Supervised Learning

Unsupervised learning:

» To “extract structure” and postulate hypotheses about data generating
process from observations xi, . .., x,.

» Visualize, summarize and compress data.

We have seen how response or grouping variables are used to validate the
usefulness of the extracted structure.

Supervised learning:

» In addition to the n observations of X, we also have a response variable
Ye).
» Techniques for predicting Y given X.
» Classification: discrete responses, e.g. Y = {+1,—1} or {1,...,K}.
» Regression: a numerical value is observed and )) = R.

Given training data (x;,y:), i = 1,...,n, the goal is to accurately predict the
class or response Y on new observations of X.
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Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv being the
response variable Y.

crim per capita crime rate by town
zZn proportion of residential land zoned for lots
over 25,000 sqg.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)"2 where B is the proportion of blacks by tc
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s
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Regression Example: Boston Housing

> str (X)

"data.frame’ : 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905
$ zn :num 18 0 0 0 0 0 12.5 12.5 12.5 12.5
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.8"
$ chas :int 000 0O0O0O0O0O0OO0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 (
S rm : num 6.58 6.42 7.18 7.00 7.15
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
$ dis : num 4.09 4.97 4.97 6.06 6.06
$ rad :int 1 2 2 3335555 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.:
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33

> str(Y)
num([1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9

Goal: predict median house price Y (X), given 13 predictor variables X of a
new district.
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Classification Example: Lymphoma

We have gene expression measurements X of n = 62 patients for p = 4026
genes. For each patient, Y denotes one of two subtypes of cancer. Goal:
predict cancer subtype ¥(X) € {0, 1}, given gene expressions of a new
patient.

> str (X)
'data.frame’ : 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330
S Gene 3 num -0.776 -0.588 0.409 -0.991 -1.517
$ Gene 4 num -0.474 -1.588 0.219 0.978 -1.604
$ Gene 5 num -1.896 -1.960 -1.695 -0.348 -0.595
$ Gene 6 num -2.075 -2.117 0.121 -0.800 0.651 ...
S Gene 7 num -1.8755 -1.8187 0.3175 0.3873 0.0414
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358
> str(Y)

num [1:62] 0 0 01 0 0100O
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Decision Theory

» Suppose we made a prediction ¥ € ) based on observation of X.

» How good is the prediction? We can use a loss function L : ) x ) — R*
to formalize the quality of the prediction.

» Typical loss functions:
» Misclassification loss (or 0-1 loss) for classification

0 Y
1Y

= =D

L(Y,Y) = {

Nl

» Squared loss for regression

LY, ¥)= (Y = 1)~

» Alternative loss functions are often useful (later). For example, weighted
misclassification error often appropriate. Or log-likelihood loss
(sometimes shortened as log loss) L(Y,p) = —logp(Y), where p(k) is the
estimated probability of class k € ).
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Decision Theory

» For a given loss function L, the risk R of a learner is given by the
expected loss R R
R(Y) = E(L(Y, Y(X))),

where the expectation is with respect to the true (unknown) joint
distribution (X, Y).

» The risk is unknown, but we can estimate it by the empirical risk:

R(Y) ~ R, (Y) = % > Ly Y (x1)).
i=1
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The Bayes Classifier

» What is the optimal classifier if the joint distribution (X, Y) were known?
The joint distribution f of X can be written as a mixture

v

where, fork=1,... K,
» the prior probabilities over classes are P(Y = k) = m
» and distributions of X, conditional on Y = k, is fi(X).

The Bayes classifier Y(X) — {1,...,K} is the one with minimum risk:

v

R(Y) =E [L(y, f/(x))] —E [E[L(K ()X = x]}

_ / E{L(n F(x)|x :x} £ (x)dx
JX

v

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, Y (x))|X = x] separately for each x suffices.

v
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The Bayes Classifier

» Consider the situation of the 0-1 loss.
» The risk simplifies to:

E [L(n ¥(x))|X = x} - ;L(lg P(x)P(Y = k|X = x)
=1 -P(Y =Y(x)|X =x)

» The risk is minimized by choosing the class with the greatest posterior
probability:

Y(x) = argmaxP(Y = k|X = x) = arg max %
k=1,...K k=1, K Yoy ()
= argmax mgfi(x).
k=1,...,K

» The functions x — mfi(x) are called discriminant functions. The
function with maximum value determines the predicted class of x.
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The Bayes Classifier

A simple two Gaussians example: Suppose X ~ N (uy, 1), where p; = —1 and
u2 = 1 and assume equal priors m; = m = 1/2.

