
MS1b Statistical Data Mining
Part 3: Supervised Learning

Nonparametric Methods

Yee Whye Teh
Department of Statistics

Oxford

http://www.stats.ox.ac.uk/~teh/datamining.html

http://www.stats.ox.ac.uk/~teh/datamining.html

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks

k-Nearest Neighbours

I Nearest neighbours are simple and essentially model-free methods for
classification.

I These methods are not very useful for understanding relationships
between attributes and class predictions.

I Makes weaker modelling assumptions than e.g. LDA, Naïve Bayes and
logistic regression.

I As black box classification methods however, they are often reasonable
performers on real life problems (at least in lower-dimensional data) and
provide a good benchmark as they are trivial to set up.

Example: Spam dataset in 2 dimensions. Using first 2 principal components
of the predictor variables X for illustration. Plotted are 50 emails (red: spam,
black: no spam).
Task: predict category spam/no-spam for 3 new emails at the green crosses.

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5

−
3

−
2

−
1

0
1

2

1ST PRINCIPAL COMPONENT

2N
D

 P
R

IN
C

IP
A

L
C

O
M

P
O

N
E

N
T

x

x

x

True categories.

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5

−
3

−
2

−
1

0
1

2

1ST PRINCIPAL COMPONENT

2N
D

 P
R

IN
C

IP
A

L
C

O
M

P
O

N
E

N
T

x

x

x

Suppose again that the training data are (Xi,Yi) for i = 1, . . . , n, where as
usual Xi ∈ Rp and Yi ∈ {1, . . . ,K}.
Assuming X ∈ Rp, Euclidean distance is often used to measure distance
d(X,X′) = ‖X − X′‖2. The nearest neighbours of a point X is the set
nek(X) ⊂ {1, . . . , n} such that

max
j∈nek(X)

d(X,Xj) ≤ min
i∈{1,...,n}\nek(X)

d(X,Xi).

Given a new X, we find the k observations in the training data ‘closest’ to X
and then classify using a majority vote amongst the k neighbours (ties are
broken at random – choose k odd preferably).

Ŷ(X) = argmaxl |{j ∈ nek(X) : Yj = l}|.

Application to Handwritten Character Recognition
Objective: recognizing isolated (i.e., non-overlapping) digits, as in ZIP or
postal codes.

Training and Test Data: The MNIST15 dataset contains 60,000 training
images and 10,000 test images of the digits 0 to 9, as written by various
people.
Details: Images are 28×28 and have grayscale values in the range 0:255.

Application to Handwritten Character Recognition
Results: 1-NN obtains a misclassification rate of only 3.09% on the test data
using the Hamming distance!
This problem might look easy to you but remember that we do not use any
spatial information. The K-NN classifier would obtain exactly the same results
if the training and test data were permuted as it is invariant to the order of the
features.

Asymptotic Performance of 1 NN

Let (Xi,Yi)
n
i=1 be some training data where Xi ∈ Rp and Yi ∈ {1, 2, ...,K}.

We define
ŷBayes (x) = arg max

l∈{1,...,K}
πlfl (x)

and
ŷ1NN (x) = y (nearest neigbour of x) .

Define

RBayes = E [I (y 6= ŷBayes (x))] ,

R1NN = E [I (y 6= ŷ1NN (x))] ,

then, as n→∞, we have the following powerful result

RBayes ≤ R1NN ≤ 2RBayes −
K

K − 1
R2

Bayes.

I Despite its simplicity, k-NN is often a very good classifiers to use in a
wide range of classification problems. At the very least, it is a good
‘baseline’ against which classifiers can be compared.

I This method allows for extremely flexible (nonparametric) decision
boundaries.

I Due to the importance of distance to k-NN, it is important to standardise
the data before use and find a suitable metric.

I It is also important to determine an appropriate k.

Influence of k on Decision Boundaries
I k determines the complexity of the decision boundary.
I For k = 1, we have no training error but are exposed to overfitting.
I Increasing k yields smoother predictions, since we average over more

data.
I For k = n, we predict the same output whatever being X.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 47

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

train

(a) (b) (c)

Figure 1.53: (a) Some synthetic 3 class training data in 2d. (b) Predicted labels for 1-NN. (c) Predicted labels for 5-NN. Figure generated by
knnClassifyDemo.

1.7.1.2 Overfitting in classification

The overfitting problem is not restricted to regression. If we use polynomials to represent the decision boundary, it is clear that
we will overfit if the decision boundaries become “too wiggly”.

Figure 1.53 illustrates overfitting using a K-nearest neighbor classifier. On the left, we plot some training data for a 3-class
problem. In the middle, we plot the predicted label for each location in a 2d grid using K = 1. We see that the prediction
“surface” is quite “jagged”. We can get “smoother” predictions by taking multiple neighbors into account, and computing the
majority vote of their labels. On the right, we plot predictions using K = 5. We see that the decision regions are indeed much
smoother. We see that that K = 1 has overfit the training data, whereas K = 5 seems “just right”. But we can also oversmooth,
or underfit, the data. For example, if K = N , then we just compute the majority vote of all the training data. Thus we always
predict the same label, no matter what the test point.

In Figure 1.52(b) we plot the training and test error vs K, and we see the usual U-shaped curve for the test error. Note
that the horizontal axes in Figure 1.52(a) and Figure 1.52(b) have opposite intepretations: for (a), as we move to the right, the
polynomial degree d (and hence model complexity) increases, whereas in (b), as we move to the right, the number of neighbors
K that we average over increases, so the models become smoother and smoother. It is therefore quite common to plot the errors
versus a model complexity parameter, known as the degrees of freedom. The precise definition is somewhat complex, but this
quantity basically refers to the effective number of free parameters in a model. In a linear model with D parameters fit using
maximum likelihood, we have dof = D. In a KNN, we have dof ≈ N/K, since increasing N and/or decreasing K increases
the model complexity.

1.7.1.3 Overfitting in unsupervised learning

Overfitting can also arise in unsupervised learning settings. For example, we may use too many clusters, some of which might
be used to model outliers or noise. Or we may pick a low dimensional subspace that is too high dimensional, thus capturing the
noise as well as the signal. We will discuss these issues later.

1.7.2 The benefits of more data

One way to avoid overfitting it to use lots of data. Indeed, it should be intuitively obvious that the more training data we have,
the better we will able to learn. (This assumes the training data is randomly sampled, and we don’t just get repetitions of the
same examples. Having informatively sampled data can help even more; this is the motivation for an approach known as active
learning, where you get to choose your training data.) Thus the test set error should decrease to some plateau as N increases.

This is illustrated in Figure 1.54, where we plot the mean squared error incurred on the test set achieved by polynomial
regression models of different degrees vs N (a plot of error vs training set size is known as a learning curve). The level of the
plateau for the test error consists of two terms: an irreducible component that all models incur, due to the intrinsic variability of
the generating process (this is called the noise floor); and a component that depends on the discrepancy between the generating
process (the “truth”) and the model: this is called structural error.

In Figure 1.54, the truth is a degree 2 polynomial, and we try fitting polynomials of degrees 1, 2 and 25 to this data. Call the
3 modelsM1,M2 andM25. We see that the structural error for modelsM2 andM25 is zero, since both are able to capture
the true generating process. However, the structural error forM1 is substantial, which is evident from the fact that the plateau
occurs high above the noise floor.

For any model that is expressive enough to capture the truth (i.e., one with small structural error), the test error will go to
the noise floor as N → ∞. However, it will typically go to zero faster for simpler models, since there are fewer parameters to
estimate. In particular, for finite training sets, there will be some discrepancy between the parameters that we estimate and the

Machine Learning: a Probabilistic Approach, draft of December 29, 2010

Figure: Training data (left), 1-NN (center) and 5-NN (right)

Using the SPAM dataset properly (without PC). Writing the code from scratch.

X <- scale(X)
knn <- 3

predicted <- numeric(length(test))
for (k in 1:length(test)){
DIFF <- X[train,] -

outer(rep(1,length(train)),X[test[k],],FUN="*")
distance <- apply(DIFF^2,1,mean)
nearestneighbors <- order(distance)[1:knn]
predicted[k] <- mean(Y[train[nearestneighbors]])

}

Predict on the test set.

predicted_knn <- as.numeric(predicted > 0.5)
> table(predicted_knn, Y[test])

actual 0 1
predicted 0 1343 131

1 110 818

Using k = 9 nearest neighbours.

predicted_knn <- as.numeric(predicted > 0.5)
> table(predicted_knn, Y[test])

actual 0 1
predicted 0 1349 156

1 104 793

Misclassification rate is thus about 10.8% for k = 9.

Compute misclassification rate as a function of k.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0.
10

0
0.

10
5

0.
11

0
0.

11
5

0.
12

0

K−NN

M
IS

C
LA

S
S

IF
IC

A
T

IO
N

 R
A

T
E

K-means clustering

I A disadvantage of k-nn is the high memory requirement as each new
observations has to be matched against all observations to find the
nearest neighbour(s).

I As discussed before, K-means is a method for finding clusters and cluster
centres in a set of unlabeled data. Considering each class in isolation, we
can apply the K-means algorithm (each with R clusters) to characterise
observations from each class.

I These K × R labeled prototypes can be used to summarise the
distribution of class data over X . For a new observations X, we predict to
the class with the nearest prototype. An advantage over k-NN is thus that
much fewer observations/prototypes have to be kept in memory.

Plot Spam data in the space of the first 4 Principal Components.

library(kernlab)
data(spam)
n <- nrow(spam)
p <- ncol(spam)-1

Y <- as.numeric(spam[, p+1])-1
X <- predict(princomp(spam[,-(p+1)] ,cor=TRUE))[,1:4]

pairs(X,col=Y+1,cex=1.5,pch=20)

Red: spam
Black: not spam.

