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Supervised Learning

So far we have been interested in using EDA and clustering techniques to
understand high-dimensional data, useful for hypothesis generation. If a
response (or grouping) variable occured in examples, it was merely to
‘validate’ that the discovered clusters or projections are meaningful.
We now move to supervised learning where in addition to having n
observations of a p-dimensional predictor variable X, we also have a response
variable Y ∈ Y.

I Classification: group information is given and Y = {1, . . . ,K}.
I Regression: a numerical value is observed and Y = R.

Given training data (Xi,Yi), i = 1, . . . , n, the goal is to accurately predict the
class or response Y of new observations, when only the predictor variables X
are observed.
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Regression example: Boston Housing Data
The original data are 506 observations on 13 variables X; medv being the
response variable Y.

crim per capita crime rate by town
zn proportion of residential land zoned for lots

over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river;

0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s



> str(X)
’data.frame’: 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7.00 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

> str(Y)
num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

Goal: predict median house price Ŷ(X), given 13 predictor variables X of a
new district.



Classification example: Lymphoma data

Revisiting the lymphoma gene expression data. Now in the supervised
setting.
We have gene expression measurements of n = 62 patients for p = 4026
genes. These form the predictor variable matrix X.
For each patient, the subtype of cancer is available in a n dimensional vector
Y with entries in {0, 1}.



> str(X)
’data.frame’: 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
$ Gene 6 : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 : num -1.8755 -1.8187 0.3175 0.3873 0.0414 ...
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668 ...
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848 ...
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...
$ Gene 13 : num 0.0846 0.4820 1.5254 0.0323 -0.7563 ...
$ Gene 14 : num -1.2011 -0.0505 -0.8799 0.7518 -0.9964 ...
$ Gene 15 : num -0.9588 -0.0554 -1.0008 0.2502 -1.0235 ...

> str(Y)
num [1:62] 0 0 0 1 0 0 1 0 0 0 ...

Goal: predict ‘cancer class’ Ŷ(X) ∈ {0, 1}, given 4026 predictor variables X
(gene expressions) of a new patient.



Loss
Suppose we have trained a classifier or learner so that, upon observing a new
predictor variable X ∈ Rp, a prediction Ŷ ∈ Y is made.
How good is the prediction? We can use any loss function L : Y × Y 7→ R+ to
measure the loss incurred. Typical loss functions

I Misclassification error for classification

L(Y, Ŷ) =

{
0 Y = Ŷ
1 Y 6= Ŷ

.

I Squared error loss for regression

L(Y, Ŷ) = (Y − Ŷ)2.

Alternative loss functions often useful. For example, non-equal
misclassification error often appropriate. Or ‘likelihood’-loss
L(Y, Ŷ) = − log p̂(Y), where p̂(k) is the estimated probability of class k ∈ Y.



Risk and empirical risk minimization

For a given loss function L, the risk R of a learner is given by the expected loss

R(Ŷ) = E(L(Y, Ŷ)),

where Ŷ = Ŷ(X) is a function of the random predictor variable X.
Ideally, we want to find a learner or procedure that minimizes the risk. The risk
is unknown, however, as we just have finitely many samples.
Empirical risk minimization can be used, where one is trying to minimize
–instead of the risk R(Ŷ)– the empirical risk

Rn(Ŷ) = En(L(Y, Ŷ) =
1
n

n∑

i=1

L(Yi, Ŷi).

The expectation is with respect to the empirical measure and hence just a
summation over the observations.



The Bayes classifier

What is the optimal classifier if the joint distribution (X,Y) were known?
The distribution f of a random predictor variable X can be written as

f (X) =

K∑

k=1

fk(X)P(Y = k),

where, for k = 1, . . . ,K,
- the prior probabilities over classes are P(Y = k) = πk

- and distributions of X, conditional on Y = k, is fk(X).
Given this scenario, the problem is to construct a ‘good’ classifier Ŷ which
assigns classes to observations

Ŷ : X →
{

1, . . . ,K
}



We are interested in finding the classifier Ŷ that minimises the risk under 0-1
loss, the Bayes Classifier.

R(Ŷ) = E
[
L(Y, Ŷ(X))

]

= E
[
E[L(Y, Ŷ(x)

∣∣X = x]
]

=

∫

X
E
[
L(Y, Ŷ(x))

∣∣X = x
]
f (x)dx

For the Bayes classifier, minimizing E
[
L(Y, Ŷ(x))

∣∣X = x
]

for each x suffices.

