MS1b: SDM - Problem Sheet 5

- 1. (Missing Features) Assume you have used some training data $D = \{x_i, y_i\}_{i=1}^n$ where $x_i \in \mathbb{R}^p$ and $y_i \in \{1, 2, ..., K\}$ to learn a probabilistic classifier (say using maximum likelihood). We are interested in classifying a new input vector. However we have only been able to collect p 1 features, say you have only $(x_i^1, ..., x_i^{l-1}, x_i^{l+1}, ..., x_i^p)$ and x_i^l is missing. Explain whether or not it is possible to use your classifier to classify this incomplete input vector in the two following scenarios:
 - (a) When we consider a naïve Bayes model where

$$f(x|\phi_k) = \prod_{l=1}^p g(x^l|\phi_k^l);$$

i.e. conditional upon Y = k, you assume that the features are independent and feature x^{l} follows a distribution with density $g(x^{l} | \phi_{k}^{l})$.

(b) When we consider a QDA model; i.e.

$$f(x|\phi_k) = \mathcal{N}(x;\mu_k,\Sigma_k).$$

- (c) Generally speaking, which conditions on $f(x|\phi_k)$ are necessary to allow us to implement easily, that is without using any numerical integration scheme, a probabilistic classifier in presence of missing features?
- (Bayesian classification) Consider some training data D = {(x_i, z_i), y_i}ⁿ_{i=1} where (x_i, z_i) ∈ ℝ^p × ℝ is the vector of inputs and y_i ∈ {0,1} the response. We adopt the following regression model for class k

$$Z = \beta_k^{\mathrm{T}} X + \varepsilon$$

where $\varepsilon \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_k^2)$ if Y = k. Hence we have for the class conditional density $f_k(z|x) = \mathcal{N}(z; \beta_k^{\mathrm{T}}x, \sigma_k^2)$ so that the unconditional density of Z follows a so-called mixture of regressions model. Note that this model differs conceptually from the examples discussed in lectures as we do not model X. We adopt the notation $P(Y = k) = \pi_k$ and denote $\theta = (\pi_1, \beta_0, \beta_1, \sigma_0^2, \sigma_1^2)$ the set of unknown parameters.

(a) Give an expression of the estimate $\hat{\theta}$ of θ maximizing the conditional log-likelihood

$$l(\theta) = \sum_{i=1}^{n} \log p(y_i, z_i | x_i, \theta).$$

What happens when n < p?

(b) Consider a Bayesian approach with $\pi_1 \sim \text{Beta}(a, b)$ and

$$p\left(\sigma_{0}^{2},\beta_{0},\sigma_{1}^{2},\beta_{1}\right) = p\left(\sigma_{0}^{2},\beta_{0}\right)p\left(\sigma_{1}^{2},\beta_{1}\right)$$

where $p(\sigma_k^2, \beta_k)$ satisfies a normal inverse-Gamma distribution; e.g.

$$p(\sigma_k^2, \beta_k) = p(\sigma_k^2) p(\beta_k | \sigma_k^2)$$

= $\mathcal{IG}(\sigma_k^2; \frac{\nu}{2}, \frac{\kappa}{2}) \mathcal{N}(\beta_k; 0, \sigma_k^2 \Sigma)$

with some hyperparameters $(\nu, \kappa, \delta \Sigma)$ such that $\nu, \kappa > 0$ and Σ is a positive definite matrix. $\mathcal{IG}(\sigma^2; \frac{\nu}{2}, \frac{\kappa}{2})$ denotes the inverse-Gamma density given by

$$\mathcal{IG}\left(\sigma^{2};\frac{\nu}{2},\frac{\kappa}{2}\right) = \frac{\left(\frac{\kappa}{2}\right)^{\frac{1}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \left(\sigma^{2}\right)^{-\frac{\nu}{2}-1} \exp\left(-\frac{\kappa}{2\sigma^{2}}\right).$$

The posterior distribution $p(\theta | D)$ satisfies

$$p(\theta | D) = p(\pi_1 | D) p(\sigma_0^2, \beta_0 | D) p(\sigma_1^2, \beta_1 | D).$$

Show that $p(\pi_1 | D)$ is a Beta distribution and $p(\sigma_k^2, \beta_k | D)$ a normal inverse-Gamma distribution.

- (c) Given a new test data (x, z), establish the expression of p(z | D, x, y = k) and explain how you would use this expression to obtain a Bayesian classifier. What are the potential benefits of this approach over using $p(z | \hat{\theta}, x, y = k)$?
- (Logistic Regression) Consider two-class data, (X, Y) with Y ∈ {-1,1} and X = (B, Z) with B ∈ {0,1} and Z ∈ ℝ^{p-1}, so data vectors are made up of a binary variable and p − 1 continuous variables. Training data (X_i, Y_i), i = 1,...,n are available. Consider logistic regression of the log posterior odds, log P(Y = 1|x) − log P(Y = −1|x) = α + β^Tx with β = (β_b, β_z) ∈ ℝ × ℝ^{p-1}, so that α + β^Tx ≡ α + β_bb + β^T_zz.
 - (a) Suppose there are no B = 1 outcomes in the class Y = -1 data (so $B_i = 0$ for all $i \in \{j : Y_j = -1\}$) but there are both B = 0 and B = 1 outcomes in the Y = 1 data. Show that the maximum likelihood estimate for β_b is $\hat{\beta}_b = \infty$.
 - (b) Problems of this kind arise when there exists a separating-hyperplane. Show that the assumptions of 3a do not imply the existence of a separating hyperplane.
- 4. Load the Vanveer gene expression data used in a previous practical. Make use of the 20 'best' genes (according to a marginal t-test) by using the following commands.

```
load(url("http://www.stats.ox.ac.uk/%7Eteh/MS1b/PracticalObjects.RData"))
vanv<- vanveer.4000[,2:21]
prog<- vanveer.4000[,1]</pre>
```

Your X matrix is thus vanv and the response Y is prog. Split the data into a test and training set (of equal size). Using logistic regression, plot a ROC curve.