MS1b: SDM - Problem Sheet 5

1. (Missing Features) Assume you have used some training data D = {x;,y;},_, where
€ RPand y; € {1,2,..., K} to learn a probabilistic classifier (say using maximum
likelihood). We are interested in classifying a new input vector. However we have only
been able to collect p — 1 features, say you have only (x ( FI xﬁ_l, xé*l, ey ¥ ) and !

is missing. Explain whether or not it is possible to use your classifier to classify this
incomplete input vector in the two following scenarios:

(a) When we consider a naive Bayes model where
p
[ (x| o) = Hg | ¢},
1=1

i.e. conditional upon Y = k, you assume that the features are independent and
feature 2! follows a distribution with density g (#'| ¢},)

(b) When we consider a QDA model; i.e.

(2l gr) = N (5, 2

(c) Generally speaking, which conditions on f (x| @) are necessary to allow us to
implement easily, that is without using any numerical integration scheme, a proba-
bilistic classifier in presence of missing features?

2. (Bayesian classification) Consider some training data D = {(x;, 2;) , y; },, where (x;, ;) €
R? x R is the vector of inputs and y; € {0, 1} the response. We adopt the following re-
gression model for class k

Z=8X+e¢

where £ X N (0,02) if Y = k. Hence we have for the class conditional density

fi (2| z) = N (2; Bfx,0%) so that the unconditional density of Z follows a so-called
mixture of regressions model. Note that this model differs conceptually from the exam-
ples discussed in lectures as we do not model X. We adopt the notation P (Y = k) =
and denote 0 = (1, By, 31, 02, 03) the set of unknown parameters.

(a) Give an expression of the estimate 0 of 0 maximizing the conditional log-likelihood

:ZIOg p(Yi, zil @i, 0) .
=1

What happens when n < p?

(b) Consider a Bayesian approach with m; ~Beta(a, b) and
b (O-gv 507 O-%a 61) =p (0-(2)7 60) p (0-%7 61)
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where p (o3, B)) satisfies a normal inverse-Gamma distribution; e.g.

p (o, B8) = p(or)p(Blop)
= 74 ((7,€7 ) (ﬁk,O Uk )

with some hyperparameters (v, x, 6%) such that v, k > 0 and X is a positive definite

matrix. ZG ( denotes the inverse-Gamma density given by

’2’2)

76 (%:2.5) - ()" (2) 571 o ().

2'2) T (Y)

The posterior distribution p (6| D) satisfies
p(01 D) = p(m|D)p (o5, 5| D) p (o1, 5] D).

Show that p (7| D) is a Beta distribution and p (o3, 8x| D) a normal inverse-Gamma
distribution.

(c) Given a new test data (z, z), establish the expression of p (z| D, z,y = k) and ex-
plain how you would use this expression to obtain a Bayesian classifier. What are
the potential benefits of this approach over using p ( 2|0, x,y = k) ?

3. (Logistic Regression) Consider two-class data, (X,Y) with Y € {—1,1} and X =
(B, Z) with B € {0,1} and Z € RP™!, so data vectors are made up of a binary variable
and p — 1 continuous variables. Training data (X;,Y;), 7 = 1,...,n are available. Con-
sider logistic regression of the log posterior odds, log P(Y =1 |x) —log P(Y = —1|x) =
a+ Bz with 8= (B, 5.) € Rx RP 1 sothata + Bz = o + Byb + 5L 2.

(a) Suppose there are no B = 1 outcomes in the class Y = —1 data (so B; = 0 for all
i€ {j:Y; = —1}) but there are both B = 0 and B = 1 outcomes in the Y = 1
data. Show that the maximum likelihood estimate for [, is Bb = 00.

(b) Problems of this kind arise when there exists a separating-hyperplane. Show that
the assumptions of 3a do not imply the existence of a separating hyperplane.

4. Load the Vanveer gene expression data used in a previous practical. Make use of the 20
‘best’” genes (according to a marginal t-test) by using the following commands.
load (url ("http://www.stats.ox.ac.uk/%$7Eteh/MSlb/PracticalObjects.RData"))

vanv<- vanveer.4000[,2:21]

prog<- vanveer.4000[,1]

Your X matrix is thus vanv and the response Y is prog. Split the data into a test and
training set (of equal size). Using logistic regression, plot a ROC curve.