That is, given X = x, want to choose Ŷ(x) ∈ {1, . . . ,K} such that the expected
conditional loss is as small as possible.



Can write E
[
L(Y, Ŷ(x))

∣∣X = x
]

=
∑K

k=1 L(k, Ŷ(x))P(Y = k|X = x).

Choosing Ŷ(x) = m with m ∈ {1, . . . ,K}, the r.h.s. is simply

E
[
L(Y, Ŷ(x))|X = x

]
= 1− P(Y = m|X = x).

The Bayes Classifier chooses the class with the greatest posterior probability

Ŷ(x) = arg max
k=1,...,K

P(Y = k|X = x) = arg max
k=1,...,K

πkfk(x)∑K
k=1 πkfk(x)

= arg max
k=1,...,K

πkfk(x).

The Bayes classifier is optimal in terms of misclassification error.



Take a simple example, where πk and fk are known for k = 1, . . . ,K. Choose
two classes {1, 2}.
Suppose X ∼ N (µY , 1), where µ1 = −1 and µ2 = 1 and assume equal priors
π1 = π2 = 1/2.
So f (x) = 1

2 f1(x) + 1
2 f2(x), where

f1(x) =
1√
2π

exp(− (x− (−1))2

2
) and f2(x) =

1√
2π

exp(− (x− 1)2

2
).
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How do you classify a new observation x = 0.1 ?
Optimal classification is

Ŷ(x) = arg max
k=1,...,K

πkfk(x),

which is class 1 if x < 0 and class 2 if x ≥ 0.
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How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2 ?
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Looking at density in a log-scale, optimal classification is class 2
if and only if x ∈ [−0.39, 2.15].
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Plug-in classification

The Bayes Classifier chooses the class with the greatest posterior probability

Ŷ(x) = arg max
k=1,...,K

πkfk(x).

Unfortunately, we usually know neither the conditional class probabilities nor
the prior probabilities.
Given

I estimates π̂k for πk and k = 1, . . . ,K and
I estimates f̂k(x) of conditional class probabilities,

the plug-in classifiers chooses the class

Ŷ(x) = arg max
k=1,...,K

π̂k f̂k(x).

Linear Discriminant Analysis will be an example of plug-in classification.
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Linear Discriminant Analysis

LDA is the most well-known and simplest example of plug-in classification.
Assume a parametric form for fk(x) where for each class k, the distribution of
X, conditional on Y = k, is

X|Y = k ∼ N (µk,Σ),

i.e. classes have different means with the same covariance matrix Σ.
For a new observation x,

P(Y = k|X = x) ∝ πkfk(x)

∝ πk

|Σ|1/2 exp
{
−1

2
(x− µk)

TΣ−1(x− µk)

}



As arg maxk=1,...,K g(k) = arg mink=1,...,K −2 log g(k) for any real-valued function
g, choose k to minimize

−2 log P(Y = k|X = x) ∝ (x− µk)
TΣ−1(x− µk)− 2 log(πk) + const.

where the constant does not depend on the class k.
The quantity (x− µk)

TΣ−1(x− µk) is called the Malahanobis distance. It
measures the distance between x and µk in the metric given by Σ.
Notice that if Σ = Ip and πk = 1

K , Ŷ(x) simply chooses the class k with the
nearest (in the Euclidean sense) mean µk.



Expanding the discriminant (x− µk)
TΣ−1(x− µk), the term

−2 log P(Y = k|X = x) is seen to be proportional to

µT
k Σ−1µk − 2µT

k Σ−1x + xTΣ−1x− 2 log(πk) + const
= µT

k Σ−1µk − 2µT
k Σ−1x− 2 log(πk) + const,

where the constant does not depend on the class k.
Setting ak = µT

k Σ−1µk − 2 log(πk) and bk = −2Σ−1µk, we obtain

−2 log P(Y = k|X = x) = ak + bT
k x + const

i.e. a linear discriminant function.
Considering when we choose class k over k′,

ak + bT
k x + const(x) < ak′ + bT

k′x + const
⇔ a? + bT

?x < 0

where a? = ak − ak′ and b? = bk − bk′ .
Shows that the Bayes Classifier partitions X into regions with the same class
predictions via separating hyperplanes. The Bayes Classifier under these
assumptions is more commonly known as the Linear Discriminant Analysis
Classifier.