Comp.1

−4 0 2 4 6 8

●● ●●●●●●●● ●●●●●
●●

●
●●
●

●

●● ● ●●●● ●●
●●●●●● ● ● ●

●
●

●
●● ●●● ●

●
●●●●

●
● ●

●●●●●●

●
● ●

●

●
●

●
●

●●●
●

●
●

●
●●● ●

●
●● ● ● ●●

●●
●

●
●●●●● ●●●

●
●

●●● ●
●

●● ●●● ●●●●● ● ●● ●
●

●
●

●

●
● ●

●

●●●

●

●●

●

● ●●●● ● ●●
●

●●●●
●

●

● ● ●
● ●

● ●

●
●

●
●

●
●● ●●●●

●

●

●

● ●● ●

●

●
●● ●● ●●

●

●
● ●

●
● ●●● ●●● ● ●●●● ●● ●● ●●

●

●●●●●● ●
●●● ●

●

●

●● ●●●● ●● ●●
●●●● ●● ●●●

●

●● ●●●
●●●●

●
●● ●● ●●●

●

● ●

●

●
●●●●

●●
●●●●●● ●

●

●●●
●
●●●●●
●

●● ●●
●

●
●●● ● ●●●●●● ●●

●

●
●●●● ●●●● ●●

●

●●
●●● ● ●

●●●● ●
● ● ●● ● ●

●

●●

●

●●● ●●
●●

●

●

●●●

●

● ●

●

●●●
●

●

●

●●

●

●●
●

● ●● ●●●● ●●
●

●●● ●
●

●●● ●

●

●●●● ● ●●●●● ●●

●

● ●●
● ●●

●
●

●●

●●
●●●● ●

● ●● ●●
●

●●● ● ●●●●●● ●
●●

●
●

●

●

●

●●●●● ● ●
●● ●● ●●●● ●

●
●●

●● ●●● ●●●● ●● ●●●●●

●

●●●●
●●●

●

●●● ●
●

●●●●
●

●●● ●●●●●

●

●● ●●● ●
●

●● ●●●●
●
●

●
●● ●●●● ●

●
●● ●●●

●
●● ●● ● ●●●●●●● ●●

●

●

●●●● ● ●●

●
●

●
●●

●

●

●

● ●●
●

●

●●●
●

●

●

●
●

●● ●
●●

●

●

●●●●
●

● ●●

●

● ●●● ●●● ●● ●● ●●●● ●● ●●●

●
●

●
●

●
●●●

●
● ●●●●
●

●

●

●● ●
●

●●●
●

●● ●● ●●

●

●

●
●

●● ●●● ●● ●●●● ●
●
●●
●

●
● ●●

●

●●● ●●

●

●● ●
●

●●●●●●●● ●●●

●

● ●●●
●

●●● ●
● ● ●● ●

●● ●●

●
● ●
●●

●●●●●

●

●
●●●

●
●

● ●●●●●●● ●
● ●●●● ●●

●
●
●

●●●●
●
● ●

●●● ●
●

●●

●

●
●

●
● ●

●
●●●●

●

●●●● ●
●

●●

●
●

●
●●

●●
● ●● ● ●● ●●●● ●

●● ●●
● ●

●●
●●

●
● ●● ●● ●●●

● ●●●● ●● ●● ●
●

●● ●
●● ● ●●●

●
●●● ●●●● ●● ●● ●

●
●● ● ●

●

●
● ●●●

●●● ●
● ●

●

●
●●

●
●

●

●● ● ●●● ●

●

●
●

● ●●
●
●●

●

●●● ● ●

●

●● ●
● ●

●
●●●●

●●●

●

●
● ●● ●●●

●● ●
●● ●

● ● ● ●
●●

●
●

●

●

●● ●● ●●● ●●

●

●● ●●●●●
●●● ● ●● ●

●

●

●● ●●● ●●

●

●
●● ●●●

●

●

● ●● ●●

●

●● ●●●●

●●

●● ●
●●● ●● ● ●

● ● ●

●

●
●●●●

●

●● ●● ●●● ●●●
●● ●●● ● ●● ●

● ●●● ●●●● ● ●● ●●●● ●
●
●● ● ●●●
●● ●●●

●
● ●●●● ●●●

●

●●●●●● ●
●

●

●
●● ●● ●

●

●●●●

●

●●●
●
●

●

●
●

●● ●●
●

●●●
● ● ●

●

●

●●● ●●● ●●●
●

●
●●●

●

●
●

●●

●

● ● ●
●●●●● ●●● ●● ● ●

●
●●● ●

●

●●● ●●
● ● ●●● ●●● ●● ●● ●●● ●●

●
●●●●

●

●●●●● ●● ●● ●

●

●●●● ●●

●
● ●●●● ●●●

●● ●●●
●

● ●●● ●● ●● ●●● ●
●

●
●● ● ●●●

●●● ● ●
●●●

●
● ●●● ● ●●

●

●
●

●●●● ●●● ● ●●
●● ● ●●●●●
●

●●● ●●● ●
●

●●●
●●●

●
●●● ● ●●

●
●●

●

●● ●●
●

●

●●●
●

●●●● ● ●●

●

●● ● ●● ●●

●

●● ●●

●

●
●

●● ●●● ●
●●●

●
●●●●

●●●
●●● ●
●●

● ● ●
●

●
● ● ●●●● ●● ●●●

●
●

●
● ●

●●
● ●

●

●

●
● ●● ●● ●● ●●●

●

●● ● ●●

●

●

●
●●

●

●●●● ●●

●

●● ●● ●●●
●

●●●●● ●●

●

● ●

●

●●●

●

●●●● ●● ●●
●

●
●

●
●

●●

●

●
●●●●

●

● ●●● ●●●●
●●

●●●● ●

●

●

●
●●

●● ●●

●

●●
●

●
●

●●●

●

●●● ● ●●●
●● ●●●

●

●●● ●●●
●

●
●

●
● ●●● ●●● ●●●●● ●●●●● ●●●

●
●
●
●●● ●●

●
●

●
●● ●●● ●

●

●
● ● ●●●●● ●

●
● ●●●● ●

●

●
●●

●

●●
●●●

●
●●● ●●

●
●●

●●
●●●● ●

●

●

●
●●

●● ●●●●
●●

●●● ● ●● ●● ●●

●

●● ●● ●

●

●●● ●●
●●●

● ●

●

● ●●
●

●●●●●
●

●
●

●

●

●

●

●

●
●● ● ● ●

●
●●

●● ●●●

●

●

●

●●●●

●

●● ●●●●
●● ● ●● ●

●
●
●

●● ● ●
●

●●
●
● ●●

●

●
●

● ●●●
●● ● ●● ●●●●

●
●●

●

●●●● ●

●

●
●● ●

●
●● ●
●

●

● ● ● ●

●
●● ●● ●

●

●

●

●
●●
●
●● ●● ●●●●●
●

● ●
●

●●●● ●●●● ●●●
●

●

●●●● ●

●

●●●●●●
●●● ●●●● ●●●● ●●● ●●●

●
● ●

● ●

●●●

●

●● ●●●● ● ●●

●

●●

●

●
●

●●●●

●

●●●
●● ●● ●

●●● ●●
●

●
●

●●●●●
●

●

●

●●●
●

● ●
●

●●
●
● ●●●● ●

●

●● ●
●

●
●

●

●
● ●● ●

●
●

●●
●● ● ●

● ●● ●
●●● ●● ●●●● ● ●●●●

●

●
●

●
● ●

●●●●
●●●● ●●●●●● ● ●●● ●●

●
●

●
● ● ●

●

●●

●

●● ● ●●

●

●●●●
●●● ●

●

●

●● ●●●●● ●●

●

● ●
●● ●●● ●●

●

● ●
●

●●● ● ●● ●● ●●●●● ●●● ●●●●●● ●●● ●● ●
●●

●
●●

●

●

●● ●● ●●●●●
●● ●●●●● ●●

●
●

●
●● ●●● ●
●

● ●● ●
●

●●
●● ●● ●●

●
●●

●

●
●

●
●

●●●
●

●
●

●
●●● ●
●

●●● ●●●
● ●

●
●

●●●● ●●●●

●
●

●●
● ●

●
●●

● ●●● ● ●●● ●●●●
●

●
●

●

●
●●

●

●● ●

●

●●

●

● ●● ●● ●● ●
●

●●●
●

●

●

●●●
●●

●●

●
●

●
●

●
●● ●●●●

●

●

●

●●● ●

●

●
●●●●● ●

●

●
● ●

●
●●●●● ●● ●●●● ● ●●●●● ●

●

●●●● ●●●
●● ●●

●

●

●●●●●●●● ●●
●●●● ●●● ●●

●

●●●●
●

●●● ●
●

●● ●● ●●●

●

● ●

●

●
●●●●

●●
●●●●● ●●

●

●●●
●
●●● ●●
●

●● ●●
●
●

●●● ●●● ●●● ● ●●

●

●
●●●●●●●●● ●

●

● ●
● ●●● ●

●● ●●
●

● ●●● ●●

●

●●

●

●●●●●
●●

●

●

●● ●

●

●●

●

●●●
●

●

●

●●

●

●●
●

● ●● ●●●● ●●
●

● ●● ●
●
● ●● ●

●

●● ●●●●●● ●●●●

●

●●●
● ●●

●
●

●●

●●
● ● ●● ●

● ●●●●
●

●●
● ●●●● ●● ● ●

●●
●

●
●

●

●

●●●●● ●●
●●●●●●●● ●

●
●●

● ● ●●● ●●●● ●●●● ●●●

●

●●●●
● ●●

●

●● ●
●

●
●●●●●

●●● ●●● ●●

●

●●● ●●●
●

●● ●●●
●

●
●

●
●● ●● ●●●

●
● ●● ●●

●
●●● ●●●●●●●●● ●●

●

●

●●●●
●●●

●
●

●
● ●

●

●

●

●●●
●

●

●●●
●

●

●

●
●
● ● ●

●●
●

●

●●●●
●

●●●

●

● ●●●●●●●●● ●●●●●●●● ●●

●
●
●
●

●
●● ●

●
●●● ●●

●
●

●

●●●
●
●●●

●
●●● ●● ●

●

●

●
●

●●●●● ●●●●● ●●
●

●●
●

●
●●●

●

●● ● ●●

●

●●●
●

●●●●●●●●●● ●

●

● ●●●
●

●●●
●
●●●●●

●●●●

●
●●
●●

●●●●●

●

●
●●●

●
●

●● ●●●●●● ●
●●●●●●●
●

●
●

● ●●●
●

●●
● ●● ●

●
●●

●

●
●

●
●●
●

● ●●●

●

●●● ●●
●

●●

●
●

●
●●

●●
● ●●●●● ●●●● ●

● ●●●
● ●

● ●
●●

●
●● ● ●● ●●●

● ●●●●●●●●●
●

●●●
●●
● ●●●

●
●● ● ●●●●● ● ●●●

●
●● ●●

●

●
● ●●●

●●● ●
● ●

●

●
● ●

●
●

●

●● ●●● ●●

●

●
●

● ●●
●

●●

●

●●●●●

●

●●●●●
●

●●● ●
●●●

●

●
● ●●●●●

●● ●
●●●
●●●●
●●

●
●

●

●

●●●●●●● ●●

●

● ●●●●● ●
●● ●● ●●●

●

●

●●● ●●●●

●

●
●● ●● ●

●

●

●●● ●●

●

●●
●●● ●

●●

●● ●
●●● ●● ●●

●●●

●

●
●●●●

●

●● ●●●● ●● ●●
●●● ●●● ●●●

● ●●●●●●●●●● ●●●● ●
●

●●●● ● ●
●●●●●

●
●●●● ●●●

●
●

● ●●●●●●
●

●

●
●● ●● ●

●

● ●● ●

●

● ●●
●

●
●

●
●

●● ●●
●

●●●●●●
●

●

●●●● ●● ●●●
●

●
●●●
●

●
●

●●

●

● ●●
● ●●●●●●● ●●● ●

●
●●●●

●

●●●● ●
●●●●● ●●●●●●●●●● ●●
●

●●● ●

●

●●●● ●●●●● ●

●

●●●● ●●

●
● ●● ●●●●●

●●●●●
●
●●●● ●● ●● ●● ●●

●
●

●● ●●● ●
● ●● ● ●

● ●●
●

●●●● ●●●

●

●
●

●●●● ●●●●● ●
●●●●● ●●●
●

●●● ●●●●
●

●●
●

●●●
●

● ●●●●●
●

● ●

●

●●●●
●

●

●●●
●

●●● ●●●●

●

● ●●●● ●●

●

●●●●

●

●
●
●●● ●●●●●●

●
●●●●● ●●

● ●● ●
●●● ● ●
●

●
●●●●
●●●●●●●

●
●

●
● ●

● ●
●●
●

●

●
●●● ●●●● ●●●

●

●●● ●●

●

●

●
●●

●

●●●● ●●

●

●●●●●● ●
●

● ●●●● ● ●

●

● ●

●

●● ●

●

● ●●●●●●●
●

●
●

●
●
●●

●

●
●●●●

●

●● ●●●●●●
●●

● ●●●●

●

●

●
●●

●●
●●

●

●●
●

●
●

● ●●

●

●●● ● ●●●
● ● ●● ●

●

●●● ●●●
●

●
●

●
● ● ●●● ●● ●●

●●●●● ●●● ●●●
●

●
●

●●●●●
●

●
●

●●●●●●
●

●
●●● ●● ●●●

●
●●● ●●●

●

●
● ●

●

●●
●●●
●

●● ●●
●
●

● ●
●●

● ●●●●

●

●

●
● ●

●●● ●●●
●●

● ●●● ●● ●●● ●

●

●● ●●●

●

●●●●●
●●●
●●

●

●●●
●
● ●●● ●

●

●
●

●

●

●

●

●

●
●● ●● ●

●
●●
● ●●●●

●

●

●

●●●●

●

●● ●●● ●
●●●● ●●

●
●

●

●● ●●
●

●●
●
●● ●
●

●
●

● ●●●
● ●●● ●●●●●
●

●●

●

●● ●● ●

●

●
●● ●

●
●●●

●

●

●● ●●

●
●●●●●

●

●

●

●
●●

●
●●●●● ●●● ●
●

●●
●

●●●● ●●● ●●●●
●

●

●●●● ●

●

●●● ●●●
●●●●●●● ●●●● ● ●● ●●●

●
●●

● ●

●●●

●

●●●● ●●● ●●

●

●●

●

●
●

●●●●

●

●●●
● ●● ●●

●●● ●●
●

●
●
● ●●●●

●
●

●

●●●
●

● ●
●

● ●
●
●● ●●●●

●

●●●
●

●
●

●

●
●●● ●

●
●

●●
●● ● ●

●●●
●

●●●● ●●●●● ●●● ●●

●

●
●

●
●●
●●●
●
●●●●● ●●● ●●●● ●●● ●

●
●

●
● ●●

●

●●

●

● ● ●● ●

●

●●●●
●● ●●

●

●

●●●● ●●● ●●

●

●●● ●● ●● ●●

●

●●
●
●● ●●●●●●●● ●●●

−5 0 5

0
10

20
30

●●● ●●●●●●●●● ●●●
●●

●
● ●
●

●

●● ●●●●●●●
●●●● ●●● ●●

●
●

●
●●●●●●
●

●● ●●
●

●●
●●●●●●

●
● ●

●

●
●

●
●

●●●
●

●
●

●
●●
●●

●
●● ●●● ●

●●
●

●
●● ●●●●●●

●
●

●● ●●
●

●●
●●●●● ●●● ●●●●

●
●

●

●

●
● ●

●

●●●

●

● ●

●

●●● ●●●● ●
●

●●● ●
●

●

● ●●
●●
●●

●
●

●
●

●
●●●●●●
●

●

●

●●● ●

●

●
●●● ●●●

●

●
●●
●

●●●●● ●●●●●● ● ●● ●●● ●

●

●●●● ●●●
●● ●●

●

●

●● ●●●●●● ●●
●●●●● ●●●●

●

●●●● ●
●●● ●

●
●●●●●●●

●

●●

●

●
●●●●

●●
●●●●●●●

●

●●●
●

●● ●●●
●

● ●●●
●

●
●●●●●●●● ●● ●●

●

●
●●●●●●●●● ●

●

●●
●● ●●●

●● ●●
●

●●●● ●●

●

●●

●

●●●●●
●●

●

●

●● ●

●

●●

●

●●●
●
●

●

●●

●

● ●
●

●●●●●●
●● ●

●
● ● ●●

●
●● ●●

●

●● ●●●●●●●●●●

●

●●●
●●●

●
●

●●

● ●
●●●●●

●●●●●
●

● ● ●●● ● ●●●● ●
● ●

●
●
●

●

●

●●●●●●●
●●●●●●●●●

●
●●

●●●●● ●● ●●●●●●●●●

●

●●● ●
●●●

●

●●●
●
●

●●●●●
●● ●●●

●● ●

●

●● ●●● ●
●
●● ●●●
●

●
●

●
●● ●●●● ●

●
●●● ●●

●
● ●●●●●●●●●●●●●
●

●

●●● ●
● ●●

●
●

●
●●

●

●

●

●●● ●

●

●● ●
●

●

●

●
●
●●●

●●
●

●

●●●●
●

●●●

●

●● ●●●● ●● ●●●●●● ●●● ●●●

●
●

●
●

●
● ●●

●
● ●●● ●

●
●

●

● ●●
●
●●●

●
● ●●●●●

●

●

●
●

● ●● ●●● ●● ●●●●
●

●●
●

●
●● ●

●

●●●●●

●

●● ●
●

●●●●●●●● ●●●

●

●●●●
●
●●●●●●●● ●

●● ●●

●
●●

● ●
● ●●●●

●

●
●● ●
●

●
●●●

●●●● ● ●
●●●●● ●●
●
●

●
●●

●●
●

● ●
● ●● ●

●
●●

●

●
●

●
● ●

●
●●

●●

●

●● ● ●●
●

●●

●
●

●
●●

●●
● ●●●● ●●● ●●●
●● ●●

● ●
●●

●●
●

● ● ●●● ●●●
●●●●●● ●●●●

●
●●●

●●
●●●●

●
●● ●●●●●● ●●● ●

●
●●● ●

●

●
●●●●

●●●●
●●

●

●
●●

●
●

●

● ●●●●●●

●

●
●

● ●●
●

●●

●

●●●● ●

●

●● ●
● ●

●
●●
●●

●●●

●

●
●●● ●●●

● ●●
●●●

●●●●
●●

●
●
●

●

●●●● ●●●●●

●

●●●●● ●●
●●●●●● ●

●

●

●●●●●●●

●

●
●● ●●●
●

●

●●●●●

●

●● ●● ●●

● ●

●●
●

●●●●●●●
● ●●

●

●
●●●●

●

●●● ●●●●●●●●●● ●●● ●●●
●●●● ●●●●●●●● ●●●●

●
●● ●● ●●
● ●●●●
●
●●●●●●● ●

●

●●●● ●●●
●

●

●
●●●● ●

●

●●●●

●

●●●
●

●
●

●
●

● ●● ●
●
●● ●

●●●
●

●

●●● ●● ●●●●
●
●
●●●
●

●
●
●●

●

● ●●
●●● ●●●●● ●●● ●

●
●●●●

●

●●● ●●
● ●●●● ●●●●●●● ●●●●●

●
●●●●

●

● ●●●●●●
● ●●

●

●●●●●●

●
●●●●● ●●●

●●●● ●
●

● ●●●●● ● ●●●● ●
●

●
●●●●●●
●● ●●●
●●●

●
●●●●●●●

●

●
●

●●●●●●●●●●
● ● ●●●●●●
●

●● ●●●●●
●
●●

●
●●●

●
●●●●●●
●

●●

●

●●●●
●

●

●● ●
●

●●●●● ●●

●

●●●● ●●●

●

●● ●●

●

●
●

●●●●
● ●

●●
●

●
●● ●●

●●●
●●●●
●● ●● ●
●
●

●● ●●●● ●● ●●●
●

●
●

● ●
●●

●●
●

●

●
● ●●●●●●●●●

●

●● ●●●

●

●

●
●●

●

●●●●●●

●

●●●●●●●
●

●●●● ●●●

●

●●

●

●● ●

●

●● ● ●●●●●
●

●
●

●
●
●●

●

●
●●●●

●

●●●● ●●●●
● ●
●●●● ●

●

●

●
● ●
●●
●●

●

●●
●

●
●

● ●●

●

●● ●●●●●● ●●●●

●

●●●●●●
●

●
●

●
● ●●

● ●●● ●●●● ●●● ●●●●● ●
●

●
●
●●● ● ●

●
●

●
●●●●●●

●

●
● ●● ● ●● ●●

●
●●●●● ●

●

●
●●

●

● ●
●● ●

●
● ●●●
●

●
●●

●●
●●●● ●

●

●

●
●●

●●● ● ●●
●●

●●●● ● ●●● ●●

●

● ●●●●

●

●●●
●●
●●●● ●

●

●●●
●

● ●●● ●
●

●
●

●

●

●

●

●

●
●● ●● ●

●
● ●

●● ●●●

●

●

●

●●●●

●

●●●● ●●
●●●●●●

●
●

●

●●●●
●
●●

●
●●●
●

●
●

●●●● ●●●●●●●
●●

●
●●

●

●●●●●

●

●
●● ●

●
●●●
●

●

●●●●

●
●● ●●●

●

●

●

●
●●

●
●●●● ●●●● ●

●
●●

●
● ●●●●● ●●● ● ●

●

●

●● ●●●

●

●●●●●●
●●●●●● ●●●●●● ●●●● ●

●
●●

●●

●●●

●

●● ●●●● ●●●

●

●●

●

●
●

●●●●

●

● ●●
●●●
●●
●● ●●●
●

●
●
●● ●●● ●

●

●

●●●
●

●●
●

●●
●

●●●●●●

●

●●●●
●

●

●

●
●● ●●

●
●
● ●

●●● ●
●●●●●●●●●●

●● ●●●●●
●

●

●
●

●
●●

●●● ●
●●●● ●●●●●●● ●●●●●

●
●

●
●●●

●

●●

●

●●● ●●

●

●●●● ●●● ●
●

●

●● ● ●●●●● ●

●

●● ●●●●● ●●

●

●●
●

●●● ●●●●●●●●●●

−
4

0
2

4
6

8

●

●

●

●●●●
●●
●

●

●●●
●

●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●
●
●

●
●
●

●

●

●
●●

●

●●

●

●

●

●●
●
●

●
●

●
●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●
●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●●

●

●●●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●●

●

●

●
●

●

●

●●

● ●●

●

●
●
●●●
● ●
●
●● ●●●●
●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●●●●

●

● ●

●

●●●
●

●

●
●●

●●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●
● ●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●
●● ●

●

●
●
●●

●

●

●
●

●
●●

●

●

●

●

●
●
●●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●
●
●
●

●

●

●●

●●
●●●●

●

●

●●
●

●
●

●●●●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●
●
●
●
●

●●

●

●

●
●
●●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●●●

●
●

●●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●
● ●●
●

●

●

●

●
●
●

●

●

●
● ●
●●

●

●

●

● ●
●●
●●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

●
●●

●
●●●●

●

●
●●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●
●
●
●
●
●●●

●

●●●
