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Supervised Learning

So far we have been interested in using EDA and clustering techniques to
understand high-dimensional data, useful for hypothesis generation. If a
response (or grouping) variable occured in examples, it was merely to
‘validate’ that the discovered clusters or projections are meaningful.

We now move to supervised learning where in addition to having n
observations of a p-dimensional predictor variable X, we also have a response
variable Y € ).

» Classification: group information is given and Y = {1,...,K}.
» Regression: a numerical value is observed and Y = R.

Given training data (X;,Y;), i = 1,...,n, the goal is to accurately predict the
class or response Y of new observations, when only the predictor variables X
are observed.
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Regression example: Boston Housing Data

The original data are 506 observations on 13 variables X; medv being the
response variable Y.

crim per capita crime rate by town
zn proportion of residential land zoned for lots
over 25,000 sqg.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)"2 where B is the proportion of blacks by tc
lstat percentage of lower status of the population

medv median value of owner-occupied homes in USD 1000’s



> str (X)
"data.frame’: 506 obs. of 13 variables:

$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905
$ zn :num 18 0 0 0 0 0 12.5 12.5 12.5 12.5
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.8
$ chas :int 000 000O0O0O0O0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 (
S rm : num 6.58 6.42 7.18 7.00 7.15
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
$ dis : num 4.09 4.97 4.97 6.06 6.06
$ rad :int 1 2 2 3335555 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.c
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33

> str(Y)

num([1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9

Goal: predict median house price Y(X), given 13 predictor variables X of a
new district.



Classification example: Lymphoma data

Revisiting the lymphoma gene expression data. Now in the supervised
setting.

We have gene expression measurements of n = 62 patients for p = 4026
genes. These form the predictor variable matrix X.

For each patient, the subtype of cancer is available in a n dimensional vector
Y with entries in {0, 1}.



> str (X)
"data.frame’: 62 obs. of 4026 variables:

S Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868

$ Gene 2 num -0.953 -1.286 0.657 -1.328 -1.330

$ Gene 3 num -0.776 -0.588 0.409 -0.991 -1.517

S Gene 4 num -0.474 -1.588 0.219 0.978 -1.604

$ Gene 5 num -1.896 -1.960 -1.695 -0.348 -0.595

$ Gene 6 num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 num -1.8755 -1.8187 0.3175 0.3873 0.0414
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668

$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458

$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848

$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541

$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...
S Gene 13 : num 0.0846 0.4820 1.5254 0.0323 -0.7563
$ Gene 14 : num -1.2011 -0.0505 -0.8799 0.7518 -0.9964
$ Gene 15 : num -0.9588 -0.0554 -1.0008 0.2502 -1.0235

> str(Y)
num [1:62] 0 0 01 0 0O 1 00O

Goal: predict ‘cancer class’ Y(X) € {0, 1}, given 4026 predictor variables X
(gene expressions) of a new patient.



Loss

Suppose we have trained a classifier or learner so that, upon observing a new
predictor variable X € R”, a prediction Y € ) is made.

How good is the prediction? We can use any loss function L: Y x Y + R* to
measure the loss incurred. Typical loss functions

» Misclassification error for classification

Alternative loss functions often useful. For example, non-equal
misclassification error often appropriate. Or ‘likelihood’-loss
L(Y,Y) = —logp(Y), where p(k) is the estimated probability of class k € ).



Risk and empirical risk minimization

For a given loss function L, the risk R of a learner is given by the expected loss
R(Y) = E(L(Y. 1)),

where Y = Y(X) is a function of the random predictor variable X.

Ideally, we want to find a learner or procedure that minimizes the risk. The risk
is unknown, however, as we just have finitely many samples.

Empirical risk minimization can be used, where one is trying to minimize
—instead of the risk R(Y)— the empirical risk

Ro(7) = B(L0Y ) = LS L(r )

The expectation is with respect to the empirical measure and hence just a
summation over the observations.



The Bayes classifier

What is the optimal classifier if the joint distribution (X, Y) were known?
The distribution f of a random predictor variable X can be written as

£ = S AOPY = ),
k=1

where, fork =1,... K,
- the prior probabilities over classes are P(Y = k) = m;
- and distributions of X, conditional on Y = k, is fi(X).

Given this scenario, the problem is to construct a ‘good’ classifier ¥ which
assigns classes to observations

Y:X—>{1,...,K}



We are interested in finding the classifier ¥ that minimises the risk under 0-1
loss, the Bayes Classifier.

R(Y) = E[LY,7(X))]

E[E[L(Y, V() |x = x}]

/X E [L(y, ¥ ()X = x} £ (x)dx

For the Bayes classifier, minimizing IE[L(Y, f/(x))]X = x} for each x suffices.

That is, given X = x, want to choose Y(x) € {1,...,K} such that the expected
conditional loss is as small as possible.



<mnwmmqun?@mX:4 = YK Lk, Y(x))P(Y = k|X = x).
Choosing Y(x) = mwith m € {1,...,K}, the r.h.s. is simply

EPWj@MX:ﬂ:l—HY:MX:A

The Bayes Classifier chooses the class with the greatest posterior probability

Y(x) = argmaxP(Y k\X—x)—argmaX,szfA
= argmax mfi(x).
k=1,....K

The Bayes classifier is optimal in terms of misclassification error.



Take a simple example, where 7; and f; are known for k = 1, ..., K. Choose
two classes {1,2}.

