Part A Simulation Trinity 2013, Problem Sheet 3

1. Metropolis-Hastings algorithms.
(a) Give a Metropolis-Hastings algorithm to sample according to the binomial probability mass function,

$$
\pi(x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}, \quad x=0,1,2,3, \ldots, n
$$

with parameters n and p, where $0<p<1$ and $n \in\{1,2,3, \ldots\}$. Use the proposal pmf $Y \sim$ $U\{0,1,2, \ldots, n\}$ to get $X_{t} \rightarrow \operatorname{Binomial}(n, p)$. Explain why the Markov chain is irreducible and aperiodic.
(b) Give a Metropolis-Hastings algorithm to sample according to the Geometric probability mass function,

$$
\pi(x)=p(1-p)^{x-1}, \quad x=1,2,3, \ldots
$$

with parameter p, where $0<p<1$. Use the proposal distribution $Y \mid X=x \sim U\{x-1, x+1\}$.
(c) Give a Metropolis-Hastings algorithm to sample according to the Gamma probability density function,

$$
\pi(x) \propto x^{\alpha-1} \exp (-\beta x), \quad x>0
$$

with parameters $\alpha, \beta>0$. Use the proposal distribution $Y \sim \operatorname{Exp}(\beta)$.
2. (The random-scan Gibbs sampler) Suppose $p(x)$ is the pmf of some multivariate random variable $X \in \mathbb{Z}^{m}$, so $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Let

$$
x_{-i}=\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}\right)
$$

be the vector of components with x_{i} omitted. Consider a Metropolis-Hastings algorithm simulating a Markov chain $\left\{X^{(t)}\right\}_{t=0}^{\infty}$, with $X^{(t)} \rightarrow p$. Here is an update scheme: suppose $X^{(t)}=x$ and we propose a candidate y by choosing i at random from $1,2, \ldots, m$, simulating y_{i} from the conditional distribution $X_{i} \mid X_{-i}=x_{-i}$ and setting

$$
y=\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{m}\right)
$$

(a) Show that if y and x differ at a single index i then the pmf for $Y=y \mid X=x$ is

$$
q(y \mid x)=(1 / m) p\left(y_{i} \mid x_{-i}\right)
$$

Give a formula for $p\left(y_{i} \mid x_{-i}\right)$ in terms of $p(y)$.
(b) Show that the acceptance probability $\alpha(y \mid x)$ is equal to one.
(c) Write down the Metropolis Hastings algorithm for this case as simply as you can.
(d) Give a Gibbs sampler for the multinomial probability mass function,

$$
\pi(y, z)=\frac{n!}{y!z!(n-y-z)!} p^{y} q^{z}(1-p-q)^{n-y-z}, \quad 0 \leq y+z \leq n
$$

with parameters n, p, q, where $p, q \geq 0, p+q \leq 1$ and $n \in\{1,2,3, \ldots\}$.
3. A contingency table X is an $n \times m$ matrix with non-negative integer entries $X_{i, j} \geq 0$ and fixed row sums $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and fixed column sums $c=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$. Denote by $\Omega_{r, c}$ the set of all such tables for given vectors r and c.
An index table Y has row and column sums equal zero and entries $Y_{i, j} \in\{-1,0,1\}$. Denote by $U_{n, m}$ the uniform distribution on the set of all $n \times m$ index tables.
Given $X \in \Omega_{r, c}$, the following algorithm generates a new random matrix X^{\prime} with the same row and column sums as X.

Step 1 Simulate $Y \sim U_{n, m}$ [assume you have an algorithm simulating independent Y].
Step 2 Set $X^{\prime}=X+Y$.
Here is an example.

$$
X=\left[\begin{array}{lll}
7 & 2 & 0 \\
5 & 6 & 1 \\
1 & 6 & 3 \\
0 & 1 & 2
\end{array}\right], \quad Y=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right], \quad X^{\prime}=X+Y=\left[\begin{array}{lll}
7 & 2 & 0 \\
5 & 7 & 0 \\
1 & 5 & 4 \\
0 & 1 & 2
\end{array}\right]
$$

You may assume without proof that for any two contingency tables $A, B \in \Omega_{r, c}$ there is a finite sequence of index tables $Y_{1}, Y_{2}, \ldots, Y_{K}$ so that $B+\sum_{i=1}^{n} Y_{i} \in \Omega_{r, c}$ for $n=1,2, \ldots, K$ and $A=B+\sum_{i=1}^{K} Y_{i}$.
(a) Specify a Metropolis Hastings algorithm simulating a Markov chain, $X_{t}, t=0,1,2, \ldots$ on $\Omega_{r, c}$ with equilibrium distribution π equal to the uniform distribution on $\Omega_{r, c}$.
(b) Show that the Markov chain in (a) is reversible with respect to π.
(c) Let $\left\{X_{t}\right\}_{t=0}^{\infty}$ be the Markov chain from part (a). Give sufficient conditions for $\left\{X_{t}\right\}_{t=0}^{\infty}$ to be ergodic in $\Omega_{r, c}$, and verify that these conditions are satisfied.