●●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●●●
●●
●

●

●

●●●

●

●●

●

●●

●

●
●●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●
●

●

●

●●
●
●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●●●
●

●

●
●●

●
●
●

●

●

●
●
●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●●
●

●

●

●

●●

●●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
●●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●
●

●

●
●
●
●
●

●

●

●
●●

●

●●
●

●

●
●

●

●

●

●●●

●
●

●
●●

●

●●

●
●

●

●
●●●●

●● ●●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●
●
●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●●
●
●

●
●●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●● ●●
●
●
●

●

●
●
●

●
●

●

●

●

●

●

●
●

●●●

●
●

●
●

●●●
●

●●
●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●
●
●

●

●

●

● ●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●●

●
●

●●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●●
●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●●●●

●●

●

●●

●

●

●●

●

●

●●●●

●

●
●

●●

●

●●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●
●
●●
●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●●
●

●

●●

●

● ●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●●

●

●
●

●

● ●

●●

●

●

●

●
●
●●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●●●●

●
●
●

●●

●
●
●

●●
●

●

●

●●
●●●

●

●●

●

●
●
●

●

●

●

●

●

●

●● ●
●
●

●

●

●

●

● ●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●●
●

●
●

●

●

●

●●●

●

●●
●

●●

●

●

●

●

●
●●

●

●
●●
●●●

●

●
●
●
●

●●●

●●●
●

●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●●

●

●

●●
●
●

●

●

● ●
●

● ●●

●●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●●
● ●●

●

●

●

●

●
●
●
●

●

●
●●

●

●
●

●
●●
●

●

●
●
●
●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

Comp.2
●

●

●

●●●●
●●
●

●

● ●●
●

●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●
●
●

●
●
●

●

●

●
●●

●

●●

●

●

●

●●
●

●

●
●

●
● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●●

●

●●●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●●
●

●

●

●

●●

●

●

●
●

●

●

●●

●●
●

●

●
●

●● ●
●●

●
●●●●●●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●●● ●

●

●●

●

●●●
●

●

●
●●

● ●

●

● ●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●●

●

●

●
●

●
●●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●
●

●
●

●

●

●●

●●
●● ●●

●

●

● ●
●

●
●

●●●●

●

●

●

●

●

●
●
●

● ●
●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●
●

● ●●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●
●●●

●
●

●●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●
●● ●
●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●●
●●
●●

●
●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

● ●
●

●

●

●

●

●

●
●

●
●●

●
● ●●●

●

●
●●

●

●

●●
●

●

●
●

●

●

●

●●

●

●
●
●

●

●
●

●
●

●
●

●● ●

●

●●●
●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●●●
●●

●

●

●

●●●

●

●●

●

●●

●

●
●●
● ●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
● ●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
● ●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●
●

●

●
●
●
●

●

●

●

●
●●

●

●●
●

●

●
●

●

●

●

●●●

●
●

●
●●

●

●●

●
●

●

●
●●●●

●●● ●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●
●

●● ●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●

●
●
●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●●

●
●

● ●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●
●

●

●
●

●●

●

●
●
●
●

●

●

●

● ●
●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●●●●

●●

●

●●

●

●

●●

●

●

● ●●●

●

●
●

● ●

●

●●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

● ●●
●

●

●●

●

●● ●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
● ●

●
●

●

●

●
●

●●

●

●
●

●

●●

●●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

● ●
●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

● ●●●

●
●

●

●●

●
●

●

●●
●

●

●

● ●
●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●●
●

●
●

●

●

●

●●●

●

●●
●

●●

●

●

●

●

●
●●

●

●
●●

● ●●

●

●
●
●

●
●●●

●●●
●

●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

● ●
●

●

●
●

● ●●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●●●

●

●

● ●
●

●

●

●

●●
●

●●●

● ●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

● ●
●● ●

●

●

●

●

●
●
●
●

●

●
●●

●

●
●

●
●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●●

●

●

● ●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●●●
●●
●

●

● ●●
●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●
●●

●

●●

●

●

●

● ●
●

●

●
●

●
●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
● ●●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●●

●

●●●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●
● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●
●

●

●
●
●●●
● ●
●
●●●●● ●
●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●● ●●

●

● ●

●

●●●
●

●

●
●●

● ●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●
●
●

●
●

●

●

●
●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●
●●●

●

●
●
●●

●

●

●
●

●
●●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●

●

●

●●

●●
● ●●●

●

●

●●
●

●
●

●●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●
●
●

● ●

●

●

●
●

●●●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●
●●●

●
●

●●

●

●

●
●

● ●

●

●
●

●
●

●

●
●
●
●●●

●

●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●

●●
●●

●●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●
●●

●
●● ●●
●

●
● ●

●

●

●●
●

●

●
●

●

●

●

●●

●

●
●
●

●

●
●
●

●
●

●
●●●

●

●●●
●●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●●

●

●

●
●

● ●

●

●

●

●

●●●
●●

●

●

●

●●●

●

●●

●

●●

●

●
●●
●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●
●
●

●

●

●●
●
●

●

●

●

●

●

●
● ●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●
●

●

●

●●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●●
●

●

●

●
● ●

●
●
●

●

●

●
●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●●
●

●

●

●

●●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
●●

●

●

●

●

●

●
●

●

●●

●
●

●
●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●●

●

●●
●

●

●
●

●

●

●

●●●

●
●

●
●●

●

●●

●
●

●

●
●● ●●

●●
●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

● ●
●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●●

●
●

●
●●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●●●
●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●●●
●

●●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●
●
●

●

●

●

● ●

●

●

●
●●

●

●●

●

●

●

●

● ●

●

●●

●
●

●●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

● ●
●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●●●●

●●

●

●●

●

●

●●

●

●

●●●●

●

●
●

● ●

●

●●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●

●
●●
●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

● ●●
●

●

● ●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●
●●

●

●
●

●

●●

● ●

●

●

●

●
●

●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●●●●

●
●

●

●●

●
●

●

●●
●

●

●

●●
●●●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●
●

●

●

●

●

●●●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●●
●

●
●

●

●

●

●●●

●

● ●
●

● ●

●

●

●

●

●
●●

●

●
●●

●●●

●

●
●

●
●

●● ●

●●●
●

●

●
●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●●

●

●

●●
●

●

●

●

●●
●

●●●

●●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●●
● ●●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●
●●
●

●

●
●
●
●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●●●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●●●●
●
●
●●

●
●●

●
●●

●

●

●

●

●
●●
●

●
●

●●
●●●
●
●
●●●●

●
●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
● ●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●
●
●

●

●
●
●●

●

●●●● ● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●
●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●●●●

● ●
●
●●●

●●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●●●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●
●●●

●

●
●

●●

●

●

●

●
●
●●
●

●

●
●
●●

●

●
●●

●●

●

●

● ●●●
●
●●●
●
●

●
●●●●
●

●

●●
●
● ●
●
●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

● ●
●

●●●● ●●
●

●●
●
●

●●

●

●●●
●●

●●

●● ●
●
●

●

●●●
●
●●

●●

●

●

●●

●

●

●

●

●

●
●
●
●●●
●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●●●

●●
●

●●

●

●

●●● ●

●
●
●

●

●

●
●
●

●
●
●

●

●

●●
●
●

●

●

●●

●
●

●

●
●

●●
●

●

● ●
●

●

●

●
●
●

●●
●
●

●●

●

●

●●
●

●
● ●●●
●

●
●●

●
●

●

●

●

●
●●●●

●●

●

●
●
●
●
●
●

●

●

●

●

●
●

●● ●

●
●
●
●
●

●●
●●●●
●
●

●●

●

●

●
●

●

●

●

●
●

●●●

●

●●●
●

●
●● ●●●●
●

●

●●

●

●

●

●
●

●●●
●●
●●●

●

●●

●

●●
●

●
●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●
●●
●●●●

●

●●

●

●
●
●

●

●
●
● ●●

●
●

●

●

●

●

●●
●

●

●
●●
●●
● ●

●

●●

●

●

●
●

●
●●

●
●●

●
●

●
● ●

●

●●●●●
●●

●●

●

●
●●●
●
●●

●

● ●●●●

●

●

●
●

●
●
●

●
●

●
●

●

●

●●
●●●●
●

●

●●
●

●
●
●

●

●

●
●●

●
●
●
●

●●●
●

●

●

●
●

●●
●

●
●
●●

●

●

●
●
●

●
●

●

●
●

●

●

●
●

●●
●●●●
●

●

●

●
●●●

●
●
●●
●●

●●
●

●●●
●●

●
●
●

●

●
●
●
●
●

●

●
●

●
●

●●
●

●

●

●●●●●
●

●

●●
●●●
●
●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●●● ●

●

●●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●●
●

●

●
●●●

●

●
●●●

●

●
●

●●●●●

●

●
●

●

●

●
●

●

●●●
●●●
●
●●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●
●● ●
●
●

●

●

●
●

●
●

●●
●
●●●

●

●
●●●

●

●

●

●

●

●

●
●● ●

●●

●
●
●
●●
●

●

●
●●

●

●●
●

●

●
●

●●

●
●●

●
●
●●
●
●
●
●

●●

●●●

●
●

●

●

●

●
●

●
●

●

●

●●
●●
●

●●●

●

●●

●

●

●

●● ●●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●●
●
●
●

●●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●●
●
●●

●

●

●

●
●

●●●
●●●●●●
●

●

●
●
●
●

●●●●

●

●

●
●

●
●
●●

●
●
●●

●
●
●●

●

●●
●
●
●
●
●●

●
●

●

●●
●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●●●
●
●

●
●

●
●
●●

●

●

●●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●●
●
●
●●●
●
●●

●

●
●
●
●●

●

●●

●●

●

●
●●●●
●
●●
●●
●●●
●

●

●
● ●
●●●
●

●
●●
●

●

●●●
●
●

● ●●
●●
●

●●

●
●

●

●

●●
●
●●

●
●
●●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●
●

●

●

●

●

●

●
●●

●

●●●●

●

●● ●

●

●

●●
●
●

●

●
●

●

●

●●●●●
●

●●

●

●●●
●
●
●
●
●

●

●●
●

●●

●

●

●

●
●
●
●
●●

●

●

●●●●

●

●

●

●●

●

●

●●●
●●

●●
●

●

●●
●

●

●

●
●

●●
●●

●

●
●●

●

●

●●●
●
●●

●

●
●●●●

●
●
●

●

●

●●●
●

●

●

●

●

●●●●●●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●●
●●
●●

●
●

●●
●

●

●

●

●
●

●●
●

●●●
●

●● ●●●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●●
●

●●

●

●

●

●

●●●

●

●

●●●●
●●

●

●●●●●●●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●
●

●
●
●
●

●

●
●

●

●

●
●●●

●
●●

●

●●

●

●

●
●

●●

●

●

●●●
●●●●

●●●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●
●
●
●
●

● ●

●

●●

●

●

●

●
●
●

●

●●●

●●

●
●

●
●
● ●

●●
●
●
●

●
●

●

●●●●

●

●

●

●●

●●
●● ●

●

●

●

●

●
●

●

●
●
●

●●
●
●
●●

●

●

●

●
●
●

●●

●

●●
● ●

●

●●
●
●●●

●
●
● ●

●
●
●

●●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●
●●● ●●●
●
●

●
●

●

●
●

●

●
● ●
●

●

●
●

●
●
●

●
● ●●
●
●

●
●●

●

●

●
●

●

●●

●

●
●●
●
●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●●●
●●●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●●●●
●
●
●
●●●

