
SMLDM HT 2014 - MSc Problem Sheet 4
1. In this question we will take a Bayesian approach to learning decision trees. Assume that we have

a binary classification problem, with classes {0, 1} and we have n data items (xi, yi)ni=1.

Recall the greedy tree growing heuristics for decision trees: we start with the root, for each leaf
node of the tree we find an optimal feature j and split point v, according to some criteria, to split
the node, and recurse on both sides.

(a) Consider a decision tree T where the data space has been split into R regions R1, . . . ,RR.
Each region Rm corresponds to a leaf in T and is a rectangle, with side [aj , bj ] in the jth
dimension, j = 1, . . . , p, and has a parameter βm which gives the probability of class 1 for
data vectors in that region.

What is a conjugate prior for the parameters β? Calculate the marginal probability p(Y|X, T )
of the responses given the data vectors and tree T , marginalizing out β.

Answer: The beta distibution Beta(α0, α1) is conjugate to the Bernoulli likelihood parametrized
by β. Let cmk =

∑n
i=1 1[xi ∈ Rm]1[yi = k] for m = 1, 2, . . . , R and k = 0, 1, that is,

cm0, cm1 denote the number of 0s and 1s in leaf node m respectively. Since the training data
are i.i.d., each training data point contributes to only the likelihood of the leaf node where it
belongs. Hence, the likelihood factorizes over the leaf nodes:

p(Y|X, T, β) =
R∏

m=1

βcm1(1− β)cm0 .

The marginal likelihood is given by

p(Y|X, T ) =
R∏

m=1

1

B(α0, α1)

∫
β
βcm1+α1−1(1− β)cm0+α0−1dβ,

=
R∏

m=1

B(cm0 + α0, cm1 + α1)

B(α0, α1)
,

where B(α0, α1) =
Γ(α0)Γ(α1)
Γ(α0+α1) is the beta function.

(b) Consider a greedy model selection procedure for determining the structure of T :

i. We start with a trivial tree with a single node.

ii. At each iteration we consider expanding a leaf node m of the tree by creating a split at
feature j, value v. This produces a tree T ′ with two more nodes than T , both children
of node m.

iii. We compute the marginal probability of Y under T ′, for each j and v, and find the split
producing the highest marginal probability.

iv. If the marginal probability of the resulting T ′ is larger than T , we split the node, other-
wise we consider expanding other nodes.

v. We stop once all leaf nodes of the current tree T have been considered for expansion,
but all lead to trees T ′ with lower marginal probability than T .

Calculate the marginal probability p(Y|X, T ′) of the responses given the data vectors under
tree T ′.
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Answer: Let T denote the current tree and T ′ denote the new tree where node m has been
split into left and right child nodes, denoted byml andmr respectively. Let cml0, cml1 denote
the counts for childml (define counts similarly formr). Let `(cm0, cm1) =

B(cm0+α0,cm1+α1)
B(α0,α1)

denote the likelihood for leaf m. The new marginal likelihood is given by

p(Y|X, T ′) = `(cml0, cml1)`(cmr0, cmr1)
R∏

m′=1,m′ 6=m
`(cm′0, cm′1),

(c) Explain how the ratio of marginal probabilities under T ′ and T (the so-called Bayes factor)
simplifies to a function which depends only on the data items under regionRm.

Answer: From the definitions of p(Y|X, T ′) and p(Y|X, T ), it is straightforward to see
that

p(Y|X, T ′)
p(Y|X, T )

=
`(cml0, cml1)`(cmr0, cmr1)

∏R
m′=1,m′ 6=m `(cm′0, cm′1)∏R

m′=1 `(cm′0, cm′1)

=
`(cml0, cml1)`(cmr0, cmr1)

`(cm0, cm1)
,

which clearly depends only on the data points in regionRm.

(d) For each j, explain why the marginal probability under T ′ is a piecewise constant function
of v.