Suppose X ~ N (uy, 1), where u; = —1 and u, = 1 and assume equal priors
Ty = T = 1/2

So f(x) = 1fi(x) + 3/2(x), where

Ly =)

filx) = ) and  fo(x) = —=— exp(—
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How do you classify a new observation x = 0.1 ?
Optimal classification is

Y(x) = argmax mfi(x),
k=1,....K

which is class 1 if x < 0 and class 2 if x > 0.
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How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2 ?
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Looking at density in a log-scale, optimal classification is class 2
if and only if x € [-0.39,2.15].
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Plug-in classification

The Bayes Classifier chooses the class with the greatest posterior probability

Y(x) = argmaxmfi(x).
k=1,....K

Unfortunately, we usually know neither the conditional class probabilities nor
the prior probabilities.
Given

» estimates 7, formyandk=1,...,K and
» estimates f;(x) of conditional class probabilities,
the plug-in classifiers chooses the class

Y (x) = arg max 7yfi (x).
k=1,....K

Linear Discriminant Analysis will be an example of plug-in classification.
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Linear Discriminant Analysis

LDA is the most well-known and simplest example of plug-in classification.
Assume a parametric form for f; (x) where for each class k, the distribution of
X, conditional on Y =k, is

XY =k ~ N(u,3),

i.e. classes have different means with the same covariance matrix X.
For a new observation x,

P(Y=kX=x) o mfi(x)

by 1 _
x e {30 = )



As argmax;_; x g(k) = argmin,_, , —2logg(k) for any real-valued function
g, choose k to minimize

—2logP(Y =klX =x) o (x— )" (x — ) — 2log(my) + const.

where the constant does not depend on the class k.

The quantity (x — )"~ (x — ) is called the Malahanobis distance. It
measures the distance between x and y in the metric given by X.

Notice that if £ = 7, and m = +, ¥(x) simply chooses the class k with the
nearest (in the Euclidean sense) mean gi.



Expanding the discriminant (x — )72~ (x — 1), the term
—2log P(Y = k|X = x) is seen to be proportional to

i Sy — 2u S x4+ X"k — 2log (i) 4 const
=l S e — 2 " 'x — 2log (i) 4 const,

where the constant does not depend on the class k.
Setting a; = uf> "'y — 21log(m) and by = —2% !, we obtain

—21log P(Y = k|X = x) = a; + bjx + const

i.e. a linear discriminant function.
Considering when we choose class & over £/,

ar + bl x +const(x) < ap + bjx + const
Sa,+blx < 0

where a, = a; — ap and b, = by — by.

Shows that the Bayes Classifier partitions X into regions with the same class
predictions via separating hyperplanes. The Bayes Classifier under these
assumptions is more commonly known as the Linear Discriminant Analysis
Classifier.



Parameter Estimation and ‘Plug-In’ Classifiers

Remember that upon assuming a parametric form for the f;(x)’s, the optimal
classification procedure under 0-1 loss is

Y(x) = argmax  mfi(x)
k=1,....K

LDA proposes multivariate normal distributions for f; (x).
However, we still don’t know what the parameters ., k = 1,...,K and ¥ that
determine f;. The statistical task becomes one of finding good estimates for
these quantities and plugging them into the derived equations to give the
‘Plug-In’ Classifier
Y(x) = argmax  7fi(x).

k=1,....K

The a priori probabilities 7, = P(Y = k) are simply estimated by the empirical
proportion of samples of class k, 7 = |{i : ¥; = k}|/n.



For estimation of ¥ and u, looking at the log-likelihood of the training set,

K

Lpry oy pk) = —ZZ; — ) =X — )

k=1 j:Yj=k

1
—Enlog |X| + const.

Let n, = #{j : ¥; = k} be the number of observations in class k. The
log-likelihood is maX|m|sed by



The best classifier under the assumption that X|Y = k ~ N, (fu, ) with plug-in
estimates of 1 and X is therefore given by

f/lda(x) = lil{glmlg {()C — /lk)Ti_] ()C — ﬂk) — 210g(7ATk)}

for each pointx € X.
Can also be written as

m()—grglmllg{ukz i = 20 = 2log() }



Iris example

library (MASS)
data(iris)

##save class labels

ct <- rep(l:3,each=50)
##pairwise plot
pairs(iris[,1:4],col=ct)

##save petal.length and petal.width
iris.data <- iris[,3:4]
plot (iris.data,col=ct+l,pch=20,cex=1.5,cex.lab=1.4)
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Just focus on two predictor variables.
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Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)

<- seq(-4,4,0.02)

<- as.matrix(expand.grid(x,vy),0)

<- length (x)

<- length (y)

508 N K

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z) $class
contour (x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



LDA boundaries.
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Fishers Linear Discriminant Analysis

We have derived LDA as the plug-in Bayes classifier under the assumption of
multivariate normality for all classes with common covariance matrix.
Alternative view (without making any assumption on underlying densities):
Find a direction a € R” to maximize the variance ratio

n—1

a’Ba
a’a’
where
1 n
L= Z(Xi — uy)(X; — py) " (within class covariance)
=
1 K
B= > mlpy, = X)(uy, —X))T  (between class covariance)
k=1

B has rank at most K — 1.



Discriminant Coordinates

The variance ratio satisfies

a’Ba  b'(S2)'BY1b

a’Sa bTh ’

where b = Y2qg and B* = (X 2)7BY 1.

The maximization over b is achieved by the first eigenvector v, of B*. We also
look at the remaining eigenvectors v, associated to the non-zero eigenvalues
and defined the discriminant coordinates as a; = £~ 2v,.

These directions a; span exactly the space of all linear discriminant functions
for all pairwise comparisons and are often used for plotting (ie in the function
1da).

Data are then projected onto these directions (these vectors are given as the
“linear discriminant” functions in the R-function 1da).