●

●

●
●

●
●●

●

●

●
●●

●●

●

●
●
●
●

●●
●

●
●●

●

●

●
●

●
●

●●
●

●

●

●●●
●

●
●
●

●

●
●●●

●

●
●

●
●

●
●

●

●
●●●

●●●
●

●

●

●

●●

●●
●

●

●●

●

●●

●

●●
●●
● ●

●
●
●

●
●
●

●
●

●
●●●

●
●●● ●●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●●●
●
●
●

●
●●●●

●

●●
●

●

●
●

●

●
●

●●●●●●●●
●●

●

●●

●

●●
●

●
●●

●

●

●

●

●

●
●● ●●● ●

●

●

●

●

●
●●

●●
●

●
●
●

●
●

●
●
●
●
●

●
●
●

●

●

●
●●

●

●

●

●

●

●

● ●●●

●●

●
●
●●●

●●
●
●

●

●
●

●●

●

●●●●
●
●

● ●

●
●●

●
●●

●

●

●

●

●
●●

●

●
●

●●
●● ●

●
●

●●● ●

●
●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●
●
●

●

●
●

●●

●

● ●●
● ●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

● ●
●

● ●●
●● ●

●
●

●

●

●

●●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●●●

●

●
●

● ●

●

●

●

●
●

●●
●

●

●
●

●●

●

●
● ●

●●

●

●

● ●●●
●

●●●
●

●

●
●●●●

●

●

● ●
●

● ●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●●●●●●
●

●●
●
●

● ●

●

●●●
●●●●

●●●
●

●

●

●● ●
●
●●

● ●

●

●

●●

●

●

●

●

●

●
●

●
● ●●

●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

● ●●

●●
●

●●

●

●

●● ●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●
●
● ●
●

●

● ●
●

●

●

●
●

●

●●
●
●

●●

●

●

●●●

●
●● ●●

●
●

● ●

●
●

●

●

●

●
● ●●●

●●

●

●
●

●
●
●
●
●

●

●

●

●
●

●●●

●
●
●
●

●

● ●
●● ●●

●
●

●●

●

●

●
●

●

●

●

●
●

●●●

●

●● ●
●

●
●● ●●●●
●

●

●●

●

●

●

●
●

●●●
●●

● ●●

●

●●

●

●●
●

●
●

●

●
● ●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●●●●●
●

●

●●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

● ●
●

●

●
●●

● ●
● ●

●

●●

●

●

●
●

●
●●

●
●●

●
●

●
●●

●

●●● ●●
● ●

● ●

●

●
●●●

●
● ●

●

●●● ●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●
●● ●●

●

●

●●
●

●
●

●

●

●

●
●●

●
●

●
●

●● ●
●

●

●

●
●
●●
●

●
●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●●●● ●
●

●

●

●
●●●

●
●

●●
●●

● ●
●

●●●
●●

●
●

●
●

●
●
●

●
●

●

●
●

●
●

● ●
●

●

●

●●●●●
●

●

● ●
●●●
●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●●● ●

●

●●

●

●●

●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●
●●●

●

●
● ●●

●

●
●

● ●●
●●

●

●
●

●

●

●
●

●

●●●
● ●●

●
● ●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●
● ●●
●

●

●

●

●
●

●
●

●●
●

● ● ●

●

●
● ● ●

●

●

●

●

●

●

●
●●●

●●

●
●

●
●●

●

●

●
●●

●

● ●
●

●

●
●

●●

●
● ●

●
●

● ●
●

●
●

●
●●

● ●●

●
●

●

●

●

●
●

●
●

●

●

●●
● ●

●

● ●●

●

●●

●

●

●

●● ●●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

● ●
●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●
●

●●●
●●●● ● ●

●

●

●
●
●

●
●●● ●

●

●

●
●

●
●
●●

●
●

●●

●
●

●●

●

● ●
●

●
●
●
● ●

●
●

●

●●
●

●

●

● ●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●●●

●
●

●
●

●
●

● ●

●

●

●●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●●
●

●
●●

●
●

● ●

●

●
●

●
● ●

●

●●

● ●

●

●
● ●●●
●
●●

●●
●● ●

●

●

●
●●
●●●

●
●

●●
●

●

● ●●
●

●

● ● ●
●●

●

●●

●
●

●

●

●●
●
●●

●
●

●●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●
●●

●

● ●●
●

●

●●●

●

●

●●
●

●

●

●
●

●

●

●●● ● ●
●

●●

●

● ●●●
●

●
●

●
●

●●
●

●●

●

●

●

●
●

●
●

●●

●

●

●●● ●

●

●

●

●●

●

●

●●●
● ●

●●
●

●

● ●
●

●

●

●
●

●●
●●

●

●
● ●

●

●

●● ●
●

●●

●

●
●●● ●

●
●

●
●

●

●●●
●

●

●

●

●

● ●
●●●● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●●
●●

●●

●
●

●● ●

●

●

●

●
●

●●
●

●●
●

●

●● ●●●
●● ●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●●
●●

●

●

●

●

● ●●

●

●

●●●●
●●

●

●●
●●●●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●
●

●
●

●
●

●

●
●

●

●

●
●●●

●
●●

●

● ●

●

●

●
●

● ●

●

●

●●●
●● ●●

●●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●
●

● ●

●

● ●

●

●

●

●
●

●

●

● ●●

●●

●
●

●
●

●●

●●
●

●
●

●
●

●

● ●● ●

●

●

●

●●

●●
● ●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●
● ●

●

●

●

●
●

●

● ●

●

●●
●●

●

●●
●

●●●
●

●
● ●

●
●

●
● ●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●●●
●

●
●
●

●
●

●

●

●
●●● ●●●

●
●

●
●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●
●●● ●
●

●
●●

●

●

●
●

●

● ●

●

●
●●●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●● ●● ●

●

●

●

●

●

●

●

●
● ●●

●

●●

●

●

●

●

●

●

●●●●
●

●
●
● ●●

●

●

●
●

●
●●

●

●

●
●●

●●

●

●
●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●
●

●

●

●●●
●

●
●

●
●

●
●● ●

●

●
●

●
●

●
●

●

●
●●●

● ●●
●

●

●

●

● ●

●●
●

●

● ●

●

● ●

●

●●
● ●
● ●

●
●

●

●
●

●

●
●

●
●● ●

●
●● ●●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●● ●

●
●

●
●

● ●●●

●

● ●
●

●

●
●

●

●
●

● ●●●●● ●●
●●

●

●●

●

●●
●

●
●●

●

●

●

●

●

●
● ●●●● ●

●

●

●

●

●
●●

●●
●

●
●

●

●
●
●

●
●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

● ●● ●

●●

●
●

● ●●

●● ●
●

●

●
●

Comp.3

−
10

−
5

0
5

●●

●

●●●●
●
●
●●

●
●●

●
●●

●

●

●

●

●
●●

●

●
●

●●
●● ●

●
●
● ●●●

●
●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●
● ●

●
●

●
●

●
●

●
●

● ●

●

●●●
●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●
●

●

●

●
●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●●
●

●●●
●●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●●●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●
●●●