(x = (=1))?

filx) = 127Texp<— 5 ) and fz(x):\/lﬂexp<—("_21)2).
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Optimal classification is ¥ (x) = arg max mfi(x) = {
k=1,...K
140

The Bayes Classifier

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?
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Looking at density in a log-scale, optimal classification is class 2 if and only if
x € [—0.39,2.15].
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Plug-in Classification

» The Bayes Classifier chooses the class with the greatest posterior
probability

Y(x) = argmaxmfi(x).
k=1,....K

v

Unfortunately, we usually know neither the conditional class probabilities
nor the prior probabilities.
We can estimate the joint distribution with:

> estimates 7 formpand k= 1,...,K and

» estimates fi(x) of conditional class densities,

The plug-in classifiers chooses the class

v

v

Y (x) = arg max 7ifi (x).
k=1,....K

v

Linear Discriminant Analysis will be an example of plug-in
classification.
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Linear Discriminant Analysis

» LDA is the most well-known and simplest example of plug-in
classification.

» Assume a multivariate Normal form for f;(x) for each class «:
XY =k~ N(u, %),

» each class can have a different mean
» but all classes share the same covariance X.

» For an observation x,

logP(Y = k|X = x) = &k + log mfi (%)

[u—

= r +logm — o (x — ) TS (= )

The quantity (x — ) TS~ (x — 1) is the square of the Mahalanobis
distance. It gives the distance between x and p in the metric given by X.

» f¥=1,and 7 = % Y (x) simply chooses the class k with the nearest (in
the Euclidean sense) mean.
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Linear Discriminant Analysis
» Expanding the discriminant (x — 1) "3~ (x — 1),

1
logP(Y = k|x) = k + log(m;) — 3 (,ukTE_luk — ZM,CTE_lirXTE_lx)

1
= r+log(m) — S 7 e+ X7
» Setting a; = log(m;) — %u[Eiluk and b, = ™', we obtain
logP(Y =k|X =x) =k +a; + b x

i.e. a linear discriminant function.
» Consider choosing class k over k’:

ap + bl x > ap +byx & a, +b/x>0

where a, = a; — ap and b, = by — by.

» The Bayes classifier partitions X" into regions with the same class
predictions via separating hyperplanes.

» The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.
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Parameter Estimation
» The final piece of the puzzle is to estimate the parameters of the LDA
model.
» We can achieve this by maximum likelihood.

» EM algorithm is not needed here since the class variables y; are
observed.

> Let ny = #{j : y; = k} be the number of observations in class k.

0, (), 2) = 5+ 3 3 Togme — 3 (log 8]+ (g — 1) TS (5 — )

k=1 j:yj=k
Then:
o sl
Tk = Mk*nk'zx./
Jyj=k
1K
)y 0 )T
. Z (o — fu) (% — f)
k=1 jyj=k

» Note: the ML estimate of X is not unbiased. For an unbiased estimate we
need to divide by n — K.
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Iris Dataset

library (MASS)

data(iris)

##save class labels

ct <- rep(l:3,each=50)
##pairwise plot
pairs(iris([,1:4]1,col=ct)

Iris Dataset
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Just focus on two predictor variables.

iris.data <- iris[,3:4]

plot (iris.data,col=ct+1l,pch=20,cex=1.5,cex.lab=1.4)
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Iris Dataset

Computing and plotting the LDA boundaries.

##£fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)

<- seq(-4,4,0.02)

<- as.matrix (expand.grid(x,y),0)
length (x)
<- length(y)
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##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda, z)$class
contour (x,y,matrix (iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)
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Fisher’s Linear Discriminant Analysis

» In LDA, data vectors are classified based on Mahalanobis distance from
cluster means, which lie on a K — 1 affine subspace.