Crabs data example

Crabs data, again.

library (MASS)
data (crabs)

## numeric and text class labels
ct <- as.numeric(crabs[,1])-1+2% (as.numeric (crabs[,2])-1)

## Projection on Fisher’s linear discriminant directions
print (cb.lda <- lda(log(crabs[,4:8]),ct))



> > > > > > > > > Call:
lda(log(crabs[, 4:8]1), ct)

Prior probabilities

0 1

2 3

0.25 0.25 0.25 0.25

Group means:

w NN PO

DNDDNDN

FL
.564985
.852455
.672724

2
2
2
.787885 2

RW CL
.475174 3.312685
.683831 3.529370
.443774 3.437968
.489921 3.490431

of groups:

Cw
.462327
.649555
.578077
.589426

Coefficients of linear discriminants:

FL
RW
CL
CwW
BD

Proportion of

LD1
-31.217207
-9.485303
-9.822169
65.950295
-17.998493

LD1 LD2

LD2

-2.851488 25.
-24.652581 -6.
38.578804 -31.
-21.375951 30.
6.002432 -14.

trace:

LD3

0.6891 0.3018 0.0091

LD3
719750
067361
679288
600428
541487

BD

.441351
.733273
.560806
.701580



Plot predictions

cb.ldp <- predict (cb.lda)
egscplot (cb.1ldp$x, pch=ct+1, col=ct+1)
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2222222222222222222222222222222222
2222222222222000000000000000000000
0000000O0OO0OO0O0O0O0ODOO0OOOO0OOOOOOOOOD33333333
3333333333333333333333333333333333
3311111111111111111111111111111111
111111111111111

> predict (cb.1lda)

Sclass

0000000O0OO0OO0O0O0OD0ODOO0OOO0OO0OOOOOOOOS33333333
3333333333333333333333333333333333
3313311111113111111111111111111111

111111111111111

2222220220202220222222222222222222
Levels:

2222222222222000020000000000000000

0123

Sposterior

4.058456e-02 1.579991e-10 9.594150e-01 4.367517e-07

1
2
3
4
5

4.912087e-01 2.057493e-09 5.087911e-01 2.314634e-07

2.001047e-02 4.368642e-16 9.799895e-01 2.087757e-13

7.867144e-04 9.148327e-15 9.992133e-01 2.087350e-09
2.094626e-03 2.381970e-11 9.979020e-01 3.335500e-06
3.740294e-03 3.170411e-13 9.962597e-01 2.545022e-08

7.291360e-01 1.625743e-09 2.708639%9e-01 6.637005e-08

6
5



## display the decision boundaries
## take a lattice of points in LD-space
X <- seq(-6,6,0.02)

<- seq(-4,4,0.02)

<- as.matrix (expand.grid(x,vy,0))
length (x)
<- length (y)

5B NN
A
I

## predict onto the grid
cb.ldap <- lda(cb.ldp$x,ct)
cb.ldpp <- predict (cb.ldap, z)S$class

## classes are 0,1,2 and 3 so set contours
## at 0.5,1.5 and 2.5
contour (x,y,matrix (cb.ldpp,m,n),
levels=c(0.5,2.5),
add=TRUE, d=FALSE, 1ty=2, lwd=2)
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Compare with PCA plots.

library(lattice)

cb.pca <- princomp (log(crabs[,4:8]))
cb.pcp <- predict (cb.pca)
splom(~cb.pcp([,1:3],pch=ct+l,col=ct+1l)
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LDA separates the groups better.
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Given training data with K classes, assume a parametric form for f;(x), where
for each class
X|Y =k ~ (/’Lkvxk%

i.e. instead of assuming that every class has a different mean p; with the
same covariance matrix X, we now allow each class to have its own
covariance matrix.

Considering —2log P(Y = k|X = x) as before,

—2logP(Y =klX =x) o (x—m)"S " (x — ) — 2log(m) + consty
= S = 2 S xS
—2log(m) + const,

= a+ b,{x + xTewx

i.e. we find a quadratic function instead (the function const; includes the term
log(|%])



Again, by considering when we choose class k over k’,

0 > a+bjx+x"cx — (ap + bix +x"cpx)

= a,+ bzx +xTex

we see that the Bayes Classifier partitions {x : ¥(x) = k} are using quadratic
surfaces.

The Bayes Classifer under these assumptions is more commonly known as
the Quadratic Discriminant Analysis Classifier.



The exact form of the QDA classifier is given by

Pgaa(x) = argmin { (x — )5 (v — ) — 2log(i) + los((54)) }

for each point x € X where the plug-in estimate i is as before and & is (in
contrast to LDA) estimated for each class k = 1, ..., K separately:
- 1

= o X — fu) (X — )"
J:Yi=k



Computing and plotting the QDA (and LDA) boundaries.

##fit LDA

iris.lda <- lda(x=iris.data,grouping=ct)
iris.gda <- gda(x=iris.data,grouping=ct)

##create a grid for our plotting surface

X

58 NN

seq(-6,6,0.02)

seq(-4,4,0.02)

as.matrix (expand.grid(x,v),0)
length (x)

length (y)

iris.qdp <- predict(iris.qgda, z) $class
contour (x,y,matrix(iris.qdp,m,n),

levels=c(1.5,2.5), add=TRUE,

lty=2)



Iris example: QDA boundaries
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LDA or QDA?

Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.

It is obvious that if the covariances of different classes are very distinct, QDA
will probably have an advantage over LDA.

As parametric models are only ever approximations to the real world, allowing
more flexible decision boundaries (QDA) may seem like a good idea.
However, there is a price to pay in terms of increased variance.



Regularized Discriminant Analysis

In the case where data is scarce , to fit
» LDA, need to estimate K x p + p x p parameters
» QDA, need to estimate K x p + K x p x p parameters.

Using LDA allows us to better estimate the covariance matrix . Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices X, are more variable.

RDA combines the strengths of both classifiers by regularizing each
covariance matrix ¥, in QDA to the single one X in LDA

Yi(a) = a¥y + (1 — )X for some a € [0, 1].
This introduces a new parameter o and allows for a continuum of models

between LDA and QDA to be used. Can be selected by Cross-Validation for
example.
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Naive Bayes

If p > n (for example more genes p than patients »), LDA (and certainly QDA
and RDA) runs into problems.