●

●
●

●●

●

●

●

●
●

●●
●

●

●
●

●●

●

●
●●

●●

●

●

● ●●●
●
●●●
●

●

●
●●●●

●

●

●●
●

● ●
●
●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●●●●●●
●

●●
●
●

●●

●

●●●
●●

● ●

●●●
●

●

●

●● ●
●
●●

●●

●

●

● ●

●

●

●

●

●

●
●
●
●●●
●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●●●

●●
●

●●

●

●

●●● ●

●
●
●

●

●

●
●
●
●
●

●
●

●

●●
●
●

●

●

● ●

●
●

●

●
●
●●

●

●

●●
●

●

●

●
●
●

●●
●
●

●●

●

●

●●●

●
●●●●

●
●

●●

●
●

●

●

●

●
●●●●

● ●

●

●
●

●
●

●
●
●

●

●

●

●
●
●● ●

●
●

●
●
●

●●
●●●●

●
●
●●

●

●

●
●

●

●

●

●
●

●● ●

●

●●●
●

●
●● ●●●●

●

●

●●

●

●

●

●
●
●●●
●●
●●●

●

●●

●

● ●
●

●
●

●

●
● ●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●●
●●●

●

●

●●

●

●
●

●

●

●
●

●● ●

●
●

●

●

●

●

●●
●

●

●
●●

● ●
● ●
●

●●

●

●

●
●

●
● ●

●
●●

●
●
●
●●

●

● ●●●●
●●

●●

●

●
●● ●

●
● ●

●

●●● ●●

●

●

●
●
●

●
●

●
●

●
●

●

●

● ●
●●●●

●

●

● ●
●

●
●

●

●

●

●
●●

●
●

●
●

● ●●
●

●

●

●
●

●●
●

●
●

● ●
●

●

●
●

●

●
●
●

●
●

●

●

●
●

●●●●● ●
●

●

●

●
●●●

●
●

●●
●●
●●

●

●●●
●●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●●
●

●

●

●●●●●
●

●

●●
●●●
●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●●●●

●

● ●

●

●●

●

●

●
●

●

●
●

●
●
●

●

●●
●

●

●
● ●●

●

●
● ●●

●

●
●

●●●●●

●

●
●

●

●

●
●

●

●●●
●● ●
●

●●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●
●

●

●

●
●

●
●

●
●●●

●
●

●

●

●
●

●
●
●●
●

●● ●

●

●
● ●●

●

●

●

●

●

●

●
●●●

●●

●
●

●
●●

●

●

●
●●

●

●●
●
●

●
●
●●

●
●●

●
●

● ●
●
●
●

●
●●

●●●

●
●
●

●

●

●
●

●
●

●

●

●●
●●

●

●●●

●

●●

●

●

●

●● ●●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●●●

●

●

●●
●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●
●

●●●
●●●●●●

●

●

●
●
●

●
●●● ●

●

●

●
●

●
●
●●

●
●

●●

●
●
●●

●

●●
●

●
●

●
●●
●
●

●

●●
●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
● ●●

●
●

●
●
●

●
● ●

●

●

●●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●●
●
●

●●●
●

●●

●

●
●
●
●●

●

●●

● ●

●

●
●●●●

●
●●
●●
●● ●

●

●

●
●●

●●●
●

●
● ●
●

●

●●●
●

●

●●●
●●
●

●●

●
●

●

●

●●
●

●●

●
●
●●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●
●

●

●

●

●

●

●
●●

●

●●●
●

●

●● ●

●

●

●●
●
●

●

●
●

●

●

●● ● ●●
●

●●

●

● ●● ●
●

●
●

●
●

●●
●

●●

●

●

●

●
●
●
●

●●

●

●

● ●●●

●

●

●

●●

●

●

●●
●

●●
●●

●

●

●●
●

●

●

●
●

●●
●●

●

●
● ●
●

●

●● ●
●
●●

●

●
● ●●●

●
●
●

●

●

●●●
●

●

●

●

●

●● ●●●● ●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●●
●●

●
●

●●
●

●

●

●

●
●

●●
●

●●●
●

●●●●●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●
●●

●

●

●

●

●●●

●

●

●●●●
●●

●

●●
●●●●● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●

●
●

●
●

●
●

●

●
●

●

●

●
●●●

●
●●

●

● ●

●

●

●
●

● ●

●

●

●●●
● ●●●

●●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●
●

●●

●

● ●

●

●

●

●
●

●

●

●●●

●●

●
●

●
●

●●

● ●
●

●
●

●
●

●

●● ●●

●

●

●

● ●

●●
● ●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●
●●

●

●

●

●
●
●

●●

●

●●
●●

●

●●
●

●●●
●

●
● ●

●
●

●
●●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●● ●
●

●
●
●

●
●

●

●

●
●●●●●●
●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●
●●●●
●

●
● ●

●

●

●
●

●

●●

●

●
●●
●
●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

● ●●●
●

●
●

●● ●

●

●

●
●

●
●●

●

●

●
●●

●●

●

●
●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●
●

●

●

●●●
●
●

●
●

●

●
●● ●

●

●
●

●
●

●
●

●

●
●●●
● ● ●

●

●

●

●

●●

●●
●

●

● ●

●

●●

●

●●
● ●
● ●

●
●

●

●
●

●

●
●

●
●●●

●
●●●●●
●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●
●
●●●●

●

●●
●

●

●
●

●

●
●

●●●●● ●●
●

●●

●

●●

●

●●
●

●
●●

●

●

●

●

●

●
●●●●● ●

●

●

●

●

●
● ●

●●
●

●
●

●

●
●

●
●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

● ●●●

●●

●
●

●●●

●●●
●

●

●
●

0 10 20 30

−
5

0
5

●●

●

●●●●●●●
●

●

●●

●

●●●●

●

●

●

●●

●
●●
●
●

●

●

●

●●●

●●

●

●
●

●

●
●●

●
●
●
●●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●
●●●

● ●

●

●
●

●

●

●
●

●
●
●●

●
●

●●

●

●
●

●
●●●
●●

●

●
●

●
●●
●●
●

●

● ●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●●●
●
●

●

●
●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●

●●●●
●
● ●
●

●

●●

●

●

●

●
●
●
●
●

●●

●

●

●
●●

●
●

●●

●

●
●●●
●

●

●

●

●

●
●

●
● ●●
●●

●

●●
●

●
●
●

●●

●●

●

●●●●●
●

●●●
●●

●
●
●●●
●

●●●●●

●

●●

●

●

●

●
●
●●

●
●●

●

●
● ●●

●
●

●
● ●

●●
●●●●●●

●

●●●
●

●●

●
●● ●

●

●

●●
●

●
●●●●

●
●●●

●

●
●
●

●

●●

●●●
●●
●●●

● ●●
●

●
●

●

●●
●

●

●

●

●

●
●
●

●

●

● ●

●
● ●
●
●●●●

●●

●

●●

●

●

●

●

●

●
●●●

●● ●
●● ●●

●

●

●

●●●●●

●

●

●

●

●
●

●

● ●
●●

●
●

●

●
●
●
●

●●
●●●●●
●

●
●

●●●●
●

●
●●

● ●

●

●●●●
●

●

●●●
●●

●

●

●

●●
●

●

●●●
●

●

●

●
● ●

●

●
●

●
●●●●

●
●●
●
●
●
●●

●●

●

●
●

●
●
●
●

●

●

●

●

●
●●●●●●

●

●
●
●●

●
●

●●
●

●
●
●● ●●●
●
●
●

●●

●

●●

●

●

●
●

●●

●
●

●

●●●●

●

●●●

●

●

●

●●

●

●
●
●

●

●
●

●●
●●●●

●

●
●
●●●●
●●●●
●●●

●

●●

●

●

●

●
●

●

●

●

●
● ●●

●

●●●

● ●

●●
●

●

●

●

●

●●

●● ●●
●

●

●
●●
●

●●●●
●●●

●●

●●

●

●

●

●●
●●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●●

●
●

●

●

●●●●

● ●
●

●
●●

●
●

●●

●

●

●

●●●●●
●●●●
●
●

● ●

●●●
●
● ●●
●

●
●

●

●
●
●
●●
●●

●

●●

●

●
●
●●●●
●
●●●●

●

●

●

●●
●
●

●

●
●●

●

●
●

●●
●

●

●●
●

●

●
●

●●●
●●●

●

●
●

●●●●

●

●●
●●●●●

●● ●
●
●

●

●
●

●

●

●
●

●

●
●●
●

●

●
●●

●●
●

●

●

●

●

●●
●●

●●

●

●● ●●●

●

●
●
●

●

●●
●●●
●●

●
●

●

●
●
●●●
●

●

●

●

●

●

●●●

●

●
●●●●

●
●
●
●●
●●●

●
●●

●●●

●

●●

●

●●●
●

●

●
●●

●●

●●●

● ●
●

●
●●
●

●●
●●

●

● ●●●
●

●●

●

●

●
●●●●
●

●●

●

●

●
●●●
● ●●●
●●

●

●

●

●
●●

● ●●●●

●●●●

●

●●
●
●

●

●
●
●

●

●
●●

●

●
●●

●
●● ●●● ●

●
●●

●

●
●
●●●

●

●●
●●

●

●●●●
●
●
●
●

●
●

●●●
●●
●
●●

●

●
●

●

●●●●

●

●
●
●
●●

●

●●

●

●
●
●

●

●

●●
●

●
●
●●
●
●●

●

●●

●

●

●

●●

●

●●●
●

●

●
●
●
●
●●

●
●
●

●●

●

●●
●

●

●●●
●
●●●
●●●●

●

●●
● ●●
●

●

●

●

●
●

●
●●●●●
●
●
●
●●
●

●

●●●●●

●

●●●
●●●●

●
●

●

●

●
●●
● ●
●

●
●●
●●

●
●

●

●

●

●
●●

●

●●●
●

●
●●●●

●
●

●

●
●●

● ●●
●
●

● ●●●●
●

●

●
●●●●
●●●●
●

●
●●

●

●
●●●
●

●
●

●●

●

●

●

●●●

●

●
●
●

●●●●
●
●●

●● ●
●
●●●

●

●

●
●●●●●
●

●

● ●●

●
●
●

●●

●
●

●●●
●
●
●●

●
●●●

●

●

●

●●
●

●
●

●

●
●●

●

●

●

●
●●●

●●●

●
●

●

●
●
●●
●

●

●

●
●
●

●●●

●

●

●

●●●●
●●
●

●
●

●●
●

●●
●
●
●●●

●

●
●●
●
●
●●●●
●

●●●

●

●
●●●●
●●
●● ●
●
●●

●

●

●

●●

●

●
●

●●
●●

●●
●●

●

●
●

●

●●
●

●

●

●●

●

● ●

●

●●●

●
●●●●

●
●●

●
●●

●●●●●
●●●

●

●

●

●●
●●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●
●●●
●
●●

●●

●
●●

●
●●

●

●

●
●
●

●
●●
●
●
●

● ●●●
●●●●
●

●●●●●

●

●
●

●

●● ●
●

●

●

●

●
●

●
●

●●
●
●
●

●

●

●

●●●

●

●
●●●●

●
●
●●●
●
●●●

●
●●

●●
●

●

●
●

●●

●

●
●●

●
●

●●●

●

●

●

●

●

●
●
●

●

●●
●●

●

●

●●●

●

●●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●

●

●

●●
●●

●
●

● ●●
●●

●

●

●

●

●●●
●
●●
●

●
●

●
●

●

●

●●
●
●●

●
●
●●

●

●

●
●

●

● ●●

●

●
●
●

●●

●

●●
●

●

●

●

●

●

●

●
●●

●
●

● ●●●

●

●

●

●

●

●

●

●
●●●●

●
●

●
●
●●

●

●

●

●●● ●●●●●●
●●●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●

●
● ●●

●●

●

●●
●

●

●

●

●●●● ●
●
●●●

●

●

●
●●

●●●

●

●

●
●●
●●
●●

● ●●●●●

●

●

●●
●●

●

●●●●●
●●●

●
●
●

●

●
●●●

●

●
●●

●
●

●

●●

●

●
●

●●
●
● ●

●●
●
●
●

●

●

●
●

●

●
●

●

●
●
●

●

●●

●

● ●
●●

●

●

●

●●●●

●

●●
●

●

●

●

●

●

●
●●

●

●●
●
●
●●●●●
●

●
●

●

●●
●●

●

●
●

●
●

●

●●●

●

●
●

●
● ●
●

●

●

●●
●

●
●● ●●●

●

●
●

●●●● ●
●
●

●
●●●●●●●
●

●●
●

●
●●●

●

●●
●

●

●

●●●●

●

●
●●

●
●●●●●●

● ●●●●●
●

● ●
●

●

●

●

●

●

● ●

●●
●

●
●●
●

●●●●●●●
●
●

●

●

●
●●●●

●

●

●

●

●●
●●
●

●●●
●●

●

●●●●●●

●

●
●●
●

●
●

●●●
● ●
●
●

●●●●

●
●

●
●
●

●●

●

●

●

●
●

●

●●
●

●

●●
●

●

● ●
●●

●●
●

●●
●
●

●

●
●

●
●

●●

●●
●●●●●●
●
● ●●

●

●●●●●●● ●

●

●●

●

●●●●

●

●

●

●●

●
●●●

●
●

●

●

●●●

●●

●

●
●

●

●
●●
●

●
●

● ●

●

●

●

●

●

●

● ●

●●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●●●

●

●

●

●
● ● ●

●●

●

●
●
●

●

●
●
●

●
●●

●
●

●●

●

●
●

●
● ●●

● ●

●

●
●

●
● ●
● ●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●● ●

●
●

●

●
●

●

●

●
●

●
● ●

●
●
●

●
●
●

●

●

●

●● ●●
●
●●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●
● ●

●
●

●●

●

●
● ● ●
●

●

●

●

●

●
●

●
●● ●

●●

●

●●
●

●
●

●

●●

●●

●

●●●● ●
●

●●●
●●

●
●

● ●●
●

●●● ●
●

●

●●

●

●

●

●
●

●●
●

●●

●

●
●●●

●
●

●
●●

● ●
●●●●● ●

●

●●●
●
●●

●
●●

●

●

●

●●
●

●
●●● ●

●
●●●

●

●
●

●

●

●●

●●●
●●

●● ●

●● ●
●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●
●●

●
●● ●●

●●

●

●●

●

●

●

●

●

●
●●●

● ●●
●●●●

●

●

●

●● ●●●

●

●

●

●

●
●

●

●● ●●

●
●

●

●
●

●
●

● ●
●●●● ●

●
●

●
●●

● ●
●
●

●●
●●

●

●●●● ●

●

●● ●
●●

●

●

●

● ●
●

●

●●●
●

●

●

●
●●

●

●
●

●
●●● ● ●

●●
●

●
●

●●
● ●

●

●
●

●
●

●
●

●

●

●

●

●
●● ●●●●

●

●
●

●●

●
●

●●
●

●
●
● ●●●●

●
●

●
●●

●

●●

●

●

●
●

●●

●
●

●

●● ●●

●

●●●

●

●

●

●●

●

●
●
●

●

●
●

● ●
●●● ●

●

●
●

● ●
●●

●●●●
●●●

●

●●

●

●

●

●
●

●

●

●

●
●●●

●

● ●●

●●

●●
●

●

●

●

●

●●

● ●●● ●
●

●
●●

●
● ● ●●
●● ●

●●

●●

●

●

●

●●
●●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
● ●

●
●

●

●

● ●● ●

●●
●

●
●●

●
●

●●

●

●

●

●●● ●●
●●
●●

●
●

●●

●●●
●

● ●●
●

●
●

●

●
●

●
●●

●●

●

●●

●

●
●
●●● ●

●
● ●● ●

●

●

●

●●
●
●

●

●
●●

●

●
●

●●
●

●

●●
●

●

●
●

● ●●
●●●

●

●
●

● ●●●

●

●●
● ●● ●●

●●●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●● ●●●●

●

●●●●●

●

●
●

●

●

●●
●● ●

●●
●

●
●

●
●

● ●●
●
●

●

●

●

●

●●●

●

●
●●● ●

●
●

●
●●

●● ●
●

● ●
●●●

●

●●

●

●●●
●

●

●
●●

●●

●● ●

●●
●

●
●●

●
●●

● ●

●

●●●●
●

● ●

●

●

●
● ●●●

●
●●

●

●

●
●●●

● ●●●
● ●

●

●

●

●
● ●

●● ●●●

●●●●

●

●●
●

●

●

●
●

●

●

●
●●

●

●
● ● ●

●●●● ●●
●

● ●

●

●
●

● ●
●

●

●●
●●

●

●●●●
●

●
●

●

●
●

●●●
●●

●
●●

●

●
●

●

●●
●●

●

●
●

●
●●

●

●●

●

●
●

●

●

●

●●
●

●
●
● ●
●

● ●

●

● ●

●

●

●

●●

●

●●●
●

●

●
●

●
●

●●
●

●
●

●●

●

●●
●

●

●●
●

●
●●●

● ●● ●

●

●●
●●●

●

●

●

●

●
●

●
●●●

●●
●

●
●

● ●
●

●

● ●●●●

●

● ●●
●●●●

●
●

●

●

●
●●

●●
●

●
●●

● ●
●

●

●

●

●

●
● ●

●

●● ●
●

●
● ●●●

●
●

●

●
●●

●● ●
●

●
●●● ●●

●

●

●
●●●●

●● ●●
●

●
● ●

●

●
●●● ●

●
●
●●

●

●

●

● ●●

●

●
●
●

●● ●●
●

●●

●●●
●

●●●

●

●

●
●●● ●●

●

●

● ● ●

●
●

●
●●

●
●

●●●
●

●
●●

●
● ●
●

●

●

●

●●
●

●
●

●

●
●●

●

●

●

●
●● ●

●●●

●
●

●

●
●

●●
●

●

●

●
●

●
● ●●

●

●

●

●●●●
●●

●
●

●

●●
●

● ●
●

●
●●●

●

●
● ●
●
●

●● ●●
●

●●●

●

●
●● ● ●

●●
●●●

●
● ●

●

●

●

●●

●

●
●
●●

● ●

●●
● ●

●

●
●

●

●●
●

●

●

●●

●

●●

●

● ●●

●
● ●●●

●
●●

●
● ●

●●●●●
●●●

●

●

●

● ●
● ●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●
● ●● ●

● ●
●●

●
●●
●

●●

●

●

●
●
●

●
●●
●

●
●
● ●●●

●● ●●
●

●●●●●

●

●
●

●

● ●●
●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

● ●●

●

●
●●●●

●
●

●●
●

●
●●●

●
● ●

●●
●

●

●
●

● ●

●

●
● ●

●
●

●● ●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●●●

●

●●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●

●

●

●●
●●

●
●

●●●●●

●

●

●

●

● ●●
●

●●
●

●
●

●
●

●

●

●●
●

● ●
●

●
●●●

●

●
●

●

●●●

●

●
●

●
●●

●

● ●
●

●

●

●

●

●

●

●
●●

●
●

●●●●

●

●

●

●

●

●

●

●
●●● ●

●
●

●
●

●●

●

●

●

●●
●

● ●●● ●●
●●●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●

●
●●●

●●

●

●●
●

●

●

●

●●●● ●
●
● ●●

●

●

●
● ●

●● ●

●

●

●
●● ● ●

● ●
●●● ●●●

●

●

● ●
●●

●

● ●
●● ●●●●

●
●

●

●

●
●●●

●

●
● ●

●
●

●

●●

●

●
●

● ● ●
●●

●●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●
● ●

●

●

●

●● ●●

●

● ●
●

●

●

●

●

●

●
● ●

●

●●
●
●
●● ●●●

●
●
●

●

●●●
●

●

●
●

●
●

●

● ● ●

●

●
●

●
● ●
●

●

●

●●
●

●
●●●●●

●

●
●

●●●● ●
●

●

●
●● ●● ●●●

●

●●
●

●
● ●●

●

●●
●

●

●

●●
● ●

●

●
● ●

●
●● ●●●●

●●●● ●●
●

●●
●

●

●

●

●

●

●●

● ●
●

●
●●
●

● ● ●●
● ●● ●
●

●

●

●
●●●●

●

●

●

●

● ●
●●

●

● ●●
●●

●

●●●●● ●

●

●
● ●

●
●

●
●● ● ●●

●
●

●●● ●

●
●

●
●

●

●●

●

●

●

●
●

●

●●
●

●

●●
●

●

●●
● ●

●●
●

●●
●

●

●

●
●

●
●

●●

● ●
● ●
● ●●●

●
●

−10 −5 0 5

●●

●

●●●●●● ●●

●

●●

●

●●●●

●

●

●

●●

●
● ●●
●

●

●

●

● ●●

●●

●

●
●

●

●
●●

●
●

●
● ●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●●●
●

●

●

●
● ●●

●●

●

●
●

●

●

●
●

●
●
●●

●
●

●●

●

●
●

●
●● ●

●●

●

●
●

●
●●
●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●● ●

●
●

●

●
●
●

●

●
●

●
●●

●
●
●

●
●

●

●

●

●

●● ●●
●

● ●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●
●●

●
●

●●

●

●
● ●●
●

●

●

●

●

●
●

●
●●●

●●

●

●●
●

●
●

●

● ●

●●

●

●●●●●
●

●●●
●●

●
●

●● ●
●
●●●●

●

●

●●

●

●

●

●
●

●●
●

●●

●

●
●●●

●
●

●
●●
●●

●●●● ●●

●

●●●
●
●●

●
●●●

●

●

●●
●

●
●●● ●

●
● ●●

●

●
●

●

●

●●

●●●
●●
●●●

●●●
