
MS1b: SDM - Problem Sheet 5
1. (Missing Features) Assume you have used some training data D = {xi, yi}ni=1 where
xi ∈ Rp and yi ∈ {1, 2, ..., K} to learn a probabilistic classifier (say using maximum
likelihood). We are interested in classifying a new input vector. However we have only
been able to collect p − 1 features, say you have only

(
x1i , ..., x

l−1
i , xl+1

i , ..., xpi
)

and xli
is missing. Explain whether or not it is possible to use your classifier to classify this
incomplete input vector in the two following scenarios:

(a) When we consider a naı̈ve Bayes model where

f (x|φk) =

p∏
l=1

g
(
xl
∣∣φlk) ;

i.e. conditional upon Y = k, you assume that the features are independent and
feature xl follows a distribution with density g

(
xl
∣∣φlk) .

(b) When we consider a QDA model; i.e.

f (x|φk) = N (x;µk,Σk) .

(c) Generally speaking, which conditions on f (x|φk) are necessary to allow us to
implement easily, that is without using any numerical integration scheme, a proba-
bilistic classifier in presence of missing features?

2. (Bayesian classification) Consider some training dataD = {(xi, zi) , yi}ni=1 where (xi, zi) ∈
Rp × R is the vector of inputs and yi ∈ {0, 1} the response. We adopt the following re-
gression model for class k

Z = βT
kX + ε

where ε i.i.d.∼ N (0, σ2
k) if Y = k. Hence we have for the class conditional density

fk (z|x) = N
(
z; βT

kx, σ
2
k

)
so that the unconditional density of Z follows a so-called

mixture of regressions model. Note that this model differs conceptually from the exam-
ples discussed in lectures as we do not model X . We adopt the notation P (Y = k) = πk
and denote θ = (π1, β0, β1, σ

2
0, σ

2
1) the set of unknown parameters.

(a) Give an expression of the estimate θ̂ of θ maximizing the conditional log-likelihood

l (θ) =
n∑
i=1

log p (yi, zi|xi, θ) .

What happens when n < p?

(b) Consider a Bayesian approach with π1 ∼Beta(a, b) and

p
(
σ2
0, β0, σ

2
1, β1

)
= p

(
σ2
0, β0

)
p
(
σ2
1, β1

)
1



where p (σ2
k, βk) satisfies a normal inverse-Gamma distribution; e.g.

p
(
σ2
k, βk

)
= p

(
σ2
k

)
p
(
βk|σ2

k

)
= IG

(
σ2
k;
ν

2
,
κ

2

)
N
(
βk; 0, σ2

kΣ
)

with some hyperparameters (ν, κ, δΣ) such that ν, κ > 0 and Σ is a positive definite
matrix. IG

(
σ2; ν

2
, κ
2

)
denotes the inverse-Gamma density given by

IG
(
σ2;

ν

2
,
κ

2

)
=

(
κ
2

) ν
2

Γ
(
ν
2

) (σ2
)− ν

2
−1

exp
(
− κ

2σ2

)
.

The posterior distribution p (θ|D) satisfies

p (θ|D) = p (π1|D) p
(
σ2
0, β0

∣∣D) p (σ2
1, β1

∣∣D) .
Show that p (π1|D) is a Beta distribution and p (σ2

k, βk|D) a normal inverse-Gamma
distribution.

(c) Given a new test data (x, z), establish the expression of p (z|D, x, y = k) and ex-
plain how you would use this expression to obtain a Bayesian classifier. What are
the potential benefits of this approach over using p

(
z| θ̂, x, y = k

)
?

3. (Logistic Regression) Consider two-class data, (X, Y ) with Y ∈ {−1, 1} and X =

(B,Z) with B ∈ {0, 1} and Z ∈ Rp−1, so data vectors are made up of a binary variable
and p − 1 continuous variables. Training data (Xi, Yi), i = 1, . . . , n are available. Con-
sider logistic regression of the log posterior odds, logP (Y = 1|x)− logP (Y = −1|x) =

α + βTx with β = (βb, βz) ∈ R× Rp−1, so that α + βTx ≡ α + βbb+ βTz z.

(a) Suppose there are no B = 1 outcomes in the class Y = −1 data (so Bi = 0 for all
i ∈ {j : Yj = −1}) but there are both B = 0 and B = 1 outcomes in the Y = 1

data. Show that the maximum likelihood estimate for βb is β̂b =∞.

(b) Problems of this kind arise when there exists a separating-hyperplane. Show that
the assumptions of 3a do not imply the existence of a separating hyperplane.

4. Load the Vanveer gene expression data used in a previous practical. Make use of the 20
‘best’ genes (according to a marginal t-test) by using the following commands.

load(url("http://www.stats.ox.ac.uk/%7Eteh/MS1b/PracticalObjects.RData"))

vanv<- vanveer.4000[,2:21]

prog<- vanveer.4000[,1]

Your X matrix is thus vanv and the response Y is prog. Split the data into a test and
training set (of equal size). Using logistic regression, plot a ROC curve.
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