Recall that the covariance matrix ¥ is estimated from n observations. If p > n,
then

is singular. As the inverse of 3 is used in LDA, it will fail.

An extreme regularization is to estimate X as above but set all non-diagonal
elements to 0, i.e. ignoring dependence between predictor variables
completely. This is sometimes referred to as Naive Bayes. All correlations
between variables are effectively ignored in this way.

Alternatively, one can estimate ¥ by using the estimate 3 as above and
adding A1, for some A > 0, where 1,, is the p-dimensional identity matrix
(makes only sense if data have been standardized initially).



Applications to Classification of Documents

Given documents such as emails, webpages, scientific articles, books etc., we
might be interested in learning a classifier based on training data to
automatically classify a new document. Possible classes could be
spam/non-spam, academic/commercial webpages, maths/physics/biology etc.
Many popular techniques rely on simple probabilistic models for documents.
Given a prespecified dictionary, we extract high-dimensional features such as
absence/presence of a word (multivariate Bernoulli), number of occurences of
a word (multinomial) etc.

Parameters within in class can be estimated through Maximum Likelihood.
However Maximum Likelihood overfits so we will need to derive more robust
alternative.
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Limitations of Maximum Likelihood

» Given a probabilistic model
P (x,y = k) = mfi (x),

we typically assume a parametric form for f; (x) = f (x| ¢x) and compute
the MLE 6 of 0 = (my, ¢);_, based on the training data {X;, ¥:},_,.
» We then use a plug-in approach to perform classification

~ wf (o
P (y = k| x, 9) = —Zil %(jf (:{/A)j) )



Limitations of Maximum Likelihood

» Even for simple models, this can prove difficult; e.g. if
f (x| ¢x) = N (x; ., X) then the MLE estimate of ¥ is not full rank for
p > n.

» One possibility is to simplify even further the model as in Naive Bayes;
e.g.

p
£ (xl ) = [TV (¥ s (o))
=1
but this might be too crude.

» Moreover, the plug-in approach does not take into account the
uncertainty about the parameter estimate.



A Toy Example

» Consider a trivial case where X € {0, 1} and K = 2 so that

fald) =i (1—an)' ™"
then the MLE estimates are given by

~ S I=Llyi=k . m
¢k_ ;Trk_;

N

where me = >"1_ I(y; = k).
» Assume that all the training data for class 1 are such that x; = 0 then
¢, =0and

P(x: 1y = 1,§)P(y:1|§)
P(y: l|§)
6171

» Hence if we have not observed such events in our training set, we predict
that we will never observe them, ever!

Py=1lx=10) -



Text Classification

» Assume we are interested in classifying documents; e.g. scientific
articles or emails.

» A basic but standard model for text classification consists of considering
a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document by X = (X', ..., X”)

where
X’—{ 1 if word [ is present in document

0 otherwise.

» To implement a probabilistic classifier, we need to model f; (x) for
k=1,..,K.

» A Naive Bayes approach ignores features correlations and assumes
fi (x) =1 (x| o) where

)4
! 17X[

o) =TT (1) (1—¢1)

=1



Maximum Likelihood for Text Classification

» Given training data, the MLE is easily obtained

%k:nk,gbizzl:lH(X, Y =k)

N

» If word / never appears in the training data for class k then $§( =0and
P (y =klx= (x“il,xl = l,xlﬂ:”) ,§> =0;

i.e. we will never attribute a new document containing word [ to class k.

» In many practical applications, we have p > n and this problem often
occurs.



A Bayesian Approach

» An elegant way to deal with the problem consists of using a Bayesian
approach.

» We start with the very simple case where

flxlg) =0 (1-9)
and now set a Beta prior on p (¢) on ¢

p (¢) = Beta (¢;a,b)
where
I'(a+0)
['(a)L(b)
with I' (u) = [ #~'e~'dr. Note that I (u) = (u — 1)! for u € N.

(a,b) are fixed quantities called hyperparameters. For a = b = 1, the Beta
density corresponds to the uniform density.

Beta (¢;a,b) = ———<¢*~ ! (1 ¢)b71 Lio,1) (¢)



Beta Distribution

beta distributions
3 e 2=0.1, b=0.1
====3=1.0,b=1.0 /
o5k == *a=2.0, b=3.0
— —2-8.0, b=4.0 /




A Bayesian Approach

» Given a realization of X;., = (Xy, ..., X,), inference on ¢ is based on the
posterior

P () ﬁf(x;\ %)

7T(Xl:n)
= Beta(0;a+ ng,b+n— ny)

)4 (¢| -xl:n)

with ng = >0 I (x; = 1).

» The prior on 6 can be conveniently reinterpreted as an imaginary initial
sample of size (a + b) with a observations “1” and b observations “0”.
Provided that (a + b) is small with respect to n, the information carried by
the data is prominent.



Beta Posteriors

— i 820, 20) .‘“ i (50, 20)
o Befd0, 180) 4 i ik Bef120,140)
= post Bef5.0, 190) - = postBe(160,15.0)
35
25
'
'
' HH A
13 - f1
-t )
f B 3
: B : :.
SO ! ! i
L] 3 Sy B
1 B 05| 7 B
Y B A
%, ; a
001 02 03 04 05 05 07 0B 09 L 0 01 02 03 04 05 06 07 08 08 1

0 02 04 08 08 1

(left) Updating a Beta(2,2) prior with a Binomial likelihood with n; = 3, n = 20
to yield a Beta(5,19); (center) Updating a Beta(5,2) prior with a Binomial
likelihood with n;, = 11, n = 24 to yield a Beta(16,15) posterior. (right)
Sequentially updating a Beta distribution starting with a Beta(1,1) and
converging to a delta function centered on the true value.