●

●
●

●

● ●
●

●

●

●

●

●
●
●

●

●

● ●

●
●●

●
●●●●

●●

●

●●

●

●

●

●

●

●
●●●

●● ●
●●●●

●

●

●

●● ●●●

●

●

●

●

●
●

●

●●
● ●

●
●

●

●
●

●
●
●●

●● ●●●
●

●
●

●●● ●
●
●
●●

●●

●

● ● ●● ●

●

●●●
●●

●

●

●

●●
●

●

●● ●
●

●

●

●
●●

●

●
●

●
●●● ●●
●●
●
●

●
●●

● ●

●

●
●

●
●

●
●

●

●

●

●

●
●●●● ●●

●

●
●
●●

●
●

●●
●

●
●

●●●●●
●
●

●
●●

●

●●

●

●

●
●

●●

●
●

●

●● ●●

●

●●●

●

●

●

●●

●

●
●

●

●

●
●

●●
●●● ●

●

●
●
●●
●●

●●●●
●●●

●

●●

●

●

●

●
●

●

●

●

●
●● ●

●

●●●

● ●

●●
●
●

●

●

●

●●

● ●●● ●
●

●
●●

●
● ●●●

●● ●

●●

●●

●

●

●

● ●
●●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●
●

●

●

●

●
●●
●

●

●

●

●● ●●

●●
●

●
●●

●
●

●●

●

●

●

●● ●
●●
●● ●●

●
●

●●

●● ●
●

●● ●
●

●
●

●

●
●

●
●●
●●

●

● ●

●

●
●
●●●●

●
●●●●

●

●

●

●●
●
●

●

●
●●

●

●
●

●●
●

●

●●
●

●

●
●

●● ●
●●●
●

●
●

●●●●

●

●●
● ●●● ●
●● ●

●
●

●

●
●

●

●

●
●

●

●
●●
●

●

●
● ●

●●
●

●

●

●

●

●● ●●●●

●

●●●● ●

●

●
●

●

●

●●
●● ●

● ●
●
●

●

●
●

●●●
●
●

●

●

●

●

●●●

●

●
●●●●

●
●

●
●●

●●●
●

●●
●●●

●

●●

●

●●●
●

●

●
●●

● ●

●● ●

●●
●

●
●●

●
●●

● ●

●

●●●●
●

● ●

●

●

●
●●● ●

●
●●

●

●

●
●● ●
●●●●
●●
●

●

●

●
●●

●● ●●●

●●●●

●

●●
●

●

●

●
●

●

●

●
●●

●

●
●●●

●● ●● ●●
●

●●

●

●
●

● ●
●

●

● ●
●●

●

● ●●●
●

●
●

●

●
●

●●●
● ●
●
●●

●

●
●

●

●●
●●

●

●
●

●
●●

●

●●

●

●
●

●

●

●

●●
●

●
●
● ●

●
●●

●

●●

●

●

●

●●

●

● ●●
●

●

●
●

●
●

●●
●
●

●

●●

●

●●
●

●

●●●
●
●●●
●●● ●

●

●●
●●●

●

●

●

●

●
●

●
●●●

●●
●

●
●

●●
●

●

●● ●●●

●

●●●
● ●●●

●
●

●

●

●
●●

●●
●

●
●●

● ●
●

●

●

●

●

●
● ●

●

●●●
●

●
●●●●
●

●

●

●
●●

●● ●
●
●

●●● ●●
●

●

●
●● ●●

●●●●
●

●
●●

●

●
●●●●

●
●
●●

●

●

●

●●●

●

●
●
●

●●●●
●

●●

●●●
●
●● ●

●

●

●
●● ●●●

●

●

●●
●

●
●

●
●●

●
●

●● ●
●

●
●●

●
●●

●

●

●

●

●●
●

●
●

●

●
●●

●

●

●

●
●● ●
●● ●

●
●

●

●
●

● ●
●

●

●

●
●

●
●●●

●

●

●

●●●●
●●

●
●

●

●●
●

●●
●

●
●● ●

●

●
● ●
●

●
●● ●●

●
●●●

●

●
●●●●

●●
● ●●

●
●●

●

●

●

●●

●

●
●
●●
●●

●●
●●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●● ●

●
●●●●

●
●●

●
●● ●●● ●●
●●●

●

●

●

●●
●●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●
● ●●●
● ●

●●

●
●●

●
●●

●

●

●
●
●

●
●●

●
●

●
●●●●

●●●●
●

●● ●
●●

●

●
●

●

● ●●
●

●

●

●

●
●

●
●

●●
●
●

●
●

●

●

●●
●

●

●
●●●●

●
●

● ●
●

●
●●●
●

●●
●●

●

●

●
●

●●

●

●
● ●
●

●
●●●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●● ●

●

●●●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●●

●
●

●

●

●●
●●

●
●

●● ●
●●

●

●

●

●

● ●●
●

●●
●
●

●

●
●

●

●

● ●
●
● ●
●

●
● ●●

●

●
●

●

●●
●

●

●
●

●
●●

●

●●
●
●

●

●

●

●

●

●
●●

●
●

● ●● ●

●

●

●

●

●

●

●

●
● ●●●

●
●

●
●

● ●

●

●

●

●●
●

● ●●●●●
●●●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●

●
●●●

●●

●

●●
●

●

●

●

●●●●●
●
● ●●

●

●

●
●●

● ●●

●

●

●
●● ●●

● ●
●●●● ●●

●

●

● ●
●●

●

●●● ●●●●●

●
●
●

●

●
● ●●

●

●
●●

●
●

●

●●

●

●
●

●● ●
●●

●●
●
●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●
●●

●

●

●

●● ●●

●

●●
●

●

●

●

●

●

●
● ●

●

●●
●

●
●● ●●●

●
●
●

●

●●●
●

●

●
●

●
●

●

●●●

●

●
●

●
●●
●

●

●

● ●
●

●
●●● ●●

●

●
●

●●●● ●
●
●

●
● ●● ●●●●

●

●●
●

●
●● ●
●

●●
●

●

●

●●
● ●

●

●
●●

●
●●● ●●●
●●●●●●

●

● ●
●

●

●

●

●

●

●●

● ●
●

●
●●

●

●●●●
●● ●●●
●

●

●
●● ●●

●

●

●

●

●●
●●
●

●●●
●●

●

●●● ●●●

●

●
●●
●

●
●

● ● ●●●
●

●

●● ● ●

●
●

●
●

●

●●

●

●

●

●
●

●

●●
●

●

●●
●

●

●●
●●

● ●
●

●●
●

●

●

●
●

●
●

● ●

●●
●●

●●● ●
●

●
Comp.4

Now replace each class by 30 cluster centers.

nk <- 30
KMX <- kmeans(X[Y==0,], nk)
KMY <- kmeans(X[Y==1,], nk)

pairs(rbind(KMX$centers,KMY$centers),
col= rep(1:2,each=nk), cex=1.5, pch=20)

And then use these as prototypes for k-NN classification.

Comp.1

−4 0 2 4 6 8

●
●●● ● ●● ●● ●
●

●

● ●
●● ●●

●

●
●●

●

●

●
●●

●●

●

●●●● ●●● ●●●● ●● ● ●
● ●●

●
● ● ●● ●●● ●●● ● ●

● ● ● ● ●●●● ●
●

●

● ●
●● ●●

●

●
●●

●

●

●
●●

●●

●

●●●●● ●●●●●●● ●●●
● ●●

●
●● ●●● ●●● ●● ●

−4 0 2 4 6

0
5

15
25

●
● ●●●●●●● ●
●

●

●●
● ●●●

●

●
● ●

●

●

●
● ●

● ●

●

● ●●●● ●● ●●●● ●●●●
●●●

●
●● ●● ●●● ●● ●●

−
4

0
2

4
6

8

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●●

●

●
●●

●
●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Comp.2
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●● ●

●

●
●●

●
●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

● ●●

●

●
● ●

●
●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● Comp.3

−
6

−
2

2
4

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
● ●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 5 15 25

−
4

0
2

4
6

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●
●

●
●●

●●

●●

●
●

●
●

●●
●
●

●
●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●●

●
●

●
●

●●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

−6 −2 2 4

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●●

●●

●
●

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
Comp.4

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks

Learning Vector Quantization

I Though K-means clustering helps to significantly reduce the memory load
of k-NN, the most obvious shortcoming of this method is that prototypes
from different classes have no say about each other’s positioning.

I Recalling the VQ learning algorithm from clustering techniques for
unsupervised learning, it is easy to extend it to tackle supervised learning
problems.

I Recall that VQ seeks to find areas of high density in high dimensional
data by strategically placing codewords (in an online or batch approach).

Consider the online version of LVQ.
1. For each of the K classes, initialise R prototypes (representative points)

to model each class distribution.
2. Sample an observation X and let Vc be the Voronoi region where it falls

with cluster center µc.
3. If the prototype is of the same class as X, move µc towards X

muc ← µc + α(t) [X − µc]

and if µc is of a different class, move it away from X

µc ← µc − α(t) [X − µc]

Repeat 2-3 many times and return the codebook.

Nearest Neighbours in High Dimensions

We have seen various ways to find nearest neighbors and the corresponding
classification is intuitive in 2, 3 and general low-dimensional problems.
The concept of a nearest neighbour is questionable, however, in high
dimensions. First, look at multi-variate normal data in p dimensions,

X ∼ N (µ,Σ).

What is the distribution of the Euclidean distance D between a random
observation X and the ‘cluster center’ µ if Σ = 1p? It is

D =

p∑
k=1

(X(k) − µ(k))2.

And D has thus a χ2
p-distribution with p degrees of freedom.

Density of distance D of observation from cluster center in p dimensions.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

p = 1

D

D
E

N
S

IT
Y

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

p = 5

D
D

E
N

S
IT

Y
0 10 20 30 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

p = 20

D

D
E

N
S

IT
Y

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

p = 100

D

D
E

N
S

IT
Y

0 500 1000 1500 2000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

p = 1000

D

D
E

N
S

IT
Y

0 5000 10000 15000 20000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

p = 10000

D
D

E
N

S
IT

Y

kNN in High Dimensional Spaces
Assume you have {Xi}n

i=1 in Rp where Xi
i.i.d.∼ f .

Proposition. If we have

lim
p→∞

Vf [d (X, x)]

Ef [d (X, x)]
2 = 0

then for any ε > 0

lim
p→∞

Pf⊗n

(∣∣∣∣max
1≤i≤n

d (Xi, x)− min
1≤i≤n

d (Xi, x)

∣∣∣∣ ≥ ε) = 0.

Loosely speaking, in high dimensional spaces, all the points are at the same
distance from the query point x so kNN is useless.
Example: Assume d (X, x) =

∑p
l=1

(
Xl − xl

)2 where xl = (µ, ..., µ) and

f (x) =
p∏

l=1
N
(
xl; 0, 1

)
then d (X, x) follows a non-central chi-squared of

variance 2p
(
1 + 2µ2

)
and mean p (1 + µ) so that lim

p→∞
Vf [d(X,x)]
Ef [d(X,x)]2

= 0..

Density of distance D̃ between two random observations in p dimensions.

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

p = 1

D

D
E

N
S

IT
Y

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

p = 5

D
D

E
N

S
IT

Y

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

p = 20

D

D
E

N
S

IT
Y

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

p = 100

D

D
E

N
S

IT
Y

0 1000 2000 3000 4000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
p = 1000

D

D
E

N
S

IT
Y

0 10000 20000 30000 40000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

p = 10000

D
D

E
N

S
IT

Y

There are no real ‘nearest neighbours’ in high dimensions. All points are
about the same distance from each other and are sitting on the shell of the
high-dimensional sphere.

Now suppose there are two groups µ1 and µ2, where for the two classes the
distributions of X = (X(1), . . . ,X(p)) are, respectively,

N (µ1,Σ) and N (µ2,Σ),

with
µ1 = (2, 0, 0, 0, . . . , 0)T and µ2 = (0, 0, 0, 0, . . . , 0)T ,

and Σ = 1p. The two groups distinguish themselves thus just in the first
component X(1).
Suppose we have n observations X1, . . . ,X2n, of which n are in class 1 and n in
class 2. What is the probability P(correct classification) that a randomly
chosen X from class 1 will have a nearest neighbor in {i : Yi = 1} rather than
in {i : Yi = 2}?

P(correct classification) = P(min
i:Yi=1

‖X − Xi‖2 ≤ min
i:Yi=2

‖X − Xi‖2).

Answer easiest by simulation...

pvec <- pmax(1,unique(round((1/5)*exp(seq(0,log(1000),length=50)))*5))
nsim <- 1000
n <- 100
probability <- rep(0,length(pvec))
for (pc in 1:length(pvec)){
p <- pvec[pc]
for (sim in 1:nsim){

X1 <- matrix(rnorm(n*p),nrow=n)
X2 <- matrix(rnorm(n*p),nrow=n)
X2[,1] <- X2[,1] + 2
X <- rnorm(p)

distance1 <- numeric(n)
distance2 <- numeric(n)
for (k in 1:n){
distance1[k] <- mean((X-X1[k,])^2)
distance2[k] <- mean((X-X2[k,])^2)

}
winningclass1 <- min(distance1)<min(distance2)
if(winningclass1) probability[pc] <- probability[pc] + 1/nsim

}
plot(pvec,probability,
xlab="DIMENSION P",ylab="P(correct classification)",type="b")

}

Probability of correct classification with nearest neighbours as a function of
dimension p. Misclassification probability of 0.5 can be achieved by random
guessing (dotted line).

●●

●

●●●

●

●

●
●●

●●
●●

●●

●

●

● ●
● ●

●
●

● ●

●
●

● ●

●

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

DIMENSION P

P
(c

or
re

ct
 c

la
ss

ifi
ca

tio
n)

Nearest neighbor potentially performs poorly in high dimensions.

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks

Classification and Regression Trees

CART is arguably the most widely used tree algorithm in the statistics
community, but most tree algorithms are quite similar.
We suppose in the following that the p predictor variables are real-valued but
extensions to categorical variables are straightforward.
A tree is then equivalent to a partition of Rp into R disjoint sets
P = {R1, . . . ,RR}, where each Rj ⊂ Rp and has constant fitted values in each
region Rj, j = 1, . . . ,R.

Example I : NHS Direct self-help guide

108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.

108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.

Example II: Iris Data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.4 3.2 1.3 0.2 setosa
5.9 3.0 5.1 1.8 virginica
6.3 3.3 6.0 2.5 virginica
5.3 3.7 1.5 0.2 setosa
5.5 2.5 4.0 1.3 versicolor
6.1 2.9 4.7 1.4 versicolor
6.1 3.0 4.9 1.8 virginica
5.7 2.8 4.5 1.3 versicolor
5.4 3.0 4.5 1.5 versicolor
4.8 3.4 1.6 0.2 setosa
4.6 3.1 1.5 0.2 setosa
4.9 3.1 1.5 0.2 setosa
6.4 2.9 4.3 1.3 versicolor
.......

Previously seen Iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa,
versicolor, and virginica.

8.2. GROWING A TREE 109

|
Petal.Length< 2.45

Petal.Width< 1.75
setosa

versicolor virginica

Decision tree

1 2 3 4 5 6 7
0

.5
1

.0
1

.5
2

.0
2

.5

Petal.Length

P
e

ta
l.
W

id
th

setosa

versicolor

virginica

Induced partitioning

Figure 8.2: Decision tree for the iris data set and corresponding partitioning of the feature space

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

p1

G
in

i
c
o

e
ff

ic
ie

n
t

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7

E
n

tr
o

p
y

Gini coefficient

Entropy

Figure 8.3: Gini coefficient and entropy for a two-class problem

The decision tree derived from the Iris data (left) and the partitioning of
feature space.

Example III: Leukemia Prediction

|X.2481< 0.9985

X.172>=−0.3118 X.35< 0.7172

0 1
0 1

Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (middle). Decision tree
(right).

Some terminology

We will use the following terminology.
I Parent of a node c is the set of nodes (here maximally of size 1) which

have an arrow pointing towards c.
I Children of a node c are those nodes which have node c as a parent.
I Root node is the top node of the tree; the only node without parents.
I Leaf nodes are nodes which do not have children.
I Stumps are trees with just the root node and two leaf nodes.
I A K-ary tree is a tree where each node (except for leaf nodes) has K

children. Usually working with binary trees (K = 2).
I The depth of a tree is the maximal length of a path from the root node to

a leaf node.

