
Optimization

� Many more complex models in statistics and machine learning do not
have analytic solutions to ML estimators.

� In most models parameters are learned by some numerical optimization
technique.

min
θ

F(θ)

� How many minima are there?
� How do we find optimal θ?
� Are we guaranteed to find the global optimum θ∗, rather just a local one?
� How efficiently can we solve for θ?
� What if there are constraints?
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Constrained Optimization
� Optimization problems with constraints, e.g.

min
θ∈Rd

F(θ)

subject to gi(θ) ≤ 0 for i = 1, . . . , I
hj(θ) = 0 for j = 1, . . . , J

where gi enforce inequality constraints and hj equality constraints.
� Can write this succinctly:

min
θ∈Rd

F(θ)

subject to g(θ) � 0
h(θ) = 0

where g : Rd → R
I is a vector-valued function with g(θ)i = gi(θ). Similarly

h(θ) : Rd → R
J. x � y iff xi ≤ yi∀i.

� These problems are called programmes.
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Constrainted Optimization

min
θ∈Rd

F(θ)

subject to g(θ) � 0
h(θ) = 0

� We can enforce constraints by using Lagrange multipliers or dual
variables λ ∈ R

I and κ ∈ R
J.

� The optimization problem can be written as a mini-max optimization of
the Lagrangian:

min
θ

max
λ�0,κ

L(θ,λ,κ) = min
θ

max
λ�0,κ

F(θ) + λ�g(θ) + κ�h(θ)

� Intuition: For any θ, we have:

max
λ�0,κ

L(θ,λ,κ) =

�
+∞ if there is some unsatisfied constraint,
F(θ) if all constraints are satisfied.

So the outer minimization over θ results in the same optimization problem.
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Convex Optimization

� A function f : Rd → R is convex if

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y)

for all x, y ∈ R
d, α ∈ [0, 1].

� For smooth functions: Equivalent to 2nd
derivative (Hessian) being positive
semidefinite.

� A programme is a convex programme if:
� F(θ) is convex,
� gi(θ) is convex for each i,
� h(θ) = Aθ + b is affine.

� Examples: linear, quadratic, semidefinite
programming.

� Convex programmes have a unique
minimum (typically), which can be
efficiently found.

x yαx+(1-α)y

f(x)

f(y)

αf(x)+(1-α)f(y)

f(αx+(1-α)y)

not convex
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Convex Duality
� Say the minimum is p∗, and occurred at θ∗.
� The dual programme inverts the order of max and min:

p∗ = min
θ

max
λ�0,κ

L(θ,λ,κ) ≥ max
λ�0,κ

min
θ

L(θ,λ,κ) = d∗

where the dual optimum is d∗.
� Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a

solution θ∗ is the optimal solution of a convex programme, if and only if
there are λ∗ and κ∗ (the dual optimal solution) such that:

� Primal feasible: g(θ∗) � 0, h(θ∗) = 0.
� Dual feasible: λ∗ � 0.
� (θ∗,λ∗,κ∗) is a saddle point of L: For every θ,λ � 0,κ, we have

L(θ∗,λ,κ) ≤ L(θ∗,λ∗,κ∗) ≤ L(θ,λ∗,κ∗)

� ∇θL(θ∗,λ∗,κ∗) = ∇θF(θ∗) + (λ∗)�∇θg(θ∗) + (κ∗)�∇θh(θ∗) = 0
� Complementary slackness: For every i,

λ∗

i gi(θ
∗) = 0
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