
SMLDM HT 2014 - Part C Problem Sheet 5
1. An exponential family is a family of distributions parameterized by a d-dimensional vector θ, and

has density of the form:
p(x; θ) = h(x) exp

(
θ>S(x)−A(θ)

)
where h(x) is a function that depends only on x, S : Rp → Rd is the sufficient statistics function,
and

A(θ) = log

∫
Rp

h(x) exp
(
θ>S(x)

)
dx

is a normalization constant. Exponential families can be defined over other spaces as well, in
which case Rp above is replaced by some other space X.

(a) Write the Bernoulli, normal and Poisson distributions in exponential family form, identifying
the functions h, S and A.

(b) Show that

∇θA(θ) = E[S(X)] ∇2
θA(θ) = Cov[S(X), S(X)]

where X is a random variable with distribution given by the exponential family distribution
with parameter θ.

(c) Suppose given a dataset (xi)ni=1 we wish to perform maximum likelihood estimation of
θ. Explain why this is a convex optimization problem. Under what conditions is the ML
estimator uniquely defined?

2. Consider the following maximum-entropy problem. Suppose we have a dataset (xi)ni=1, from
which we can calculate a number of statistics, say

Tj =
1

n

n∑
i=1

Sj(xi)

for j = 1, . . . , d, and functions Sj : Rp → R. For example, when p = 1, we can take S1(x) = x,
S2(x) = x2. We wish to find the density f(x) which maximizes the differential entropy

H[f ] = −
∫
Rp

f(x) log f(x)dx

subject to the constraints: ∫
Rp

f(x)Sj(x)dx = Tj

(a) Formulate the maximum entropy problem as a convex optimization problem, and show that
the maximum entropy problem is equivalent to the problem of maximum likelihood estima-
tion in an exponential family.

(b) Suppose that we are not certain about the statistics collected, and wish to introduce a degree
of uncertainty into our method. Say we relax our equality constraints by interval constraints,

Tj − C ≤
∫
Rp

f(x)Sj(x)dx ≤ Tj + C

for a positive numberC > 0. Show that this problem is equivalent to a regularized maximum
likelihood estimation problem in an exponential family, with an L1 regularization.
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3. Let (xi, yi)ni=1 be our dataset, with xi ∈ Rp and yi ∈ R. Linear regression can be formulated as
empirical risk minimization, where the model is to predict y as x>β, and we use the squared loss:

Remp(β) =
n∑
i=1

1

2
(yi − x>i β)2

(a) Show that the optimal parameter is

β̂ = (X>X)−1X>Y

where X is a n× p matrix with ith row given x>i , and Y is a n× 1 matrix with ith entry yi.

(b) Consider regularizing our empirical risk by incorporating a L2 regularizer. That is, find β
minimizing

C

2
‖β‖22 +

n∑
i=1

1

2
(yi − x>i β)2

Show that the optimal parameter is given by the ridge regression estimator

β̂ = (CI + X>X)−1X>Y

(c) Suppose we wish to introduce nonlinearities into the model, by transforming x 7→ φ(x).
Show how this transformation may be achieved using the kernel trick. That is, let Φ be a
matrix with ith row given by φ(xi)>. The optimal parameters β̂ would then be given by
(previous part):

β̂ = (CI + Φ>Φ)−1Φ>Y

Express the predicted y values on the training set, Φβ̂, only in terms of Y and the Gram
matrix G = ΦΦ>, with Gij = φ(xi)

>φ(xj) = κ(xi, xj) where κ is some kernel function.

Compute an expression for the value of y0 predicted by the model at a test vector x0.

You will find the Woodbury matrix inversion formula useful:

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

where A and B are square invertible matrices of size n × n and p × p respectively, and U
and V are n× p and p× n rectangular matrices.
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