Optimization

- Many more complex models in statistics and machine learning do not have analytic solutions to ML estimators.
- In most models parameters are learned by some numerical optimization technique.

$\min_{\theta} F(\theta)$

- How many minima are there?
- How do we find optimal θ ?
- Are we guaranteed to find the global optimum θ^* , rather just a local one?
- How efficiently can we solve for θ ?
- What if there are constraints?

Constrained Optimization

Optimization problems with constraints, e.g.

where g_i enforce inequality constraints and h_j equality constraints.

Can write this succinctly:

$$\min_{\theta \in \mathbb{R}^d} F(\theta)$$
subject to $g(\theta) \preceq 0$
 $h(\theta) = 0$

where $g : \mathbb{R}^d \to \mathbb{R}^I$ is a vector-valued function with $g(\theta)_i = g_i(\theta)$. Similarly $h(\theta) : \mathbb{R}^d \to \mathbb{R}^J$. $x \leq y$ iff $x_i \leq y_i \forall i$.

► These problems are called **programmes**.

Constrainted Optimization

$$\min_{ heta \in \mathbb{R}^d} F(heta)$$

subject to $g(heta) \preceq 0$
 $h(heta) = 0$

- We can enforce constraints by using Lagrange multipliers or dual variables λ ∈ ℝ^I and κ ∈ ℝ^J.
- The optimization problem can be written as a mini-max optimization of the Lagrangian:

$$\min_{\theta} \max_{\lambda \succeq 0, \kappa} \mathcal{L}(\theta, \lambda, \kappa) = \min_{\theta} \max_{\lambda \succeq 0, \kappa} F(\theta) + \lambda^{\top} g(\theta) + \kappa^{\top} h(\theta)$$

• Intuition: For any θ , we have:

 $\max_{\lambda \succeq 0, \kappa} \mathcal{L}(\theta, \lambda, \kappa) = \begin{cases} +\infty & \text{if there is some unsatisfied constraint,} \\ F(\theta) & \text{if all constraints are satisfied.} \end{cases}$

So the outer minimization over θ results in the same optimization problem.

Convex Optimization

• A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if

 $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$

for all $x, y \in \mathbb{R}^d$, $\alpha \in [0, 1]$.

- For smooth functions: Equivalent to 2nd derivative (Hessian) being positive semidefinite.
- A programme is a convex programme if:
 - $F(\theta)$ is convex,
 - $g_i(\theta)$ is convex for each *i*,
 - $h(\theta) = A\theta + b$ is affine.
- Examples: linear, quadratic, semidefinite programming.
- Convex programmes have a unique minimum (typically), which can be efficiently found.

Convex Duality

- Say the minimum is p^* , and occurred at θ^* .
- The dual programme inverts the order of max and min:

 $p^* = \min_{\theta} \max_{\lambda \succeq 0, \kappa} \mathcal{L}(\theta, \lambda, \kappa) \geq \max_{\lambda \succeq 0, \kappa} \min_{\theta} \mathcal{L}(\theta, \lambda, \kappa) = d^*$

where the dual optimum is d^* .

- Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a solution θ* is the optimal solution of a convex programme, if and only if there are λ* and κ* (the dual optimal solution) such that:
 - ▶ Primal feasible: $g(\theta^*) \leq 0$, $h(\theta^*) = 0$.
 - Dual feasible: $\lambda^* \succeq 0$.
 - $(\theta^*, \lambda^*, \kappa^*)$ is a saddle point of \mathcal{L} : For every $\theta, \lambda \succeq 0, \kappa$, we have

$$\mathcal{L}(\theta^*, \lambda, \kappa) \leq \mathcal{L}(\theta^*, \lambda^*, \kappa^*) \leq \mathcal{L}(\theta, \lambda^*, \kappa^*)$$

- Complementary slackness: For every *i*,

 $\lambda_i^* g_i(\theta^*) = 0$