Parameter Estimation and ‘Plug-In’ Classifiers

Remember that upon assuming a parametric form for the fk(x)’s, the optimal
classification procedure under 0-1 loss is

Ŷ(x) = arg max
k=1,...,K

πkfk(x)

LDA proposes multivariate normal distributions for fk(x).
However, we still don’t know what the parameters µk, k = 1, . . . ,K and Σ that
determine fk. The statistical task becomes one of finding good estimates for
these quantities and plugging them into the derived equations to give the
‘Plug-In’ Classifier

Ŷ(x) = arg max
k=1,...,K

π̂k f̂k(x).

The a priori probabilities πk = P(Y = k) are simply estimated by the empirical
proportion of samples of class k, π̂k = |{i : Yi = k}|/n.



For estimation of Σ and µ, looking at the log-likelihood of the training set,

`(µ1, . . . , µK) = −
K∑

k=1

∑

j:Yj=k

1
2

(Xj − µk)
TΣ−1(Xj − µk)

−1
2

n log |Σ|+ const.

Let nk = #{j : Yj = k} be the number of observations in class k. The
log-likelihood is maximised by

µ̂k =
1
nk

∑

j:Yj=k

Xj, Σ̂ =
1
n

K∑

k=1

∑

j:Yj=k

(Xj − µ̂k)(Xj − µ̂k)
T .



The best classifier under the assumption that X|Y = k ∼ Np(µ̂k, Σ̂) with plug-in
estimates of µ and Σ is therefore given by

Ŷlda(x) = arg min
k=1,...,K

{
(x− µ̂k)

TΣ̂−1(x− µ̂k)− 2 log(π̂k)
}

for each point x ∈ X .
Can also be written as

Ŷlda(x) = arg min
k=1,...,K

{
µ̂T

k Σ̂−1µ̂k − 2µ̂T
k Σ̂−1x− 2 log(π̂k)

}
.



Iris example

library(MASS)
data(iris)

##save class labels
ct <- rep(1:3,each=50)
##pairwise plot
pairs(iris[,1:4],col=ct)

##save petal.length and petal.width
iris.data <- iris[,3:4]
plot(iris.data,col=ct+1,pch=20,cex=1.5,cex.lab=1.4)
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Just focus on two predictor variables.
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Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour(x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



LDA boundaries.
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Fishers Linear Discriminant Analysis

We have derived LDA as the plug-in Bayes classifier under the assumption of
multivariate normality for all classes with common covariance matrix.
Alternative view (without making any assumption on underlying densities):
Find a direction a ∈ Rp to maximize the variance ratio

aTBa
aTΣa

,

where

Σ =
1

n− 1

n∑

i=1

(Xi − µYi)(Xi − µYi)
> (within class covariance)

B =
1

n− 1

K∑

k=1

nk(µYi − X̄)(µYi − X̄))> (between class covariance)

B has rank at most K − 1.



Discriminant Coordinates

The variance ratio satisfies

aTBa
aTΣa

=
bT(Σ−

1
2 )TBΣ−

1
2 b

bTb
,

where b = Σ
1
2 a and B∗ = (Σ−

1
2 )TBΣ−

1
2 .

The maximization over b is achieved by the first eigenvector v1 of B∗. We also
look at the remaining eigenvectors vl associated to the non-zero eigenvalues
and defined the discriminant coordinates as al = Σ−

1
2 vl.

These directions al span exactly the space of all linear discriminant functions
for all pairwise comparisons and are often used for plotting (ie in the function
lda).
Data are then projected onto these directions (these vectors are given as the
“linear discriminant” functions in the R-function lda).



Crabs data example

Crabs data, again.

library(MASS)
data(crabs)

## numeric and text class labels
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)

## Projection on Fisher’s linear discriminant directions
print(cb.lda <- lda(log(crabs[,4:8]),ct))



> > > > > > > > > Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
0 1 2 3

0.25 0.25 0.25 0.25

Group means:
FL RW CL CW BD

0 2.564985 2.475174 3.312685 3.462327 2.441351
1 2.852455 2.683831 3.529370 3.649555 2.733273
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3

FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3

0.6891 0.3018 0.0091



Plot predictions

cb.ldp <- predict(cb.lda)
eqscplot(cb.ldp$x,pch=ct+1,col=ct+1)
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> ct
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3
[112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[149] 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> predict(cb.lda)
$class
[1] 2 2 2 2 2 2 0 2 2 0 2 0 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3
[112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[149] 3 3 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Levels: 0 1 2 3