Posterior Statistics

» We have

a—+n
E (¢|x1:n) = m

and the posterior means behave asymptotically like n;/n (the ‘frequentist’
estimator) and converge to ¢*, the ‘true’ value of ¢.
» We have

. (a_i'_ns)(b-i-n_ns)
V(¢lxim) = @+btn’(@atbtrntl)

_o9)

~ ——~< forlargen
n

» The posterior variance decreases to zero as n — oo, at rate n=!: the
information you get on ¢ gets more and more precise.

» For n large enough, the prior is washed out by the data. For a small n, its
influence can be significant.



Prediction: Plug-in Estimate vs Bayesian Approaches

» Assume you have observed X; = - -- = X,, = 0, then the plug-in prediction
is
P(x=116) =0
which does not account whatsoever for the uncertainty about ¢.
» In a Bayesian approach, we will use the predictive distribution

Plx=1lm,) = /P<x=1\¢>p<¢|x1;n>d¢

a+ ng
a+b+n

so even if ng = 0 then P (x = 1|x;.,) > 0 and our prediction takes into
account the uncertainty about ¢.



Beta Posteriors

pror predicive posterior predictve plugi predicive
014 T 03, T 03, T
012 03 03
01 025 025
008 02 02
00 015 015
004 01 01
002 005 005

0
01 23 456 7 8910

23 45 87

0
00t 23 456 7 8910

(left) Prior predictive dist. for a Binomial likelihood with n» = 10 and a Beta(2,2)
prior. (center) Posterior predictive after having seen n, = 3,n = 20. (right)
Plug-in approximation using ¢.



Bayesian Inference for the Multinomial
> Assume we have Y., = (Y1, ..., Y,) where ¥; = (¥},..., YX) € {0,1}",
Sk, YE=1and

K k
— y
k=1

for e > 0, Zle e = 1.
» We have seen that the MLE estimate is
~ Z?:l]l(yf: 1) _ Tk
T — ———————————————— — —
n

n

» We introduce the Dirichlet density

Zklak K
(Sl

I'(ax) *=

p (m) = Dir(m;a) =

:]w

k

1

for a;, > 0 defined on {7r cm>0and Yk m = 1} .



Dirichlet Distributions

&,

(left) Support of the Dirichlet density for K = 3 (center) Dirichlet density for
oy = 10 (right) Dirichlet density for a;, = 0.1.



Samples from Dirichlet Distributions

Samples from Dir (alphar 0.1} Sampies from Dir (alpha=1} Samples hom Dir [aipha=5)

1 1 1
08 . 0.5 - [}
! 1 2 3 4 § ’ 1 2 k) 4 § ! 1 3 4 &
1 1 . . . . : 1
”L- 1 ”{ 5
: | —— ] (I p———
1 2 3 4 § 1 2 1 4 § [ 2 3 4 5
1 1 1
0% - 15 - L5}
g 1 2 3 [ § ! 1 2 1 4 § ! [ 2 3 4 5
1 1 1
05 . 05, - 1 [L}
0 [} 0
i 1 2 3 4 i : 1 2 3 4 § i ! 1 3 4 5
08 -J 05| [11]
| L.L-.__-.__ ,JL____-.—.-_/
1 2 ] 4 5 1 7 3 4 5 [ 3 3 4 5

Samples from a Dirichlet distribution for K = 5 when oy, = o for k # L.



Bayesian Inference

» We obtain
p(ﬂ)HlP(yilﬂ)
7| Yin =
P(m|y1a) P (Vin)
= Dir(ma;+mny,...,ax +ng)
» We have
POr=ky) = [Plr=km)p(riy)dr
o + Ny

-
Zj:l ajtn



Bayesian Text Classification

» We have 6 = (7r1<, (cﬁi, ---,¢§:))k:1
» Given data D = (x;,y;)

.....

i=1,...,

_ P(x|D,y=k)P(y=k|D)

where .
P(y=kD)= "
djm1tn

and P (x| D,y =k) = ﬁP(xl|D,y:k) with
=1

a+> 0 I(x=1y =k
P(|Dy=k) = ci—|-(b+nk )

» A popular alternative for text data consists of using as features the
number of occurrences of words in document and using a multinomial
model for P (x| ¢x).



Bayesian QDA

» Let us come back to the QDA model where
F(xlén) =N (x5, Xi) -

» We set improper priors on (u, 3x) where
exp (f%tr (Zk_lBk))

)4 (:u’kﬂ Ek) X
|Bk‘f1/2
A, with A > 1.) ;i.e. flat prior on g and

where B; > 0 (e.g. By = M,
inverse-Wishart on ¥;. Unimodal prior on 3; with mode By /¢

» |t follows that
A i 50 p 2 D) s

f(xID,y=k) =
n+q+1 mcta
m \ T () s

= < l) mtg—p+1 nk+7q+l ?
ni + F(k q2P ) |Ak|7“

(S +11k(x ) (= p)” 1+ B,

n+1

%
=S (v = k) (0 — i) (x uk)T'



Bayesian QDA

60

50 Maximum
Likelihood
QDA

a0l B

Distribution—based
Bayesian QDA
Parameter—based with

Bayesian QDA with Modified Inverse
Maodified Inverse Wishart Prior
Wishart Prior

30

Mean Error Percent

20+

15 20 25 30 35 40 45 50
Number of Feature Dimensions

Mean error rates are shown for a two-class problem where the samples from
each class are drawn from a Gaussian distribution with the same mean but
different, highly ellipsoidal covariance matrices. 40 training examples, 100 test
samples.
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Logistic Regression

Recall that for LDA, upon assuming that X|Y = k ~ N (w4, ), the Bayes
Classifier classified to class 1 over class « if

0 > 2logP(Y =klx) —2log P(Y = 1]x)
= X = 2p 2 — 2 log(m)
—(u1 =7 = 227 x — 2log(m))
= a+bix

i.e. hyperplanes separate classes in the feature space X'.
The separating hyperplane can be rewritten more clearly as

P(Y = klx)

2log Lo =)
CP(y = 1)

=ai + b,{x.