» In measuring these distances, directions orthogonal® to the subspace
can be ignored.

» Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about (y;)~_,.

» As with PCA, we can visualize the structure in the data by choosing an
appropriate basis for the subspace and projecting data onto it.

» Choose a basis by finding directions that are separate classes best.

50rthogonality defined in terms of the inner product corresponding to Mahalanobis distance:
(x,y) =x="1y.
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Fisher’s Linear Discriminant Analysis

» Find a direction v € R? to maximize the variance ratio

v By
DY
where
S= S = ) (o — ) T (within class covariance)
B= 158 mlpy, — %) (i, —%))7T  (between class covariance)

B has rank at most K — 1.

149 Figure from Hastie et al. 151



Discriminant Coordinates

» To solve for the optimal v, we first reparameterize it as u = $2v.

1
v By

uT (27 2)TBY tu

u' B*u

DY u'u

where B* = (£72)TBY 2.

T

u u

» The maximization over u is achieved by the first eigenvector u; of B*.

» We also look at the remaining eigenvectors u; associated to the non-zero
. . . . - . 1
eigenvalues and defined the discriminant coordinates as v, = ¥ 2u,.

» The v,'s span exactly the affine subspace spanned by (X~!1)K_, (these
vectors are given as the “linear discriminants” in the R-function 1da).

Crabs Dataset

library (MASS)
data (crabs)

## numeric and text class labels
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ct <- as.numeric(crabs[,1])-1+2 (as.numeric (crabs[,2])-1)

## Projection on Fisher’s linear discriminant directions

print (cb.lda <- lda(log(crabs[,4:8]),

ct))
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Crabs Dataset

> > > > > > > > > Call:

lda(log(crabs[, 4:8

Prior probabilities
0 1 2 3
0.25 0.25 0.25 0.25

1), ct)

of groups:

Group means:

FL RW CL CwW BD
0 2.564985 2.475174 3.312685 3.462327 2.441351
1 2.852455 2.683831 3.529370 3.649555 2.733273
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.787885 2.489921 3.490431 3.589426 2.701580
Coefficients of linear discriminants:
ILD1 LD2 LD3
FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD —-17.998493 6.002432 -14.541487
Proportion of trace:
ILD1 LD2 LD3
0.6891 0.3018 0.0091
Crabs Dataset
cb.ldp <- predict (cb.lda)
egscplot (cb.1ldp$x, pch=ct+1, col=ct+1)
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Crabs Dataset

## display the decision boundaries

## take a lattice of points in LD-space

X <-

seq(-6,6,0.02)

<- seq(-4,4,0.02)
<- as.matrix (expand.grid(x,y,0))
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length (x)

<- length(y)

## predict onto the grid
cb.ldap <- lda(cb.ldp$x,ct)
cb.ldpp <- predict (cb.ldap, z)S$class

## classes

are 0,1,2 and 3 so set contours

## at 0.5,1.5 and 2.5

contour (x,y,matrix (cb.ldpp,m,n),
levels=c(0.5,2.5),
add=TRUE, d=FALSE, 1ty=2, 1wd=2)
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Crabs Dataset
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LDA separates the groups better.

Naive Bayes
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» Assume we are interested in classifying documents; e.g. scientific

articles or emails.

» A basic but standard model for text classification consists of considering
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a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document i by a binary vector x;

where

if word j is present in document

1
Xij _{ 0 otherwise.

» To implement a probabilistic classifier, we need to model f;(x|¢x) for each

classk=1,...,K.
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Naive Bayes

» A Naive Bayes approach ignores feature correlations and assumes
fe(x) = f(x|¢x) where

14
fil) = Flailoe) = [ (66)™ (1 = i)' ™
j=1
» Given dataset, the MLE is easily obtained
~ n Zl Xij
PA. Gy = Zv=kY
n ny

» One problem: if word j did not appear in documents labelled as class k
then ¢;; = 0 and

P(Y = k|X = x with jth entry equalto 1) =0

i.e. we will never attribute a new document containing word j to class k.

» This problem is called overfitting, and is a major concern in modelling
high-dimensional datasets common in machine learning.
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