
SMLDM HT 2014 - Part C Problem Sheet 4
1. Complete Question 6 of Problem Sheet 3 on implementing the EM algorithm to model a collection

of handwritten digits using a mixture of products of Bernoullis.

Answer: R Code:

X <- as.matrix(read.table("usps.txt"))

n <- dim(X)[1]

p <- dim(X)[2]

K <- 30

alpha <- 1

beta <- 1

numiter <- 20

loglik <- matrix(0,1,numiter)

hinton <- function(X,n,m,x,y) {

I <- matrix(0,x*n,y*m)

for (i in 0:(n-1)) {

for (j in 0:(m-1)) {

I[i*x+(1:x),j*y+(1:y)] <- X[1+i+j*n,]

}

}

image(I,col=grey(seq(0, 1, length = 256)))

}

initialize E step

Q <- matrix(0,n,K)

for (i in 1:n) {

c <- ceiling(runif(1)*K)

Q[i,c] <- 1

}

for (iter in 1:numiter) {

actually do M step first, since E step initialized

nk <- matrix(1,1,n) %*% Q

phikj <- (alpha + t(Q) %*% X) / ((2*alpha + t(nk)) %*% matrix(1,1,p))

pik <- (beta + nk) / (K*beta+n)

now E step

Sik <- matrix(1,n,1)%*%log(pik)+X%*%log(t(phikj))+(1-X)%*%log(t(1-phikj))

mi <- matrix(apply(Sik,1,max),n,1)

Sik <- Sik - (mi %*% matrix(1,1,K))

Sik <- exp(Sik)

si <- Sik %*% matrix(1,K,1)

Q <- Sik / (si %*% matrix(1,1,K))

calculate log likelihood

loglik[iter] <- sum(mi + log(si))

hinton(phikj,4,5,8,8)

Sys.sleep(.0)

}

dev.new()

plot(1:numiter,loglik)

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

−
38

00
0

−
36

00
0

−
34

00
0

−
32

00
0

−
30

00
0

−
28

00
0

1:numiter

lo
gl

ik

(a) Yes, it takes approximately 20 iterations to converge.

(b) Yes, generally, but hard to see due to low resolution. A few digits seem over-represented,
and some under.

(c) No, each run produce somewhat different answer, but generally qualitatively similar.

(d) Increasing number of clusters increases the log likelihood.

(e) 20 seems ok. Will need better methods to determine number of clusters. Judging from the
cluster means, some digits are over-represented (too many clusters), but some are under (too
few).

2. Assume you have used some data D = {xi, yi}ni=1 where xi ∈ Rp and yi ∈ {1, 2, ...,K} to train
a classifier. We are interested in classifying a new input vector xt. However we have only been
able to collect p − 1 features, say (xt2, ..., xtp) and xt1 is missing. Explain whether or not it is
possible to use your classifier to classify this incomplete input vector in the following scenarios.
If it is possible, how do you classify the incomplete test vector?

You may find the Gaussian identities cheat sheet useful if you are not very familiar with properties
of the multivariate normals. You do not need to calculate integrals in this question.

(a) A naı̈ve Bayes model, with

f(x|φk) =

p∏
j=1

f(xj |φkj),

i.e. conditioned upon Y = k, you assume that the features are independent and feature xj
follows a distribution with density/probability mass function f(xj |φkj).

Answer: Yes. Since features are assumed independent in naı̈ve Bayes, the probability of the
observed test features is

p∏
j=2

f(xtj |φkj)

2

So that conditioned on these the posterior probability of yt = k is proportional to

πk

p∏
j=2

f(xtj |φkj)

i.e. we simply ignore feature 1.

(b) A LDA model, i.e.
f(x|φk) = N (x;µk,Σ)

Answer: Yes. The conditional density under class k of (xt2, . . . , xtp) is simply a multivari-
ate normal, with mean µ′k = (µk2, . . . , µkp)

> and covariance matrix Σ′ obtained from Σ by
dropping the first row and column. The posterior probability of yt = k is just this times πk
and normalized.

(c) Generally, which conditions on f(x|φk) are necessary to allow us to implement easily, that
is without using numerical integration, a probabilistic classifier like LDA and naı̈ve Bayes
in the presence of missing features?

Answer: Generally we need to be able to compute analytically the marginals of the class-
conditional distributions, i.e.

f(x
(J)
t |φk) =

∫
f((x

(J)
t , x

(L)
t)|φk)dx

(L)
t

where x(J)t are the observed entries of xt, and x(L)t are the unobserved ones.

(d) A logistic regression model, i.e.

p(Y = y|X = x) = s(y(a+ b>x))

where y ∈ {+1,−1}.

Answer: It would not directly be possible, since logistic regression does not model the full
joint distribution so does not give predictions when the data vector is partially observed.