For QDA, X|Y = k ~ N(u, Xx), we in turn found a quadratic function
0>a+ b,{x +xTexie.
P(Y =

= k|x)
2log By =

= a; + b,{x + xTcpx.

The exact value of the parameters a; and b, (cx) had expressions which could
be evaluated once the parameters 1, and ¥ (3;) were in turn found by plug-in
estimation (via ML estimation)

We can model these decision boundaries directly instead. This is called
logistic discrimination.



Logistic discrimination model posterior probabilities P(Y = k|x) directly.
Assuming a parametric family of discriminant functions gz (x), we model the
conditional probabilities as
P(Y = klx) = —P85: ®)
Zj:l exp gs(x)

Note that the log probability of a class k, with respect to a reference class 1 is:

P(Y = kl|x)

l P S N
CP(y = 1)

= gp(x) — 88 (x)

This reduces to LDA and QDA for linear and quadratic discriminant functions
(assuming also that the parameters /5, were estimated as before).



The parameter 3 = (3, ..., Bx) is typically chosen by computing the
(Conditional) Maximum Likelihood estimate.
Given a training set, the likelihood of the model is given by

and so the (conditional) log-likelihood is

(p) = ZlogP(Y = ilxi).

i=1

Choosing gs(x) = A" x results in linear decision boundaries and ensures that
£(3) is concave.

This particular logistic discrimination model is known as logistic regression
and is an example of empirical risk minimization, where the risk is measured
in terms of the ’logistic’ loss function.



For the case of K = 2 classes (binomial logistic regression), the log-likelihood
collapses into a much simpler form than when K > 2 (multinomial logistic
regression). We concentrate on the case where K = 2 though it should be

noted that the theory still applies for K > 2.
Looking at K = 2, we can derive an explicit expression for the log-likelihood as

follows.
For the following let Y € {—1,1}. Let g5 = 87xand 5_; = 0 (so class —1 is the

reference class). Let 5 = 3;. Then

exp(67x) 1
exp(B7x) +1 1+ exp(—5Tx)
1
L

P(Y=1]x) =

P(Y = —1x)

Or, shorthand for both classes, P(Y = y|x) = m



Continuing with this notation, the (conditional) log-likelihood is

> log P(Y = yi|xi)
i=1
i=1 T+ exp(—y; - f7x;)

- Z —log(1 +exp(—y; - 87x:)),

i=1

where L(y,f) = log(1 + exp(—y - f)) is the so-called logistic loss, using notation
f= 5Txi-

(Note that for under 0-1 loss, the optimal classification is 1 if f > 0 and -1 if
[<0)



Compare the logistic loss L(y,f) = log(1 4 exp(—y - f)) with the 0-1
misclassification loss L(y,f) = 1{sign(y) # sign(f)} = 1{y - f < 0}.

0
©

=
©

25

2.0

Loss

1.5

0.0

Loss L as a functionof y - f =y - 87x.



As shown above, ML estimation is (in the case Y € {—1, 1} equivalent to
solving the equations),

B = argming Zlog(l +exp(—yi - B7x)),
i=1

numerical methods must be applied. A high-dimensional version of the
Newton-Raphson algorithm is typically used, where locally the objective
function is approximated by a quadratic function and the solution is then found
by iterated least squares.
When using the univariate Newton-Raphson approach, we need information
about the slope of the curve, in our case we need the Hessian matrix

gﬁggz T ;x"xfp(x"'m [1 - p(xlB)].

Extending Newton-Raphson to higher dimensions, starting with 3°, a single
Newton-Raphson update is given by

*U(B)\ " UB)
loJste)ond ap
where the derivatives are evaluated at 5°/.

new __ pold
e = pr —



Logistic Regression

» Writing everything in vectorial form,
- ¢ = (¥;)%_,, a vector of the classes
- p=(P(Y; = 1Xx;, 8" v the vector of fitted probabilities
- X, an n x p matrix with i row as X;
- W, a diagonal matrix with i diagonal as

P(Y: = 1|X:, 87 (1 — P(Y; = 1]X;, )

» Lets us write M(ﬁ) = X"(¢ - p) and g;dﬂ) = —-X"WX so
: *(B) \— 0L(B)
new  __ old 1

A+ (X"WX) ™' X" (¢ - p)
= (X"WX)"'X'W [Xp% + W~ (c - p)]

Each Newton-Raphson step can be seen as a weighted least squares step,
this algorithm is more commonly known as lteratively Reweighted Least
Squares.

A few (even just 2 or 3) steps of the algorithm are usually sufficient.



Example: O-ring failures during shuttle starts (preceeeding the Challenger
incident), as a function of temperatures.

library (alr3)

data (challeng)

temp <- challeng([,1]
failure <- challengl[, 3]

Y <- as.numeric (failure>0)

plot (temp, Y, xlab="TEMPERATURE",
ylab="0-RING FAILURES", cex=2)



LEFT: Number of failures.
RIGHT: Number of O-Ring failures reduced here to “Failures Yes/No” binary
variable.
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Fit logistic regression with g1m function and plot ‘link’ function f = 57X, where
X is here simply temperature (p = 1).

log_reg <- glm( ¥ ~ temp ,family=binomial)

xvec <- seq(min (temp),max (temp), length=200)

g <- predict (log_reg,newdata=data.frame (temp=xvec),
type="1link")

plot (xvec, g ,
type="1", lwd=1.8,
x1ab="TEMPERATURE", ylab="g (TEMPERATURE) ")

9(TEMPERATURE)

55 60 65 70 75 80



Now plot P(Y = 1]X) = 1/(1 + exp(—57X)).

prob <- predict (log_reg,newdata=data.frame (temp=xvec),
type="response")
plot (xvec, prob ,
type="1", lwd=1.8,
x1ab="TEMPERATURE", ylab="P (Y=1| TEMP)",ylim=c(0,1))
points (temp, Y, cex=2)
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Logistic Regression or LDA?

