further readings:

� Bishop, Chapter 6.
� Christopher Burgess, A Tutorial on Support Vector Machines for Pattern

Recognition. 1998.
� Rasmussen and Williams, Gaussian Processes for Machine Learning. 2006.
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