Answer: Let v denote the split points for j. The marginal probability under T ′ depends on
j, v only through the counts cml0, cml1, cmr0, cmr1 of the left and right children of the split
j, v. Since the counts cml0, cml1, cmr0, cmr1 change only at the unique values of xj within
Rm, the marginal probability under T ′ is a piecewise constant function of v.

(e) Describe an algorithm that can determine the optimal split of node m, with computational
cost p × Nm, where Nm is the number of data items in region m, and p the number of
features.

Answer: For each dimension, we first sort the Nm data points along that dimension. The
counts change only at unique values of x and sorting ensures that we know the range of valid
split intervals. There are at most Nm − 1 valid split intervals (if all x values are unique).
With a simple linear scan through the sorted data withO(Nm) complexity, we can update the
counts for all valid split intervals along this dimension. Repeating this for all p dimensions,
we can compute the quality of all valid splits and determine the optimal split in O(pNm)
time. Note that the sort operation takes O(pNm logNm), but the logNm factor is usually
negligible compared to the cost of evaluating the quality of each split.

2. Recall the definition of a 1 hidden layer neural network for binary classification in the lectures.
The objective function is:

J = −
n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) +
1

2

∑
jk

C|W h
jk|2 +

1

2

∑
k

C|W o
k |2

and the network definition is:

ŷi = s

(
bo +

m∑
k=1

W o
khik

)
hik = s

bhk + p∑
j=1

W h
jkxij


2



(a) Verify that the derivatives needed for gradient descent are:

dJ

dW o
k

= CW o
k +

n∑
i=1

(ŷi − yi)hik

dJ

dW h
jk

= CW h
jk +

n∑
i=1

(ŷi − yi)W o
khik(1− hik)xij

Answer: The first terms are the derivatives of the regularization terms. The second terms
are derivatives of the empirical risk terms, which we will use the chain rule.

dJ

dW o
k

= CW o
k +

n∑
i=1

dJ

dŷi

dŷi
dW o

k

= CW o
k +

n∑
i=1

(
−yi
ŷi

+
1− yi
1− ŷi

)
(ŷi(1− ŷi))hik

= CW o
k +

n∑
i=1

(−yi(1− ŷi) + (1− yi)ŷi)hik

= CW o
k +

n∑
i=1

(ŷi − yi)hik

dJ

dW h
jk

= CW h
jk +

n∑
i=1

dJ

dŷi

dŷi
dhik

dhik

dW h
jk

= CW h
jk +

n∑
i=1

(
−yi
ŷi

+
1− yi
1− ŷi

)
(ŷi(1− ŷi)W o

k ) (hik(1− hik)xij)

= CW h
jk +

n∑
i=1

(ŷi − yi)W o
khik(1− hik)xij

(b) Suppose instead that you have an L layer neural network for binary classification, with each
hidden layer having m neurons with logistic nonlinearity. Define carefully the network, giv-
ing the parameterization of each layer, and derive the backpropagation algorithm to compute
the derivatives of the objective with respect to the parameters. You may ignore bias terms
for simplicity.

Answer: The network is defined as follows. For simplicity, let h0
i = xi be the input vector, and

h`i be a vector which denotes the activations of the `th hidden layer. Finally let hL+1
i = ŷi be the

predicted probability of class 1. We have:

h`+1
i = s(W `+1h`i)

where the parameters are W `+1, a matrix of weights (of appropriate sizes) for each `. The objec-
tive is:

J = −
n∑
i=1

yi log h
L+1
i + (1− yi) log(1− hL+1

i )