Regression

For regression, CART provides a piecewise constant prediction on each
region Rj,

Ŷtree(x) =

R∑
r=1

βr1[x∈Rr],

where βj is the constant fitted value in Rj.
The function Ŷ(·) is hence determined if the (a) partition and (b) the fitted
values β are chosen. These choices are made such as to minimize the
expected squared error loss for future observations (x,Y),

E(Y − Ŷ(x))2.

Classification
For classification with two classes, the response is in Y ∈ {0, 1}. CART
chooses again a piece-wise constant function

Ŷtree(x) =

R∑
r=1

βr1[x∈Rr].

This time, βr ∈ [0, 1]. The default classification is

ηtree(x) =

{
0 Ŷtree(x) ≤ 1/2
1 Ŷtree(x) > 1/2

.

A good choice of Ŷtree is one that leads to a small misclassification error

P(ηtree(x) 6= Y)

or, in general, to a small loss

E(L(Y, ηtree(X))),

for a loss function {0, 1} × {0, 1} 7→ R+.

Parameter Estimation

Recall model

Ŷtree(x) =

R∑
r=1

βr1[x∈Rr],

Parameter estimation β̂1, . . . , β̂R is easy if the partition P = {R1, . . . ,RR} were
given.
We use

β̂r =

n∑
i=1

Yi1[xi∈Rr]/

n∑
i=1

1[xi∈Rr]

= mean{Yi : Xi ∈ Rr}.

for regression and binary classification (where β̂r is just the proportion of
samples from class 1 in region Rr).

Partition Estimation

Ideally, would like to find partition that allows (with the previous parameter
estimates) to achieve lowest mean-squared error loss (prediction) or
misclassification rate (classification).
Number of potential partitions is too large to search exhaustively for problems
of even just small to moderate size (in terms of number p of variables and
number n of samples).
Need ‘greedy’ search for a good partition. First search for a good split for the
root node and then work successively downwards in the tree.

Splitpoint estimation for regression trees
Given are data-points (X1,Y1), . . . , (Xn,Yn), where each Xi = (X(1)

i , . . . ,X(p)
i) is

a p-dimensional vector.
For continuous predictor variables, the search for a partition works as follows.

1. Start with R1 = Rp.
2. Given a partition R1, . . . ,Rr, split each region Rj into two parts Rj1 ,Rj2 ,

where

Rj1 = {x ∈ Rp : x ∈ Rj and X(k) ≤ c}.
Rj2 = {x ∈ Rp : x ∈ Rj and X(k) > c},

where splitpoint c and splitting variable k are found as

argminc,k min
β1,β2

(∑
i:Xi∈Rj1

(Yi − β1)2 +
∑

i:Xi∈Rj2

(Yi − β2)2
)
.

Let R11 ,R12 , . . . ,Rr1 ,Rr2 be the new partition.
3. Repeat step 2) d times to get tree of depth d.

Boston Housing Data

The original data are 506 observations on 14 variables, medv being the
response variable:

crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s

> library(MASS)
> data(Boston)
> str(Boston)
’data.frame’: 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7.00 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

...predict median house price given 13 predictor variables.

Try splitting on variable ‘NOX’ at two different splitpoints and look at the
residual sum of squares.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●●● ●

●●
●
●
●●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8

10
20

30
40

50

NOX

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.65

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●●● ●

●●
●
●
●●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8
10

20
30

40
50

NOX

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.42

Try splitting now on variable ‘CRIME at two different splitpoints instead.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.84

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)
M

E
D

IA
N

 H
O

U
S

E
 P

R
IC

E
S

8.32

...last split is most favourable among the four considered splits as it leads to
largest reduction in MSE. Choose this split.

Overall, the best first split is on variable rm, average number of rooms per
dwelling. Final tree contains predictions in leaf nodes.

|rm< 6.941

lstat>=14.4

crim>=6.992 dis>=1.385

rm< 6.543

rm< 7.437

crim>=7.393 nox>=0.6825

11.98 17.14

21.63 27.43
45.58

14.4 33.35 21.9 45.9

Classification

Remember that for binary classification,

p̂r = β̂r =

n∑
i=1

Yi1[xi∈Rr]/

n∑
i=1

1[xi∈Rr]

is just the estimated probability for class Y = 1 in each partition Rr.
The tree growth algorithm is identical to the regression case, except that one
is using a different measure of node impurity. For regression, the residual sum
of squares

∑
i:Rr

(Yi − β̂r)
2 was used for each region Rr.

For classification, try instead to minimize a measure of node impurity:
I Misclassification error: 1−max{p̂r, 1− p̂r}.
I Gini Index: 2p̂r(1− p̂r).
I Cross-entropy: −p̂r log p̂r − (1− p̂r) log(1− p̂r).

8.2. GROWING A TREE 109

|
Petal.Length< 2.45

Petal.Width< 1.75
setosa

versicolor virginica

Decision tree

1 2 3 4 5 6 7

0
.5

1
.0

1
.5

2
.0

2
.5

Petal.Length

P
e

ta
l.
W

id
th

setosa

versicolor

virginica

Induced partitioning

Figure 8.2: Decision tree for the iris data set and corresponding partitioning of the feature space

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

p1

G
in

i
c
o

e
ff

ic
ie

n
t

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7

E
n

tr
o

p
y

Gini coefficient

Entropy

Figure 8.3: Gini coefficient and entropy for a two-class problem
Misclassification error?

All three criteria of misclassification error are similar, but Gini Index and
Cross-entropy usually preferred. Gini Index and Cross-entropy are
differentiable; misclassification error not.
Gini Index and Cross-entropy also favour purer nodes. Consider example
where 400 observations of class 0 and 400 observations of class 1 are
present. Possible splits into
A: (300,100) and (100,300) vs.
B: (200,400) and (200,0).

A: (300,100) and (100,300) vs.
B: (200,400) and (200,0).

Split A β̂ Misclassification error Gini Index
Node 1 1/4 1/4 2 1

4 (1− 1
4) = 3/8

Node 2 3/4 1/4 2 3
4 (1− 3

4) = 3/8
Total 400

800 · 1/4 + 400
800 · 1/4 = 1/4 400

800 · 3/8 + 400
800 · 3/8 = 3/8

Split B β̂ Misclassification error Gini Index
Node 1 2/3 1/3 2 2

3 (1− 2
3) = 4/9

Node 2 0 0 0
Total 600

800 · 1/3 + 200
800 · 0 = 1/4 600

800 · 4/9 + 200
800 · 0 = 1/3

Example: Leukemia Prediction

Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (right).

Compare two potential splits (red and blue) on gene 963.

●●● ● ●● ● ●● ●● ●● ● ●● ●● ● ●●● ● ● ●

● ●● ●●● ● ●● ● ● ● ● ●● ● ●● ●●●●● ● ●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EXPRESSION OF GENE 963 (TRANSF.)

C
LA

S
S

X ≥ 30 X < 30
Y=0 12 13 25
Y=1 9 16 25
β̂ 0.42 0.55

X ≥ 40 X < 40
Y=0 7 18 25
Y=1 4 21 25
β̂ 0.36 0.53

X ≥ 30 X < 30
Y=0 12 13
Y=1 9 16
β̂ 0.42 0.55

Misclassification error:
12 + 9

50
· 0.42 +

13 + 16

50
· (1 − 0.55) = 0.4374

Gini Index:
2

12 + 9

50
· 0.42(1 − 0.42)+

2
13 + 16

50
· 0.55(1 − 0.55)

= 0.4917

X ≥ 40 X < 40
Y=0 7 18
Y=1 4 21
β̂ 0.36 0.53

Misclassification error:

7 + 4

50
· 0.36 +

18 + 21

50
(1 − 0.53) = 0.445

Gini Index:

2
7 + 4

50
· 0.36(1 − 0.36) + 2

18 + 21

50
0.53(1 − 0.53) = 0.4899

Final tree is of depth 2. This tree is very interpretable as it selects 3 out of
4088 genes and bases prediction only on these (as opposed to LDA, QDA, LR
and k-NN which perform no variable selection).

|X.2481< 0.9985

X.172>=−0.3118 X.35< 0.7172

0 1
0 1

Extension to multi-class problems

Let Y ∈ {1, . . . ,K}. The empirical probability of class m in a region Rr is

p̂m,r =
1

Nr

∑
i:Xi∈Rr

1{Yi = m},

where Nr =
∑

i:Xi∈Rr
1 are the number of samples in region Rr. Let m∗r be the

class with the highest probability

m∗r = argmaxm p̂m,r.

The measures of node impurity generalize then as
I Misclassification error: 1− p̂m∗r ,r.

I Gini Index:
∑

m6=m′ p̂m,rp̂m′,r =
∑k

m=1 p̂m,r(1− p̂m,r).

I Cross-entropy: −∑k
m=1 p̂m,r log p̂m,r.

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks

Model complexity

Which size of the tree is optimal?
Can grow tree until every leaf node contains only 1 original observation.
Clearly one should stop before. But where?
Example: Pima Indians Dataset.
The subjects were women who were at least 21 years old, of Pima Indian heritage and
living near Phoenix, Arizona. They were tested for diabetes according to World Health
Organisation criteria.
The variables measured were the number of pregnancies (npreg), the plasma glucose
concentration in an oral glucose tolerance test (glu), the diastolic blood pressure in
mmHg (bp), the triceps skin fold thickness in mm(skin), the body mass index(bbi), the
diabetes pedigree function (ped), and the age (age).

> library(rpart)
> library(MASS)
> data(Pima.tr)
> str(Pima.tr)

> > Pima.tr
npreg glu bp skin bmi ped age type

1 5 86 68 28 30.2 0.364 24 No
2 7 195 70 33 25.1 0.163 55 Yes
3 5 77 82 41 35.8 0.156 35 No
4 0 165 76 43 47.9 0.259 26 No
5 0 107 60 25 26.4 0.133 23 No
6 5 97 76 27 35.6 0.378 52 Yes
7 3 83 58 31 34.3 0.336 25 No
8 1 193 50 16 25.9 0.655 24 No
9 3 142 80 15 32.4 0.200 63 No
10 2 128 78 37 43.3 1.224 31 Yes
11 0 137 40 35 43.1 2.288 33 Yes
12 9 154 78 30 30.9 0.164 45 No
13 1 189 60 23 30.1 0.398 59 Yes
...

> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> rp
n= 200

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) *
5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) *
11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947) *
23) bp< 68 7 2 Yes (0.28571429 0.71428571) *

3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) *

7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) *

Two possible trees.

> rp1 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot(rp1);text(rp1)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control(cp=0.05))

> plot(rp2);text(rp2)
110 CHAPTER 8. TREE-BASED CLASSIFIERS

|
glu< 123.5

age< 28.5

glu< 90

bmi< 27.05

npreg< 6.5

bmi>=35.85

bmi< 32.85

ped< 0.3095

glu< 166

bp< 89.5 skin< 32

bmi< 28.65

age< 32 ped< 0.628

bp>=71

glu< 138

ped>=0.5495

No

No

No

No

No Yes

Yes

No Yes No Yes

No Yes

No

No Yes

Yes

Yes

Figure 8.4: Unpruned decision tree for the Pima Indians data set

Diabetes and Digestive and Kidney Diseases. The subjects were women who were at least 21 years old,
of Pima Indian heritage and living near Phoenix, Arizona. They were tested for diabetes according to
World Health Organisation criteria. The variables measured were the number of pregnancies (npreg),
the plasma glucose concentration in an oral glucose tolerance test (glu), the diastolic blood pressure
in mm Hg (bp), the triceps skin fold thickness in mm (skin), the body mass index (bbi), the diabetes
pedigree function (ped), and the age (age).

8.3 Pruning a tree

Growing the tree until no more decrease in impurity is possible often leads to an overfit to the training
data. We thus have to prune the tree. The most popular pruning approach is the one proposed by
Breiman et al. (1984a). The idea behind this approach is that too big trees yield an overfit. Thus
too big trees must be penalised. Denote with R(T) a measure of fit for the tree; this can be the
misclassification rate on the training set or the entropy of the partitioning. Instead of minimising the
fit criterion R(T) itself, we now minimise the penalised fitting criterion

R(T) + α · size(T),

where size(T) is the number of leafs and α controls the amount of penalisation. If we choose α = 0,
there will be no pruning; if we choose α = +∞ all nodes but the root node are removed. Breiman
et al. (1984a) showed that there is a nested sequence of subtrees of the fitted tree such that each is
optimal for a range of α. So all we have to do is to pick one of the trees of this sequence.

If we have a validation set at hand, we can pick the subtree yielding the lowest error rate in the
validation set. Otherwise one generally uses cross-validation to pick the optimal subtree. Figure 8.5
shows the error (relative to a tree with the root node only) for the different subtrees for the Pima

112 CHAPTER 8. TREE-BASED CLASSIFIERS

|
glu< 123.5

ped< 0.3095

bmi< 28.65

No

No

No Yes

Figure 8.6: Pruned decision tree for the Pima Indians data set.

Model Complexity

What influence has the size of the tree on predictive performance?
I The larger the tree is (the more final leaf nodes), the better is the

prediction on the training samples.
I However, performance on new data / test data is deteriorating –in

general– after a certain complexity (size) of the tree is surpassed.
Want to find the optimal complexity / tree size, giving best predictive
performance for new (unseen) data.

Training and test error rate

Let L(Y, Ŷ) be a loss function that measures the loss when observing Y under
a predition Ŷ.

I For regression trees,
L(Y, Ŷ) = (Y − Ŷ)2.

I For classification trees

L(Y, Ŷ) = 1{Y 6= Ŷ}.

There are two important error rates, when using observations
(X1,Y1), . . . , (Xn,Yn) and a predictor Ŷ = Ŷ(x). The fitted values at the n
observations are Ŷi := Ŷ(Xi).

I Training error rate R (or apparent error rate) is the loss for the training
sample,

Rtrain = n−1
n∑

i=1

L(Yi, Ŷi).

I True error is the expected error rate/risk for new data (X,Y)

Rtest = E
(
L(Y, Ŷ)

)
,

where the expectation is with respect to drawing new random pairs (X,Y)
and using the predictor Ŷ = Ŷ(X) at the newly observed X.

Cross-Validation

Suppose we had
I training data (Xi,Yi), i = 1, . . . , n
I and a separate set of test data (X̃j, Ỹj), j = 1, . . . , ntest.

One possibility of estimating the true error rate is to
I fit the predictor Ŷ (a tree here) on the training data and then
I evaluate the error rate on the test data (which have not been used for

fitting of the tree),

R̂test = n−1
test

ntest∑
j=1

L(Ỹj, Ŷ(X̃j)).

Disadvantage: if we have ntest additional samples, we could have used test
data to get a larger training set and thus a better predictor.

Leave-one out cross-validation (LOO-CV)

For all i = 1, . . . , n:

I fit the tree T(−i) by using all n observations except the i-th observation.
I compute prediction Ŷ(−i)(Xi) by running Xi down this tree.