Both LR and LDA possess linear decision boundaries
» LDA as a consequence of assuming X|Y = k ~ N, (1, X) and

» Logistic Regression by construction of the log-odds. However, we can
easily replace a, say, two-dimensional predictor with intercept,
x = (1,x1 x@) with ¥ = (1,x1 x@ (x(10)2 (x(»))?) to model non-linear
decision boundaries.
However, actual decision boundaries for both models differ and do so
because of differences in how the coefficients of class decision boundaries
(hyperplanes) are estimated, which approach is ‘better’?

» Where X|Y = k ~ N, (1, X) is true, LDA seems better positioned.

» It can be shown that where X|Y = k ~ N, (1, X), using LR results in a
~30% reduction in the efficiency.

» However, if the assumptions are far from true LDA will suffer.



In support of Logistic Regression over LDA, it can be noted that Logistic
Regression is simply a generalised linear model (GLM).
Knowing this, we can take advantage of all of the theory developed for GLMs.

» assessment of fit via deviance and plots,
» interpretation of 5;’s via odds-ratios,
» fitting categorical data (code it via indicator functions),

» well founded approaches to removing insignificant terms (via the drop-in
deviance test and the Wald test),

» model selection via AIC/BIC.
Ultimately, we have to let the data speak!



Spam dataset: Look at examples of spam emails and non-spam emails. The
P_redictor variables count occurrence of specific words/characters. Look at the
irst 2 emails in the database (which are spam).

> library (kernlab)
> data (spam)

> dim(spam)

[1] 4601 58

> spam[1l:2,]
make address all num3d our over remove internet order mail receive wil

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.¢

2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.7
people report addresses free business email you credit your font numOO0C

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.0C

0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43

money hp hpl george numé650 lab labs telnet num857 data num4l5 num85

1 0.00 O 0 0 0 0 0 0 0 0 0 0

2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology numl999 parts pm direct cs meeting original project re edu ta

1 0 0.00 0 0 0 O 0 0 0 0 0

2 0 0.07 0 O 0 O 0 0 0 O 0
conference charSemicolon charRoundbracket charSquarebracket charExclamat

1 0 0 0.000 0 0.778

2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitallong capitalTotal type

1 0.00 0.000 3.756 61 278 spam

2 0.18 0.048 5.114 101 1028 spam



Fit a GLM to the data (look at 2g1m for help on the command).

library (kernlab)
data (spam)

## let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric(spam|[, ncol (spam)])-1
X <- spam[ ,-ncol (spam) ]

gl <= glm(Y ~ ., data=X, family=binomial)

Which predictor variables seem to be important? Can for example check
which ones are significant in the GLM.

summary (gl)



> summary (gl)

Call:
glm(formula = Y ~

.

Deviance Residuals:

Min

-4.127e+00 -2.030e-01

Coefficients:

(Intercept)
make
address
all
num3d
our
over
remove
internet
order
mail
receive
will
people
report
addresses

[ [
PR 9P NP JOODNDOCOONRFRFE W

10

family = binomial, data =
Median 30
-1.967e-06 1.140e-01

.569e+00
.895e-01
.458e-01
.141e-01
.252e+00
.624e-01
.830e-01
.279e+00
.696e-01
.343e-01
.275e-01
.557e-01
.383e-01
.961e-02
.447e-01
.236e+00

1

2.315e-01

NP NI IR WDNERE P PO

.928e-02
.103e-01
.507e+00
.018e-01
.498e-01
.328e-01
.682e-01
.849e-01
.262e-02
.979%9e-01
.405e-02
.303e-01
.364e-01
.254e-01

-1.

[ |
PP ORFRORFEDNWO WU K EFEDN

Estimate Std. Error z value
.420e-01 -11.

044
683

.104
.035
.494
.524
.534
.846
.387
.577
.755
.858
.868
.346
.061
.704

X)

Max
5.364e+00

Pr(>lzl)
< 2e-16
.092388
.035362
.300759
.135168
.31e-08
.000409
.57e-12
.000707
.009958
.079230
.390655
.061773
. 729557
.288855
.088370

O O OO OO OOJO Wwoo oo

* KK

* kK

* KK

* Kk Kk

* %



business
email
you
credit
your
font
num000
money

hp

hpl
george
num650
lab

labs
telnet
num857
data
num415
num85
technology
numl999
parts

pm
direct
cs
meeting
original

NN 0 O

.599e-01
.203e-01
.131e-02
.047e+00
.419e-01
.013e-01
.245e+00
.264e-01
.920e+00
.040e+00
.177e+01
.454e-01
.486e+00
.299%e-01
.702e-01
.549e+00
.383e-01
.679e-01
.055e+00
.237e-01
.651e-02
.968e-01
.650e-01
.046e-01
.505e+01
.689e+00
.247e+00

O ONWWRRE WO, WWDs WERERENDDDWERE &P OO WREDN

.251e-01
.172e-01
.505e-02
.383e-01
.243e-02
.627e-01
.714e-01
.621e-01
.128e-01
.396e-01
.113e+00
.991e-01
.502e+00
.137e-01
.815e-01
.283e+00
.117e-01
.601e+00
.883e-01
.091e-01
.754e-01
.232e-01
.828e-01
.636e-01
.660e+01
.384e-01
.064e-01