We ignore the regularization term as well as it is straightforward to deal with.
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We will compute the derivatives with respect to the unit activations recursively, starting from layer
L+ 1 and working backwards towards layer 0:

dJ

dhL+1
i

= − yi

hL+1
i

+
1− yi

1− hL+1
i

dJ

dh`ik
=
∑
j

dJ

dh`+1
ij

dh`+1
ik

dh`i

=
∑
j

dJ

dh`+1
i

h`+1
ij (1− h`+1

ij )W `+1
jk

Finally, we can compute the derivatives with respect to the parameters:

dJ

dW `
jk

=
n∑
i=1

dJ

dh`j

dh`j

dW `
jk

=
n∑
i=1

dJ

dh`j
h`j(1− h`j)h`−1

k

3. A mixture of experts is a type model in which a number of experts “compete” to predict a label.

Consider a regression problem with dataset (xi, yi)ni=1 and yi ∈ R. We haveE experts, each being
a parametrized function fj(x; θj), for j = 1, . . . , E. For example each expert could be a neural
network. Each expert fj(x; θj) tries to predict the response y corresponding to data vector x.

(a) A simple mixture of experts model uses as it’s objective function

J(π, σ2, (θj)
E
j=1) =

n∑
i=1

log

E∑
j=1

πje
− 1

2σ2
‖fj(xi;θj)−yi)‖2

where π = (π1, . . . , πE) are mixing proportions and σ2 is a parameter.

Relate the objective function to the log likelihood of a mixture model where each component
is a conditional distribution of Y given X = x.

Answer: This is simply a mixture model, with the jth component being the conditional
normal:

p(yi|xi) =
1√
2πσ2

e−
1

2σ2
‖fj(xi;θj)−yi‖2

and mixing proportions πj . The objective is (up to the 2πσ2 constant) the log likelihood.

(b) Differentiate the objective function with respect to θj , interpreting the computation of the
derivative as a generalized EM algorithm, where in the E step the posterior distribution is
computed, and in the M step gradient descent is used to update the expert parameters θj .

Answer: The derivative wrt θj is:

dJ

dθj
=

n∑
i=1

πje
− 1

2σ2
‖fj(xi;θj)−yi)‖2∑E

j=1 πje
− 1

2σ2
‖fj(xi;θj)−yi)‖2

(
1

σ2
(yi − fj(xi; θj))∇θjfj(xi; θj)

)
The fraction is the responsibility of expert j for data item i, and the term in parentheses is
the derivative of the log probability of yi under expert j, wrt the parameter θj . This is the
generalized M step.
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(c) A mixture of experts allows each expert to specialize in predicting the response in a certain
part of the data space, with the overall model having better predictions than any one of the
experts.

However to encourage this specialization, it is useful also for the mixing proportions to
depend on the data vectors x, i.e. to model πj(x;φ) as a function of x with parameters
φ. The idea is that this gating network controls where each expert specializes. To ensure∑E

j=1 πj(x;φ) = 1, we can use the softmax nonlinearity:

πj(x;φ) =
exp(gj(x;φj))∑E
`=1 exp(g`(x;φ`))

where gj(x;φj) are parameterized functions for the gating network.

The previous generalized EM algorithm extends to this scenario easily. Describe the latent
variables you will need to introduce into the system, the free energy lower bound on the log
likelihood, and derive the E step and generalized M step for φj from the free energy.

Answer: To be explicit about the EM link, we introduce a latent variable zi to indicate which
expert is responsible for predicting yi. The joint probability of yi, zi given xi is

E∏
j=1

(
πj(xi;φ)

1√
2πσ2

e−
1

2σ2
‖yi−fj(xi;θj)‖2

)1(zi=j)

The free energy is

F(θ, φ, q) = E

 n∑
i=1

E∑
j=1

1(zi = j)

(
log πj(xi;φ)−

1

2
log(2πσ2)− 1

2σ2
‖yi − fj(xi; θj)‖2

)
− log q(z)


In the E step, the posterior is:

q(zi = j) ∝ πj(xi;φ)e−
1

2σ2
‖yi−fj(xi;θj)‖2

And in the generalized M step, the derivative wrt φj is:

n∑
i=1

(q(zi = j)− πj(xi;φ))∇φjgj(xi;φj)
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