$posterior
0 1 2 3

1 4.058456e-02 1.579991e-10 9.594150e-01 4.367517e-07
2 4.912087e-01 2.057493e-09 5.087911e-01 2.314634e-07
3 2.001047e-02 4.368642e-16 9.799895e-01 2.087757e-13
4 7.867144e-04 9.148327e-15 9.992133e-01 2.087350e-09
5 2.094626e-03 2.381970e-11 9.979020e-01 3.335500e-06
6 3.740294e-03 3.170411e-13 9.962597e-01 2.545022e-08
7 7.291360e-01 1.625743e-09 2.708639e-01 6.637005e-08



## display the decision boundaries
## take a lattice of points in LD-space
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y,0))
m <- length(x)
n <- length(y)

## predict onto the grid
cb.ldap <- lda(cb.ldp$x,ct)
cb.ldpp <- predict(cb.ldap,z)$class

## classes are 0,1,2 and 3 so set contours
## at 0.5,1.5 and 2.5
contour(x,y,matrix(cb.ldpp,m,n),

levels=c(0.5,2.5),
add=TRUE,d=FALSE,lty=2,lwd=2)
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Compare with PCA plots.

library(lattice)
cb.pca <- princomp(log(crabs[,4:8]))
cb.pcp <- predict(cb.pca)
splom(~cb.pcp[,1:3],pch=ct+1,col=ct+1)



Scatter Plot Matrix
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Given training data with K classes, assume a parametric form for fk(x), where
for each class

X|Y = k ∼ (µk,Σk),

i.e. instead of assuming that every class has a different mean µk with the
same covariance matrix Σ, we now allow each class to have its own
covariance matrix.
Considering −2 log P(Y = k|X = x) as before,

−2 log P(Y = k|X = x) ∝ (x− µk)
TΣ−1

k (x− µk)− 2 log(πk) + constk
= µT

k Σ−1
k µk − 2µT

k Σ−1
k x + xTΣ−1

k x

−2 log(πk) + constk
= ak + bT

k x + xTckx

i.e. we find a quadratic function instead (the function constk includes the term
log(|Σk|)



Again, by considering when we choose class k over k′,

0 > ak + bT
k x + xTckx− (ak′ + bT

k′x + xTck′x)

= a? + bT
?x + xTc?x

we see that the Bayes Classifier partitions {x : Ŷ(x) = k} are using quadratic
surfaces.
The Bayes Classifer under these assumptions is more commonly known as
the Quadratic Discriminant Analysis Classifier.



The exact form of the QDA classifier is given by

Ŷqda(x) = arg min
k=1,...,K

{
(x− µ̂k)

TΣ̂k
−1(x− µ̂k)− 2 log(π̂k) + log(|Σ̂k|)

}

for each point x ∈ X where the plug-in estimate µ̂k is as before and Σ̂k is (in
contrast to LDA) estimated for each class k = 1, . . . ,K separately:

Σ̂k =
1
nk

∑

j:Yj=k

(Xj − µ̂k)(Xj − µ̂k)
T .



Computing and plotting the QDA (and LDA) boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)
iris.qda <- qda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

iris.qdp <- predict(iris.qda,z)$class
contour(x,y,matrix(iris.qdp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Iris example: QDA boundaries
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LDA or QDA?

Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.
It is obvious that if the covariances of different classes are very distinct, QDA
will probably have an advantage over LDA.
As parametric models are only ever approximations to the real world, allowing
more flexible decision boundaries (QDA) may seem like a good idea.
However, there is a price to pay in terms of increased variance.



Regularized Discriminant Analysis

In the case where data is scarce , to fit
I LDA, need to estimate K × p + p× p parameters
I QDA, need to estimate K × p + K × p× p parameters.

Using LDA allows us to better estimate the covariance matrix Σ. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices Σk are more variable.
RDA combines the strengths of both classifiers by regularizing each
covariance matrix Σk in QDA to the single one Σ in LDA

Σk(α) = αΣk + (1− α)Σ for some α ∈ [0, 1].