N L S =N

N

-2
-5

-1
-0

-2

-3
-1

.264
.027
.320
.946
.615
.238
.762
.630
.139
.366
.569
.237
-1.
.052
.353
.776
.369
.417
-2.
.989
.265
-1.
.260
-0.
-1.
.207
.547

656

607

410

838
694

O O O OO OO OO0 O0OO0ODODODOONOWOHr OWOOoOOoONDN

.01le-05
.304533
.020334
.051675
.94e-06
.215838
.91e-06
.008535
.31le-10
.017966
.57e-08
.025255
.097744
.292972
.723742
.437566
.017842
.676490
.009124
.002803
.790819
.158473
.023844
.402215
.090333
.001342
.121978
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project -1.573e+00

5.292e-01 -2.973 0.002953
re -7.923e-01 1.556e-01 -5.091 3.56e-07
edu -1.459e+00 2.686e-01 -5.434 5.52e-08
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503
charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14
charHash 2.403e+00 1.113e+00 2.159 0.030883
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitallong 9.118e-03 2.521e-03 3.618 0.000297

8.437e-04 2.251e-04 3.747 0.000179

capitalTotal
g;;nif. codes: 0 "xxx" 0.001 7%=’
(Dispersion parameter for binomial

Null deviance: 6170.2 on 4600

Residual deviance: 1815.8 on 4543
AIC: 1931.8

0.01 %" 0.05 ".” 0.1
family taken to be 1)

degrees of freedom
degrees of freedom

Number of Fisher Scoring iterations: 13

* *

* KK

* Kk Kk

* KK

* Kk Kk

* kK

* K K



How good is the classification?

> proba <- predict (gl,type="response")
> predicted_spam <- as.numeric( proba>0.5)
> table (predicted_spam,Y)
Y
predicted_spam 0 1
0 2666 194
1 122 1619

> predicted_spam <- as.numeric( proba>0.99)
> table (predicted_spam,Y)

Y
predicted_spam 0 1

0 2776 1095

1 12 718

So out of 730 emails marked as spam, 12 were actually not spam. Would you
expect a similar success rate for future classifications?
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Training and Test error

Important distinction:
» Training error is the empirical risk

n
n! ZL(yia)A’i)
i=1

For 0-1 loss in classification, this is the misclassification error on the
training data, which were used in fitting 3.

» Test error is the empirical risk on new, previously unseen, observations

m

m Y L(yi, i)
i=1
which were NOT used in fitting.

The test error is in general larger than the training error (as we are fitting
partially noise — depending on the complexity of the classifier). It is a much
better gauge of how well the method will do on future data.



Success rate is calculated on the same data that the GLM is trained on!
Separate in training and test set.

n <- length(Y)

intrain <- sample( rep(c(TRUE,FALSE),each=n/2) ,
round(n/2) ,replace=TRUE )

train <- (1l:n) [intrain]

test <= (1l:n)[!intrain]

Fit only on training set and predict on both training and test set.

gl <- glm(Y[train] ~ ., data=X[train,], family=binomial)

proba_train <- predict (gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

predicted_spam_train <- as.numeric (proba_train > 0.95)
predicted_spam_test <- as.numeric(proba_test > 0.95)



Results for training and test set:

> table (predicted_spam_train, Y[train])
predicted_spam_train 0 1

0 1403 354

1 11 567

> table (predicted_spam_test, Y[test])

predicted_spam_test 0 1
0 1346 351
1 28 541

Its no coincidence that the success rate is worse on the test data.



Compare with LDA.

library (MASS)
ldares <- lda(x=X[train,],grouping=Y[train])

With following result

> Call:
lda (X, grouping = Y)

Prior probabilities of groups:
0 1
0.6059552 0.3940448



Coefficients of linear discriminants:

D1
make -0.2053433845
address -0.0496520077
all 0.1618979041
num3d 0.0491205095
our 0.3470862316
over 0.4898352934
remove 0.8776953914
internet 0.3874021379
order 0.2987224576
mail 0.0621045827
receive 0.2343512301
will -0.1148308781
people 0.0490659059
charHash 0.1141464080
capitalAve 0.0009590191
capitallong 0.0002751450
capitalTotal 0.0003291749



Compare prediction on test set.

library (MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda <- predict (lda_res,newdata=X[test,]) $Sposterior([,2]
predicted_spam_lda <- as.numeric (proba_lda > 0.95)

> table (predicted_spam_test, Y[test])

predicted_spam_test 0 1
0 1346 351
1 28 541

> table (predicted_spam_lda, Y[test])

predicted_spam_lda 0 1
0 1364 533
1 10 359

It seems as if LDA beats Linear Regression here, but would need to adjust
cutpoint to get proper comparison. Use ROC curves.



ROC curves

We can change the cutpoint ¢

predicted_spam_lda <- as.numeric (proba_lda > c)

to get different tradeoffs between
» Sensitivity: probability of predicting spam given true state is spam
» Specificity: probability of predicting non-spam given true state is

non-spam
TRUE STATE 0 1 0 1
PREDICTION 0 1364 533 normalize 0 0.9972 0.5975
1 10 359 —> 1 0.0072 0.4024

TOTAL 1374 892 1 1



ROC curve is sensitivity versus specificity

cvec <- seq(0.001,0.999,1length=1000)
specif <- numeric(length (cvec))
sensit <- numeric(length (cvec))

for (cc in l:length(cvec)) {
sensit[cc] <- sum( proba_lda> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specifcc] <- sum( proba_lda<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)
}
plot (specif, sensit,
x1ab="SPECIFICITY", ylab="SENSITIVITY", type="1", lwd=2)



ROC curve for LDA and Logistic Regression classification of spam dataset.
LDA = unbroken black line; LR = broken red line.
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Obvious now that LR is better for this dataset than LDA, contrary to the first
impression.
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