Part A Simulation Trinity 2013, Problem Sheet 2

1. The random variable X has probability mass function

$$p(x;s) = \frac{1}{\zeta(s)} \frac{1}{x^s},$$
 for $x = 1, 2, 3,$

- (a) The normalising constant $\zeta(s)$ is hard to calculate, However, when s = 2 we do have $\zeta(2) = \pi^2/6$. Give an algorithm to simulate $Y \sim p(y; 2)$ by inversion.
- (b) Give a rejection algorithm simulating $X \sim p(x) = p(x; s)$ for s > 2 using the rejection algorithm and draws from $Y \sim q(y)$ where the proposal is q(y) = p(y; 2). You will need to derive the upper bound $M' \ge \tilde{p}(x)/\tilde{q}(x)$ for all x.
- (c) Compute the expected number of simulations of $Y \sim q$ for each simulated $X \sim p$ in the previous part question, giving your answer in terms of $\zeta(s)$.
- 2. Suppose $X \sim N(0, \sigma^2)$ and we want to estimate $\mu_{\phi} = \mathbb{E}(\phi(X))$ for some function $\phi(x)$ known to have finite mean and variance. Suppose we have samples $Y = (Y_1, ..., Y_n)$ with $Y_i \sim N(0, 1), i = 1, 2, ..., n$ iid. Here are two estimators for μ_{ϕ} given in terms of Y:

$$\widehat{\theta}_{1,n} = \frac{1}{n} \sum_{i=1}^{n} \phi(\sigma Y_i)$$

and

$$\widehat{\theta}_{2,n} = \frac{1}{n\sigma} \sum_{i=1}^{n} e^{-Y_i^2 (1/2\sigma^2 - 1/2)} \phi(Y_i).$$

- (a) Show that $\hat{\theta}_{1,n}$ and $\hat{\theta}_{2,n}$ are unbiased and give the expression of their variances.
- (b) What range of values must σ be in for $\hat{\theta}_{2,n}$ to have finite variance? Can you give a weaker condition if it is known that $\int_{-\infty}^{\infty} \phi^2(x) dx < \infty$?
- (c) Why might we prefer $\hat{\theta}_{2,n}$ to $\hat{\theta}_{1,n}$, for some values of σ^2 and functions ϕ ? (Hint: consider estimating $\mathbb{P}(X > 1)$ with $\sigma \ll 1$).
- 3. We are interested in performing inference about the parameters of internet traffic model.
 - (a) The arrival rate Λ_t for packets at an internet switch varies with time t according to a log-normal distribution with parameters μ and σ . Let Λ_t be the arrival rate in the t'th millisecond interval (t, t+1]. The probability density $p_{\Lambda}(\lambda)$ of log-normal Λ_t is

$$p_{\Lambda}(\lambda;\mu,\sigma) = \frac{1}{\lambda\sqrt{2\pi\sigma^2}} \exp\left(-(\log(\lambda)-\mu)^2/2\sigma^2\right),$$

independent of time t and of events in all other intervals. Show that if $V \sim N(\mu, \sigma^2)$ and we set $W = \exp(V)$ then $W \sim \text{LogNormal}(\mu, \sigma)$.

(b) Given an arrival rate $\Lambda_t = \lambda_t$, the number N_t of packets which actually arrive in the t'th time interval has a Poisson distribution, $N_t \sim \text{Poisson}(\lambda_t)$, and again, this is conditionally independent from one interval to the next. Observations $N_1 = n_1, ..., N_k = n_k$ are made of the numbers of arrivals. Let $N = (N_1, ..., N_k)$ and $n = (n_1, ..., n_k)$. We wish to estimate μ and σ , the parameters of the underlying rate variation. Show that the likelihood for μ and σ is

$$\mathbb{P}(N=n|\mu,\sigma) \propto \prod_{t=1}^{k} L(\mu,\sigma;n_t)$$

with

$$L(\mu, \sigma; n_t) \propto \mathbb{E}(\Lambda^{n_t} \exp(-\Lambda) | \mu, \sigma).$$

- (c) Explain how you would estimate $L(\mu, \sigma; n_t)$ by simulating values for Λ from its prior.
- (d) Suppose now we have m iid samples

$$\Lambda^{(j)} \sim \text{LogNormal}(\mu, \sigma), j = 1, 2, ..., m$$

for one pair of (μ, σ) -values. Give an importance sampling estimator for $L(\mu', \sigma'; n_t)$ at new parameter values $(\mu', \sigma') \neq (\mu, \sigma)$, in terms of the $\Lambda^{(j)}$'s.

(e) For what range of μ', σ' values can the $\Lambda^{(j)}$ -realisation be safely 'recycled' in this way?