MS1b: SDM - Problem Sheet 5

1. (Missing Features) Assume you have used some training data $D=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ where $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{1,2, \ldots, K\}$ to learn a probabilistic classifier (say using maximum likelihood). We are interested in classifying a new input vector. However we have only been able to collect $p-1$ features, say you have only ($x_{i}^{1}, \ldots, x_{i}^{l-1}, x_{i}^{l+1}, \ldots, x_{i}^{p}$) and x_{i}^{l} is missing. Explain whether or not it is possible to use your classifier to classify this incomplete input vector in the two following scenarios:
(a) When we consider a naïve Bayes model where

$$
f\left(x \mid \phi_{k}\right)=\prod_{l=1}^{p} g\left(x^{l} \mid \phi_{k}^{l}\right) ;
$$

i.e. conditional upon $Y=k$, you assume that the features are independent and feature x^{l} follows a distribution with density $g\left(x^{l} \mid \phi_{k}^{l}\right)$.
(b) When we consider a QDA model; i.e.

$$
f\left(x \mid \phi_{k}\right)=\mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right) .
$$

(c) Generally speaking, which conditions on $f\left(x \mid \phi_{k}\right)$ are necessary to allow us to implement easily, that is without using any numerical integration scheme, a probabilistic classifier in presence of missing features?
2. (Bayesian classification) Consider some training data $D=\left\{\left(x_{i}, z_{i}\right), y_{i}\right\}_{i=1}^{n}$ where $\left(x_{i}, z_{i}\right) \in$ $\mathbb{R}^{p} \times \mathbb{R}$ is the vector of inputs and $y_{i} \in\{0,1\}$ the response. We adopt the following regression model for class k

$$
Z=\beta_{k}^{\mathrm{T}} X+\varepsilon
$$

where $\varepsilon \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{k}^{2}\right)$ if $Y=k$. Hence we have for the class conditional density $f_{k}(z \mid x)=\mathcal{N}\left(z ; \beta_{k}^{\mathrm{T}} x, \sigma_{k}^{2}\right)$ so that the unconditional density of Z follows a so-called mixture of regressions model. Note that this model differs conceptually from the examples discussed in lectures as we do not model X. We adopt the notation $P(Y=k)=\pi_{k}$ and denote $\theta=\left(\pi_{1}, \beta_{0}, \beta_{1}, \sigma_{0}^{2}, \sigma_{1}^{2}\right)$ the set of unknown parameters.
(a) Give an expression of the estimate $\widehat{\theta}$ of θ maximizing the conditional log-likelihood

$$
l(\theta)=\sum_{i=1}^{n} \log p\left(y_{i}, z_{i} \mid x_{i}, \theta\right) .
$$

What happens when $n<p$?
(b) Consider a Bayesian approach with $\pi_{1} \sim \operatorname{Beta}(a, b)$ and

$$
p\left(\sigma_{0}^{2}, \beta_{0}, \sigma_{1}^{2}, \beta_{1}\right)=p\left(\sigma_{0}^{2}, \beta_{0}\right) p\left(\sigma_{1}^{2}, \beta_{1}\right)
$$

where $p\left(\sigma_{k}^{2}, \beta_{k}\right)$ satisfies a normal inverse-Gamma distribution; e.g.

$$
\begin{aligned}
p\left(\sigma_{k}^{2}, \beta_{k}\right) & =p\left(\sigma_{k}^{2}\right) p\left(\beta_{k} \mid \sigma_{k}^{2}\right) \\
& =\mathcal{I} \mathcal{G}\left(\sigma_{k}^{2} ; \frac{\nu}{2}, \frac{\kappa}{2}\right) \mathcal{N}\left(\beta_{k} ; 0, \sigma_{k}^{2} \Sigma\right)
\end{aligned}
$$

with some hyperparameters $(\nu, \kappa, \delta \Sigma)$ such that $\nu, \kappa>0$ and Σ is a positive definite matrix. $\mathcal{I G}\left(\sigma^{2} ; \frac{\nu}{2}, \frac{\kappa}{2}\right)$ denotes the inverse-Gamma density given by

$$
\mathcal{I G}\left(\sigma^{2} ; \frac{\nu}{2}, \frac{\kappa}{2}\right)=\frac{\left(\frac{\kappa}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)}\left(\sigma^{2}\right)^{-\frac{\nu}{2}-1} \exp \left(-\frac{\kappa}{2 \sigma^{2}}\right) .
$$

The posterior distribution $p(\theta \mid D)$ satisfies

$$
p(\theta \mid D)=p\left(\pi_{1} \mid D\right) p\left(\sigma_{0}^{2}, \beta_{0} \mid D\right) p\left(\sigma_{1}^{2}, \beta_{1} \mid D\right) .
$$

Show that $p\left(\pi_{1} \mid D\right)$ is a Beta distribution and $p\left(\sigma_{k}^{2}, \beta_{k} \mid D\right)$ a normal inverse-Gamma distribution.
(c) Given a new test data (x, z), establish the expression of $p(z \mid D, x, y=k)$ and explain how you would use this expression to obtain a Bayesian classifier. What are the potential benefits of this approach over using $p(z \mid \widehat{\theta}, x, y=k)$?
3. (Logistic Regression) Consider two-class data, (X, Y) with $Y \in\{-1,1\}$ and $X=$ (B, Z) with $B \in\{0,1\}$ and $Z \in \mathbb{R}^{p-1}$, so data vectors are made up of a binary variable and $p-1$ continuous variables. Training data $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$ are available. Consider logistic regression of the \log posterior odds, $\log P(Y=1 \mid x)-\log P(Y=-1 \mid x)=$ $\alpha+\beta^{T} x$ with $\beta=\left(\beta_{b}, \beta_{z}\right) \in \mathbb{R} \times \mathbb{R}^{p-1}$, so that $\alpha+\beta^{T} x \equiv \alpha+\beta_{b} b+\beta_{z}^{T} z$.
(a) Suppose there are no $B=1$ outcomes in the class $Y=-1$ data (so $B_{i}=0$ for all $\left.i \in\left\{j: Y_{j}=-1\right\}\right)$ but there are both $B=0$ and $B=1$ outcomes in the $Y=1$ data. Show that the maximum likelihood estimate for β_{b} is $\hat{\beta}_{b}=\infty$.
(b) Problems of this kind arise when there exists a separating-hyperplane. Show that the assumptions of 3a do not imply the existence of a separating hyperplane.
4. Load the Vanveer gene expression data used in a previous practical. Make use of the 20 'best' genes (according to a marginal t-test) by using the following commands.

```
load(url("http://www.stats.ox.ac.uk/%7Eteh/MS1b/PracticalObjects.RData"))
vanv<- vanveer.4000[,2:21]
prog<- vanveer.4000[,1]
```

Your X matrix is thus vanv and the response Y is prog. Split the data into a test and training set (of equal size). Using logistic regression, plot a ROC curve.