This introduces a new parameter α and allows for a continuum of models
between LDA and QDA to be used. Can be selected by Cross-Validation for
example.
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Naïve Bayes

If p > n (for example more genes p than patients n), LDA (and certainly QDA
and RDA) runs into problems.
Recall that the covariance matrix Σ is estimated from n observations. If p > n,
then

Σ̂ =
1
n

K∑

k=1

∑

j:Yj=k

(Xj − µ̂k)(Xj − µ̂k)
T

is singular. As the inverse of Σ̂ is used in LDA, it will fail.
An extreme regularization is to estimate Σ as above but set all non-diagonal
elements to 0, i.e. ignoring dependence between predictor variables
completely. This is sometimes referred to as Naive Bayes. All correlations
between variables are effectively ignored in this way.
Alternatively, one can estimate Σ by using the estimate Σ̂ as above and
adding λ1p for some λ > 0, where 1p is the p-dimensional identity matrix
(makes only sense if data have been standardized initially).



Applications to Classification of Documents

Given documents such as emails, webpages, scientific articles, books etc., we
might be interested in learning a classifier based on training data to
automatically classify a new document. Possible classes could be
spam/non-spam, academic/commercial webpages, maths/physics/biology etc.
Many popular techniques rely on simple probabilistic models for documents.
Given a prespecified dictionary, we extract high-dimensional features such as
absence/presence of a word (multivariate Bernoulli), number of occurences of
a word (multinomial) etc.
Parameters within in class can be estimated through Maximum Likelihood.
However Maximum Likelihood overfits so we will need to derive more robust
alternative.
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Limitations of Maximum Likelihood

I Given a probabilistic model

P (x, y = k) = πkfk (x) ,

we typically assume a parametric form for fk (x) = f (x|φk) and compute
the MLE θ̂ of θ = (πk, φk)

n
k=1 based on the training data {Xi,Yi}n

i=1.
I We then use a plug-in approach to perform classification

P
(

y = k| x, θ̂
)

=
π̂kf
(

x| φ̂k

)

∑K
j=1 π̂jf

(
x| φ̂j

) .



Limitations of Maximum Likelihood

I Even for simple models, this can prove difficult; e.g. if
f (x|φk) = N (x;µk,Σ) then the MLE estimate of Σ is not full rank for
p > n.

I One possibility is to simplify even further the model as in Naïve Bayes;
e.g.

f (x|φk) =

p∏

l=1

N
(

xl;µl
k,
(
σl

k

)2
)

but this might be too crude.
I Moreover, the plug-in approach does not take into account the

uncertainty about the parameter estimate.



A Toy Example
I Consider a trivial case where X ∈ {0, 1} and K = 2 so that

f (x|φk) = φx
k (1− φk)

1−x
.

then the MLE estimates are given by

φ̂k =

∑n
i=1 I (xi = 1, yi = k)

nk
, π̂k =

nk

n

where nk =
∑n

i=1 I (yi = k) .
I Assume that all the training data for class 1 are such that xi = 0 then
φ̂1 = 0 and

P
(

y = 1| x = 1, θ̂
)

=
P
(

x = 1| y = 1, θ̂
)

P
(

y = 1| θ̂
)

P
(

y = 1| θ̂
)

=
φ̂1π̂1

P
(

y = 1| θ̂
) = 0.

I Hence if we have not observed such events in our training set, we predict
that we will never observe them, ever!



Text Classification
I Assume we are interested in classifying documents; e.g. scientific

articles or emails.
I A basic but standard model for text classification consists of considering

a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document by X =

(
X1, ...,Xp

)

where

Xl =

{
1 if word l is present in document
0 otherwise.

I To implement a probabilistic classifier, we need to model fk (x) for
k = 1, ...,K.

I A Naïve Bayes approach ignores features correlations and assumes
fk (x) = f (x|φk) where

f (x|φk) =

p∏

l=1

(
φl

k

)xl (
1− φl

k

)1−xl



Maximum Likelihood for Text Classification

I Given training data, the MLE is easily obtained

π̂k =
nk

n
, φ̂l

k =

∑n
i=1 I

(
Xl

i = 1,Yi = k
)

nk

I If word l never appears in the training data for class k then φ̂l
k = 0 and

P
(

y = k| x =
(
x1:l−1, xl = 1, xl+1:p) , θ̂

)
= 0;

i.e. we will never attribute a new document containing word l to class k.
I In many practical applications, we have p� n and this problem often

occurs.



A Bayesian Approach

I An elegant way to deal with the problem consists of using a Bayesian
approach.

