SMLDM HT 2014 - Part C Problem Sheet 5

1. An exponential family is a family of distributions parameterized by a *d*-dimensional vector θ , and has density of the form:

$$p(x;\theta) = h(x) \exp\left(\theta^{\top} S(x) - A(\theta)\right)$$

where h(x) is a function that depends only on $x, S : \mathbb{R}^p \to \mathbb{R}^d$ is the *sufficient statistics* function, and

$$A(\theta) = \log \int_{\mathbb{R}^p} h(x) \exp\left(\theta^{\top} S(x)\right) dx$$

is a normalization constant. Exponential families can be defined over other spaces as well, in which case \mathbb{R}^p above is replaced by some other space \mathbb{X} .

- (a) Write the Bernoulli, normal and Poisson distributions in exponential family form, identifying the functions *h*, *S* and *A*.
- (b) Show that

$$\nabla_{\theta} A(\theta) = \mathbb{E}[S(X)] \qquad \qquad \nabla_{\theta}^2 A(\theta) = \operatorname{Cov}[S(X), S(X)]$$

where X is a random variable with distribution given by the exponential family distribution with parameter θ .

- (c) Suppose given a dataset $(x_i)_{i=1}^n$ we wish to perform maximum likelihood estimation of θ . Explain why this is a convex optimization problem. Under what conditions is the ML estimator uniquely defined?
- 2. Consider the following *maximum-entropy* problem. Suppose we have a dataset $(x_i)_{i=1}^n$, from which we can calculate a number of statistics, say

$$T_j = \frac{1}{n} \sum_{i=1}^n S_j(x_i)$$

for j = 1, ..., d, and functions $S_j : \mathbb{R}^p \to \mathbb{R}$. For example, when p = 1, we can take $S_1(x) = x$, $S_2(x) = x^2$. We wish to find the density f(x) which maximizes the differential entropy

$$\mathcal{H}[f] = -\int_{\mathbb{R}^p} f(x) \log f(x) dx$$

subject to the constraints:

$$\int_{\mathbb{R}^p} f(x) S_j(x) dx = T_j$$

- (a) Formulate the maximum entropy problem as a convex optimization problem, and show that the maximum entropy problem is equivalent to the problem of maximum likelihood estimation in an exponential family.
- (b) Suppose that we are not certain about the statistics collected, and wish to introduce a degree of uncertainty into our method. Say we relax our equality constraints by interval constraints,

$$T_j - C \le \int_{\mathbb{R}^p} f(x) S_j(x) dx \le T_j + C$$

for a positive number C > 0. Show that this problem is equivalent to a regularized maximum likelihood estimation problem in an exponential family, with an L_1 regularization.

3. Let $(x_i, y_i)_{i=1}^n$ be our dataset, with $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$. Linear regression can be formulated as empirical risk minimization, where the model is to predict y as $x^{\top}\beta$, and we use the squared loss:

$$R^{\text{emp}}(\beta) = \sum_{i=1}^{n} \frac{1}{2} (y_i - x_i^{\top} \beta)^2$$

(a) Show that the optimal parameter is

$$\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

where **X** is a $n \times p$ matrix with *i*th row given x_i^{\top} , and **Y** is a $n \times 1$ matrix with *i*th entry y_i .

(b) Consider regularizing our empirical risk by incorporating a L_2 regularizer. That is, find β minimizing

$$\frac{C}{2} \|\beta\|_2^2 + \sum_{i=1}^n \frac{1}{2} (y_i - x_i^\top \beta)^2$$

Show that the optimal parameter is given by the ridge regression estimator

$$\hat{\beta} = (CI + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

(c) Suppose we wish to introduce nonlinearities into the model, by transforming $x \mapsto \phi(x)$. Show how this transformation may be achieved using the kernel trick. That is, let Φ be a matrix with *i*th row given by $\phi(x_i)^{\top}$. The optimal parameters $\hat{\beta}$ would then be given by (previous part):

$$\hat{\beta} = (CI + \mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{Y}$$

Express the predicted y values on the training set, $\Phi \hat{\beta}$, only in terms of Y and the Gram matrix $G = \Phi \Phi^{\top}$, with $G_{ij} = \phi(x_i)^{\top} \phi(x_j) = \kappa(x_i, x_j)$ where κ is some kernel function.

Compute an expression for the value of y_0 predicted by the model at a test vector x_0 .

You will find the Woodbury matrix inversion formula useful:

$$(A + UBV)^{-1} = A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

where A and B are square invertible matrices of size $n \times n$ and $p \times p$ respectively, and U and V are $n \times p$ and $p \times n$ rectangular matrices.