Optimization

» Many more complex models in statistics and machine learning do not
have analytic solutions to ML estimators.

» |In most models parameters are learned by some numerical optimization

technique.
ngn F(0)
» How many minima are there?
» How do we find optimal 6?
» Are we guaranteed to find the global optimum 6*, rather just a local one?
» How efficiently can we solve for 67?
» What if there are constraints?
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Constrained Optimization

» Optimization problems with constraints, e.g.

min F(6)
0 R

subjectto g,(0) <0 fori=1,...,1
hj<9)20 forjzl,...,f

where g; enforce inequality constraints and 4; equality constraints.
» Can write this succinctly:

in F(60
enéi@()

subjectto g(f) X0
h() =0
where g : R — R! is a vector-valued function with g(0); = g;(0). Similarly
h(0) : R — R, x < yiff x; < y,Vi.
» These problems are called programmes.
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Constrainted Optimization

in F(6
min F(0)

subjectto g(6) <0
h(6) =0
» We can enforce constraints by using Lagrange multipliers or dual
variables \ ¢ R/ and x € R’.

» The optimization problem can be written as a mini-max optimization of
the Lagrangian:

: . T T
min )\nil_%?(mﬁ(ﬁ, A\ K) = min max F(0)4+ X g(0)+ k' h(0)

» Intuition: For any 6, we have:

max L(0,\, k) =

{+oo if there is some unsatisfied constraint,
A=0,k

F(#) if all constraints are satisfied.

So the outer minimization over 6 results in the same optimization problem.
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Convex Optimization

» A function f : RY — R is convex if

flax+ (1 —a)y) < of (x) + (1 — a)f (y)

for all x,y € RY, a € [0, 1].
» For smooth functions: Equivalent to 2nd f(x)

derivative (Hessian) being positive af(+(1-00fty)

semidefinite. flox+(1-)y) fly)
» A programme is a convex programme if: TR UV a—

» F(0) is convex,
» g;(0) is convex for each i,
» h(6) = A0 + b is affine.

» Examples: linear, quadratic, semidefinite
programming.

» Convex programmes have a unique
minimum (typically), which can be
efficiently found.

not convex
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Convex Duality

» Say the minimum is p*, and occurred at 6*.
» The dual programme inverts the order of max and min:
p* =min max L(0,\, k) > max min L(O, \, k) = d”
6 >0,k A=0,k 6

where the dual optimum is d*.

» Karush-Kuhn-Tucker Theorem: Subject to regularity conditions, a
solution 6* is the optimal solution of a convex programme, if and only if
there are \* and «* (the dual optimal solution) such that:

» Primal feasible: g(6*) < 0, h(6") = 0.
» Dual feasible: \* > 0.
» (0%,\", k™) is a saddle point of £: For every 6, \ >~ 0, x, we have

LOFNK) <LOSN KT < LON KT

> VoLl(0%, X, k%) = VoF(0*) + (\*) ' Vog(0*) + (*) ' Voh(6*) =0
» Complementary slackness: For every i,

A gi(07) =0
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