MS1b: SDM - Problem Sheet 4

1. (LDA) Let W be the $p \times p$-dimensional within-class covariance matrix estimated from 2-class data $\left(X_{i}, Y_{i}\right)$, with $X_{i}=\left(X_{i}^{(1)}, \ldots, X_{i}^{(p)}\right)$ a p-dimensional predictor variable and $Y_{i} \in\{1,2\}$, given by

$$
W=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}_{Y_{i}}\right)^{T}\left(X_{i}-\hat{\mu}_{Y_{i}}\right)
$$

where $\hat{\mu}_{k}$ is the mean across all observations with class k.
(a) Explain how to transform the data so that the within-class covariance is equal the identity.
(b) Denote by B the estimated between class covariance matrix of the transformed data and by $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$ the estimated class means of the transformed data. For K classes

$$
B=\frac{1}{K} \sum_{i=1}^{K}\left(\hat{\mu}_{i}-\hat{\mu}\right)^{T}\left(\hat{\mu}_{i}-\hat{\mu}\right)
$$

with $\hat{\mu}$ the mean vector of all observations $X_{i}, i=1, \ldots, n$ and $n \hat{\mu}=n_{1} \hat{\mu}_{1}+n_{2} \hat{\mu}_{2}$, where n_{k} are the number of observations in class k. Observe that B can be written as an outer product of $\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)$ with itself and hence show that $\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)$ is a eigenvector of B with eigenvalue λ_{1} say.
(c) Calculate the p eigenvalues and verify that λ_{1} is the largest. Interpret this.
2. (Decision Theory, Naïve Bayes) Suppose there are two classes $Y \in\{1,2\}$ and that given the class, $Y=k$, data vector X has two independent Bernoulli components $X=$ $\left(X^{(1)}, X^{(2)}\right)$, so that for $Y_{i}=k$, for both $j=1,2$,

$$
X^{(j)} \sim \operatorname{Bernoulli}\left(p_{k j}\right) .
$$

Suppose the four probability parameters $p_{k i}, i=1,2, k=1,2$ are known. Show that the Bayes classifier $\hat{Y}(x)$ minimizing the total Risk for the $0-1$ loss function has a linear discriminant function of the form

$$
\hat{Y}(x)=\arg \min _{k=1,2} \alpha_{k}+\beta_{k}^{T} x
$$

and find the values of α_{k}, β_{k}.
3. (LDA, QDA) Suppose we have a two-class setup with classes -1 and 1 , that is $\mathcal{Y}=$ $\{-1,1\}$ and a 2-dimensional predictor variable $X=\left(X^{(1)}, X^{(2)}\right)$. We find that the means of the two groups are at $\hat{\mu}_{-1}=(-1,-1)$ and $\hat{\mu}_{1}=(1,1)$ respectively. The a priori probabilities are equal.
(a) Applying LDA, the covariance matrix is estimated to be, for some value of $0 \leq \rho \leq$ 1 ,

$$
\hat{\Sigma}=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

Find the decision boundary as a function of ρ.
(b) Now applying QDA, we estimate the covariance matrices for group -1 as

$$
\hat{\Sigma}_{-1}=\left(\begin{array}{cc}
5 & 0 \\
0 & 1 / 5
\end{array}\right)
$$

and for group 1 as

$$
\hat{\Sigma}_{1}=\left(\begin{array}{cc}
1 / 5 & 0 \\
0 & 5
\end{array}\right)
$$

Find now the decision boundary and draw a sketch of it in the two-dimensional plane.