3. Consider using logistic regression to model the conditional distribution of binary labels Y ∈
{+1,−1} given data vectors X .

(a) Suppose that the data is linearly separable, i.e. there is a hyperplane separating the two
classes. Show that the maximum likelihood estimator is ill-defined.

Answer: Since the data is linearly separable, there is a scalar α and vector β such that
α+ β>X < 0 whenever Y = −1 and α+ β>X > 0 whenever Y = +1. Let c > 0. the log
likelihood at a = cα, b = cβ is

n∑
i=1

− log(1 + exp(−yi(cα+ cβ>xi)))

Differentiating with respect to c,
n∑

i=1

s(cyi(α+ β>xi))yi(α+ β>xi)

3

Noting that this is always positive, the log likelihood would be maximized only when c →
∞.

(b) Suppose the first entry in X is binary, i.e. it takes on only values 0 or 1. Suppose that in the
dataset, whenever yi = −1, the corresponding entry xi1 = 0, but there are data cases with
yi = +1, and xi1 taking on both values. Show that the maximum likelihood estimator of b1
is∞, but that the dataset need not be linearly separable.

Answer: For a data vector xi, let zi = (xi2, . . . , xip)
>. Let c = (b2, . . . , bp)

>. The likeli-
hood is ∏

i:yi=−1
s(−(a+ b1xi1 + c>zi))

∏
j:yj=+1

s(a+ b1xj1 + c>zj)

=
∏

i:yi=−1
s(−(a+ c>zi))

∏
j:yj=+1

s(a+ b1xj1 + c>zj)

Note that the likelihood is an increasing function of b1, so the ML estimator is at b1 =∞.

It is sufficient to give an example of a dataset which is not linearly separable but satisfies
the condition. Try x1 = (0, 0)>, x2 = (0, 2)>, x3 = (1, 0)>, x4 = (0, 1)> along with
y1 = y2 = −1 and y3 = y4 = 1.

Thus such overfitting behaviour which leads to ill-defined ML estimators can occur even
when the dataset is not linearly separable.

4. The receiver operating characteristic (ROC) curve plots the sensitivity against the specificity of
a binary classifier as a threshold for discrimination is varied. The larger the area under the ROC
curve (AUC), the better the classifier is.

Suppose the data space is R, the class-conditional densities are f0(x) and f1(x) for x ∈ R and
for the two classes 0 and 1, and that the optimal Bayes classifier is to classify +1 when x > c for
some threshold c, which varies over R.

(a) Give expressions for the specificity and sensitivity of the classifier at threshold c.

Answer: At a threshold c, the sensitivity is the true positive rate, which is:∫ ∞
c

f1(x)dx

while the specificity is the true negative rate:∫ c

−∞
f0(x)dx

(b) Show that the AUC corresponds to the probability that X1 > X0, if data items X1 and X0

are independent and comes from class 1 and 0 respectively.

Answer: Define the function
F0(c) =

∫ c

−∞
f0(x)dx

4

which is the CDF of the 0 class so is invertible. At a specificity level s, the corresponding
threshold is F−10 (s) and so the AUC is∫ 1

0

∫ ∞
F−1
0 (s)

f1(x)dxds

=

∫ ∞
−∞

∫ ∞
z

f1(x)dxf0(z)dz by change of variable s 7→ F−10 (s) = z

=P(X1 > X0)

which is the probability of X1 > X0.

5. For each of the datasets below, find a non-linear function φ(x) which makes the data linearly
separable, and the discriminant function (linear in φ(x)) which will classify perfectly. Briefly
explain your answer. You may assume, if a boundary looks like a straight line, or a function you
are familiar with, that it is.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Answer: From left to right and top to bottom:

(a) Looks like we want x1 > 0 and x2 > .5. So use φ1(x) = (sign(x1), sign(x2 − .5))>. Then
perfect classification can be obtained by sign(x1) + sign(x2 − .5) ≥ 2.

(b) Looks like we want x1 < x2 and x1 > −x2. Use φ2(x) = (sign(x1 − x2), sign(x1 + x2))
>

and classify by −sign(x1 − x2) + sign(x1 + x2) ≥ 2.

(c) Looks like x2 < sin(x1), so φ3(x) = (x2, sin(x1))
> and discriminate via sin(x1)−x2 > 0.

(d) Looks like a circle, so we want
√
x21 + x22 > 1. Use φ4(x) =

√
x21 + x22 > 1.

5

(e) Looks like a diamond, so we want |x1|+ |x2| ≤ 1. Use φ5(x) = |x1|+ |x2|.

(f) The two lines are x1 − x2 = 0 and x2 + x1 = 0. The red region are when (x1 − x2) and
(x2 + x1) have different signs. So φ6(x) = sign((x1 − x2)(x2 + x1)).

6