Compute the LOO-CV estimate of generalization error as

R̂test = n−1
n∑

i=1

(Ŷ(−i)(Xi)− Yi)
2

for regression and mis-classification error or entropy criterion for classification.
LOO-CV is a nearly unbiased estimate of generalization error. It can be
expensive to compute as the tree (or other predictor) needs to be
re-computed n times.

Example: Boston Housing Data
Again try to predict median house prices by using for simplicity just a single
predictor variable, (logarithm of) crime rate.

●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●
● ●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2

10
20

30
40

50
RMS = 590.25

crime

va
lu

e

Red line is fitted curve Ŷ(x) for a tree of depth 1 (a stump). Blue vertical bar
corresponds to residual of i = 54th observation with a squared residual of
590. Observation i was used to fit Ŷ here !

Do the same fit but leave-out observation i = 54.

●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●
● ●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2

10
20

30
40

50

RMS = 857.53

crime

va
lu

e
x

Red line is fitted curve Ŷ(−54)(x). Blue vertical bar corresponds to LOO-CV
residual of i = 54th observation with a squared residual of 590. Observation
i = 54 was now NOT used to fit Ŷ(−54) here!
Repeat for all i = 1, . . . , n.

V-fold cross-validation

Is computationally cheaper than LOO-CV and yields comparable results.
V-fold cross-validation works by splitting the dataset randomly into V sets of
equal size S1, . . . , SV , so that Sk ∩ Sk′ = ∅ for all k 6= k′ and ∪kSk = {1, . . . , n}.
For each v = 1, . . . ,V

I compute the predictor (tree) using samples {1, . . . , n} \ Sv.
I predict the response for samples in set Sv with the found predictor
I record the test error for the set Sv.

Average the test error over all V sets.
Typical choices are V = 5 or V = 10.

Example: Boston Housing Data
Assess now a whole block Sv of about n/10 of all n observations (V=10 fold
CV).

●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●
● ●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2

10
20

30
40

50
RMS = 76.31

crime

va
lu

e

Red line is fitted curve Ŷ(x) for a tree of depth 1 (a stump). Blue vertical bar
corresponds to residuals of ith observation, where i is in the to be assessed
block v.

Do the same fit but leave-out observation the whole block of observations Sv.

●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●
● ●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2

10
20

30
40

50

RMS = 116.44

crime

va
lu

e

x

x x

x

x
x

xxx x

Red line is fitted curve without using observations in block v. Blue vertical bar
corresponds to LOO-CV residuals.
Repeat for all V = 10 blocks of all observations, each containing about n/10 of
all samples.

Choosing the optimal tree

We would like to choose the tree that minimizes the true error rate. We dont
have the test error, but can use CV-approximation R̂test instead and choose the
optimal tree T∗ as

T∗ = argminT R̂test(T).

This would require searching across all possible trees T and is clearly
infeasible.
With CV, we can however search for the optimal value of one-dimensional
so-called ‘tuning’ parameter. Here, we use tuning parameter α for tree pruning
and find α by CV.

Pruning

Let Rtrain(T) be the training error as a function of tree T (squared error on the
training set for regression, mis-classification or entropy for classification).
Minimizing Rtrain(T) leads to a tree with maximal size. Minimize instead

(∗) Rtrain(T) + α · size(T),

where the size of a tree T is measured by the number of leaf nodes.

I Either grow the tree from scratch and stop once the criterion (∗) starts to
increase.

I Or first grow the full tree and start to delete nodes (starting at the leaf
nodes), until the criterion (∗) starts to increase.

Second option is preferred as the choice of tree is less sensitive to “wrong”
choices of splitpoints and variables to split on in the first stages of tree fitting.

Choice of α

Which value of α should be chosen ? Let Tα for α ∈ R+ be the tree that is the
minimizer of

Tα = argminT {Rtrain(T) + α · size(T)}.

Want to pick α∗ such that the resulting tree has minimal test error:

Tα∗ = argminTα;α∈R+ R̂test(Tα).

where we compute R̂test using CV.
Its best to visualize R̂test(Tα) as a function of α.

Can plot the generalization error R̂test of the optimal tree under criterion

Rtrain(T) + α · size(T)

as a function of α and pick the value of α which yields the smallest estimate of
the generalization error.
For Pima Indians example:

8.3. PRUNING A TREE 111

cp

X
!

v
a
l
R

e
la

ti
v
e
 E

rr
o
r

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

Inf 0.19 0.11 0.066 0.042 0.021 0.012

1 2 3 4 5 6 18

size of tree

Figure 8.5: Error rate estimated by cross-validation for the different subtrees. The vertical lines show
the standard error, and the horizontal dashed line in one standard error worse than the best subtree.
Using the “one SE rule” we would pick the first value (from the left) of the tree size for which the
curve is below the dashed line.

Indians data. The error rate was estimated using cross validation and the vertical lines indicate the
standard error of the estimates. One can now pick the subtree leading to the lowest error in cross-
validation. Breiman et al. (1984a) propose to choose the smallest tree that is not more than one
standard error worse that the best tree. (“One SE rule”). The idea behind this is that smaller trees
are generally preferable and the tree picked that way is only “insignificantly” worse than be best one.
In our example the “one Se rule” would pick a tree of size 5. Figure 8.6 shows the decision tree after
pruning (i.e. the optimal subtree) for the Pima Indians data set.

Decision trees are classifiers that are easy to interpret. Decision trees are however often outper-
formed by other methods when it come to the the accuracy of the prediction; they have a rather high
variance and are thus unstable classifiers. For this reason one should not over-interpret which splits
come first or later. A slight change in the data set sometimes causes the whole tree to “topple over.”

112 CHAPTER 8. TREE-BASED CLASSIFIERS

|
glu< 123.5

ped< 0.3095

bmi< 28.65

No

No

No Yes

Figure 8.6: Pruned decision tree for the Pima Indians data set.

Bias-Variance Tradeoff

Suppose
y = f ∗(x) +N (0, σ2)

Given a dataset (X,Y), train a model f (x; X,Y). How did we do, averaging over
datasets?

EX,Y [(y− f (x; X,Y))2]

= (f̄ (x)− f ∗(x))2 bias2

+ EX,Y [(f̄ (x)− f (x; X,Y))2] variance

+ (y− f ∗(x))2 noise

where f̄ (x) = EX,Y [f (x; X,Y)] is average prediction (averaged over datasets).

Choosing Model Complexity

102 CHAPTER 7. CLASSIFIER ASSESSMENT

Figure 7.1: Changes in test sample and training sample error as the model complexity is varied

The training error will always decrease if the model is made more complex
(the tree grown larger). The test error will have reach a minimum at a certain
model complexity (tree size) and grow if the tree is made either larger or
smaller.

Pitfalls of using the training error rate

How deceptive can the training error be ?
I Assume we have n data samples (X1,Y1), . . . , (Xn,Yn) and

Yi ∼ N (0, 1)

so there is no information about Y in the predictor variables X.
I Assume we take a tree with size d (the size is the number of leaf nodes),

which is chosen independently of Y, so that each leaf node contains the
same number of samples.

What is the expected training (apparent) error rate, as a function of tree size
d?

Assume
I In total d leaf nodes.
I In each final leaf node, there are n/d samples j1, . . . , jn/d.

The value of β̂k in each leaf node k is simply the mean Yk over all observations
in node k.
The test error rate in each leaf node k is

Rtest = E((Y − Yk)
2) = E((Y − E(Y))2) + E((Yk − E(Y))2) = 1 + Y2

k .

Averaged over independent realizations of the new test data, the expected
test error rate is

E(Rtest) = 1 + E(Y2
k)

The training error in each node is

Rtrain =
d
n

jn/d∑
j1

(Yi − Yk)
2 =

(d
n

jn/d∑
j1

(Yi − E(Y))2
)
− Y2

k .

The expected value of the training error rate is

E(Rtrain) = 1− E(Y2
k).

The mean Yk has a distribution ∼ N (0, d/n). Then n
d Y2

k ∼ χ2
1 and E(Y2

k) = d/n.
The expected value of the test error rate is thus

E(Rtest) = 1 + d/n

The expected value of the training error rate is

E(Rtrain) = 1− d/n

In this extreme example, choosing the number of leaf nodes according to the
I training error rate leads you to choose maximal tree size d = n,
I test error rate leads you choose minimal tree size d = 0.

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks

Neural Networks

The term Neural Network has evolved to encompass a large class of models
and learning methods. We describe the most widely used neural network
called the single hidden layer back-propagation network.
Initially motivated by biological processes, NN are simply another nonlinear
method which can be used to find good predictions for classification and
regression problems.

Each node of the network receives input from other nodes.

will pass a a signal along itself to other nodes in the network. For some
so-called activation function f ,

total inputs to node j: xj =
∑
i→j

wijyi

output from node j: yj = f (xi).

Many activation functions f are possible.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

φ(
t)

Logistic unit

−2 −1 0 1 2

−
2

−
1

0
1

2

t

φ(
t)

Linear unit

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

φ(
t)

Activation unit

The ‘activation unit’ is not differentiable rendering it difficult to use for
modelling. The linear unit is uninteresting in a network.

Neural networks combine many layers of nodes to allow for a very flexible
model, a single hidden layer neural network in particular consists of 3 layers of
nodes, below is an example of one.

A bias term is also incorporated at each neuron which provides a constant
output of 1, so at node j

xj =
∑
i→j

wijyi = w0 +
∑

i→j,i 6=0

wijyi.

There is nothing to stop us from adding more hidden layers.
It can be shown that single hidden layer neural networks can model arbitrarily
complex surfaces (if the number of nodes in the hidden layer is large enough).
But more layers (“deep” networks) can sometimes model complex surfaces
more easily.
When using linear activation units, the neural network collapses to a linear
model. Logistic activation units are preferred as they are nonlinear and
differentiable.

For inputs xj, the output of the node l in the final layer can be expressed
explicitly as

yl = f
(∑

k→l

wkl f (
∑
j→k

wjkxj)
)

=: yl(x,w)

for a neural network with a single hidden layer.
The statistical part is to find good weights w, given some training data.

Neural Networks can be used for both regression and classification. In the
regression framework of Rumelhart and McClelland, for observations (Xi,Yi),
i = 1, . . . , n, we train neural networks with a single output node y1 by seeking
weights w to minimize

E(w) =

n∑
i=1

|Yi − y1(Xi,w)|2.

A generic drawback of Neural Networks is that E(w) is a non-convex function
and can have multiple minima. It is thus not easy to find a good solution.

In a classification setting, we now have K output nodes y1, . . . , yK , each
representing one of the classes. Let Yi,k := 1{Yi = k} for k = 1, . . . ,K.
By augmenting the final outputs, it is straightforward to enforce that each
output node returns probability predictions pi,k := P(Y = k|Xi) via the softmax
transformation

pi,k =
exp yk(Xi)∑K
l=1 exp yl(Xi)

.

A measure of fit is via likelihoods, using

L(w) ∝
n∏

i=1

∏
outputs k

(pi,k)
Yi,k .

We can seek weights to maximise the log-likelihood

`(w) ∝
n∑

i=1

∑
k

Yi,k log pi,k.

As the log-likelihood attains a maximum at∑
i

∑
k

Yi,k log Yi,k,

it is conventional to consider finding weights to minimize the cross-entropy

E(w) =
∑

p

∑
k

Yi,k log
Yi,k

pi,k
=
∑

p

∑
k

Yi,k log Yi,k −
∑

p

∑
k

Yi,k log pi,k,

so E(w) ≥ 0 with equality iff we can find w so that pi,k = Yi,k, i.e. a perfect fit
(on the training data).
For both criteria, E can be minimised via gradient descent with update rule

wij ← wij − η
∂E
∂wij

.

Corresponding algorithm called back-propagation.

I Due to the modular nature of the nodes, partial derivatives are easily
calculated via the chain rule, which leads to an algorithm called
back-propagation.

I In back-propagation, predictions are made in a “forward-pass” through
the network, while derivatives are computed in a “backward-pass”
propagating error information towards earlier layers of network.

I As the high-dimensional likelihood surface need not be convex, we often
find suboptimal maxima.

I With large numbers of nodes in the network, we have to be careful not to
overfit. Regularisation is obtained bys a combination of

I not fitting until convergence
I Using weight decay, a regularization penalty on the weights w.
I Choosing a simple but suitable network structure.

Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Solution (global minimum)
Local minimum 1
Local minimum 2
Local minimum 3

Global solution and local minima

Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Neural network fit with a weight decay of 0.01

Cushings data (load with data(Cushings) in package MASS).

> ?Cushings
Cushings package:MASS R Documentation

Diagnostic Tests on Patients with Cushing’s Syndrome

Description:
Cushing’s syndrome is a hypertensive disorder associated with
over-secretion of cortisol by the adrenal gland. The observations
are urinary excretion rates of two steroid metabolites.

Format:
The ’Cushings’ data frame has 27 rows and 3 columns:

’Tetrahydrocortisone’ urinary excretion rate (mg/24hr) of
Tetrahydrocortisone.

’Pregnanetriol’ urinary excretion rate (mg/24hr) of
Pregnanetriol.

’Type’ underlying type of syndrome, coded ’a’ (adenoma) , ’b’
(bilateral hyperplasia), ’c’ (carcinoma) or ’u’ for unknown.

we will not deal with the untyped data here
cush <- Cushings[Cushings$Type!="u",]
cush[,1:2] <- log(cush[,1:2])

plot
pairs(cush)

fit neural network with 5 nodes in the hidden layer
cush.nnet <- nnet(Type ~ . , data=cush, size=5)

Tetrahydrocortisone

−3 −2 −1 0 1 2

●●

●

●
●

●

●

● ●

●
●

●

●
●
●

●

●
●●

●

●

1.
0

2.
0

3.
0

4.
0

●●

●

●
●

●

●

●●

●
●

●

●
●
●

●

●
●●

●

●

−
3

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

Pregnanetriol

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

1.0 2.0 3.0 4.0

●●● ●●●

●●● ● ● ●●●● ●

●●● ●●

●●●● ●●

●● ● ●● ●●●● ●

●●●● ●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

Type

Display the decision boundaries.

take a lattice of points
100 by 100 lattice
m <- 100
x <- seq(0,4,length.out=m)
y <- seq(-3,2.5,length.out=m)
z <- data.frame(expand.grid(

Tetrahydrocortisone=x,
Pregnanetriol=y))

cush.nnp <- predict(cush.nnet,z)

plot the data and decision boundaries
classes are a,b,c =1,2,3 so set contours at 1.5 and 2.5
plot(cush[,1:2], pch=as.character(cush$Type))
contour(x, y, matrix(max.col(cush.nnp),m,m), levels=c(1.5,2.5),

add=TRUE, d=FALSE, lty=1, col=2)

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

c
c

c
c

c

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
3

−
2

−
1

0
1

2

Tetrahydrocortisone

P
re

gn
an

et
rio

l

	Supervised Learning: Nonparametric Methods
	Nearest Neighbours and Prototype Methods
	Learning Vector Quantization
	Classification and Regression Trees
	Determining Model Size and Parameters
	Neural Networks

