MS1b: SDM - Problem Sheet 1

- 1. (Biplot) Examine and use the R code from lecture 1 to create a biplot of the *state* data. In this question, you will interpret it.
 - (a) According to the plot, what variables are positively correlated with graduating high school *HS Grad*? Which are negatively correlated? In each case, give a possible explanation.
 - (b) Within the range of the data, you should find areas of voids, where relatively few states appear. Where are they and what does each one mean?
 - (c) The data distribution also has a few "funnels", directions where the states become increasingly compact. What are they and what does each one mean?
 - (d) If the eigenvalues associated with the first two eigenvalues explained a smaller amount of the total variance, what would be the danger in interpreting the plot as you did above?
- 2. (MDS) Under the assumption that your data are centred, show that you can compute the $n \times n$ Gram matrix B such that $b_{ij} = x_i^T x_j$ using the dissimilarity matrix D where $d_{ij} = ||x_i x_j||_2$.
- 3. (MDS) Give a sufficient condition on an $n \times n$ dissimilarity matrix D so that there is a representation of D in terms of a set of n points in two dimensions with the property that the Euclidean distance between points x_i and x_j exactly equals D_{ij} .
- 4. (SVD) Determine SVDs of the following matrices (by hand calculation):

(a)
$$\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

5. (PCA) Show that $\operatorname{tr}(\tilde{V}_q^T X^T X \tilde{V}_q)$ is maximized (up to permutation) over matrices $\tilde{V}_q = (\tilde{v}_1, \ldots, \tilde{v}_q) \in \mathbb{R}^{p \times q}$ with q orthonormal columns (i.e. $\tilde{V}_q^T \tilde{V}_q = 1$) by $\tilde{v}_i = v_i$, where v_i , $i = 1, \ldots, q$ are the q eigenvectors of $X^T X v_i = \lambda_i v_i$, i = 1, 2...q corresponding to the first (i.e. the largest) q eigenvalues of $X^T X$.