I We start with the very simple case where

f (x|φ) = φx (1− φ)
1−x

and now set a Beta prior on p (φ) on φ

p (φ) = Beta (φ; a, b)

where
Beta (φ; a, b) =

Γ (a + b)

Γ (a) Γ (b)
φa−1 (1− φ)

b−1 1[0,1] (φ)

with Γ (u) =
∫∞

0 tu−1e−tdt. Note that Γ (u) = (u− 1)! for u ∈ N.
(a, b) are fixed quantities called hyperparameters. For a = b = 1, the Beta
density corresponds to the uniform density.
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A Bayesian Approach

I Given a realization of X1:n = (X1, ...,Xn), inference on φ is based on the
posterior

p (φ| x1:n) =

p (φ)
n∏

i=1
f (xi|φ)

π (x1:n)

= Beta (θ; a + ns, b + n− ns)

with ns =
∑n

i=1 I (xi = 1).
I The prior on θ can be conveniently reinterpreted as an imaginary initial

sample of size (a + b) with a observations “1” and b observations “0”.
Provided that (a + b) is small with respect to n, the information carried by
the data is prominent.
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Figure 4.11: (a) Updating a Beta(2,2) prior with a Binomial likelihood with sufficient statistics N1 = 3, N2 = 17 to yield a Beta(5,19)
posterior. Figure generated by binomialBetaPosteriorDemo. (b) Updating a Beta(5,2) prior with a Binomial likelihood with sufficient
statistics N1 = 11,N2 = 13 to yield a Beta(16,15) posterior. (c) Sequentially updating a Beta distribution. We start with a Beta(1,1) prior
and converge to a delta function centered on the MLE. Figure generated by bernoulliBetaSequentialUpdate.

We see that the posterior has the same functional form (beta) as the prior (beta), since it is conjugate. In particular, the posterior
is obtained by adding the prior hyper-parameters αk to the empirical counts Nk. For this reason, the αk hyper-parameters are
known as pseudo counts. The strength of the prior, also known as the effective sample size of the prior, is the sum of the
pseudo counts, α1 + α2; this plays a role analogous to the data set size, N1 +N2 = N .

Figure 4.11(a) gives an example where we update a weak Beta(2,2) prior with a peaked likelihood function; we see that the
posterior is essentially identical to the likelihood. Figure 4.11(b) gives an example where we update a strong Beta(5,2) prior
with a peaked likelihood function; we see that the posterior is a “compromise” between the prior and likelihood. Compare these
to the analogous pictures for combining a Gaussian prior with a Gaussian likelihood in Figure 5.4.

Figure 4.11(c) shows what happens as the number of samples goes to infinity. Initially (for N = 5), the posterior has a
skewed shape, but then it becomes more Gaussian-like, and eventually it becomes a delta function centered at the MLE.

Note that updating the posterior sequentially is equivalent to updating in a single batch. To see this, suppose we have two
data sets D1 and D2 with sufficient statistics Na

1 , N
a
2 and N b

1 , N
b
2 . Let N1 = Na

1 + N b
1 , N2 = Na

2 + N b
2 and N = N1 + N2.

In batch mode we have

p(θ|D1,D2) ∝ Bin(θ|N1, N1 +N2)Beta(θ|α1, α2) ∝ Beta(θ|N1 + α1, N2 + α2) (4.34)

In sequential mode, we have

p(θ|D1,D2) ∝ p(D2|θ)p(θ|D1) (4.35)
∝ Bin(θ|N b

1 , N
b
1 +N b

2)Beta(θ|Na
1 + α1, N

a
2 + α2) (4.36)

∝ Beta(θ| Na
1 +N b

1 + α1, N
a
2 +N b

2 + α2) (4.37)

This makes Bayesian inference particularly well-suited to online learning, as we will see later.

4.5.1.4 Posterior mean and mode

It is simple to show that the posterior mode, or MAP estimate, is given by

θ̂MAP =
α1 +N1 − 1

α1 + α2 +N − 2
(4.38)

By contrast, the posterior mean is given by,

θ =
α1 +N1

α1 + α2 +N
(4.39)

If we use a uniform prior, αk = 1, then the MAP estimate reduces to the MLE, but the posterior mean estimate does not. We
will exploit this fact below.

We will now show that the posterior mean is convex combination of the prior mean and the MLE. Let the prior mean be
m = (m1,m2), where m1 = α1/α0 and m2 = α2/α0; α0 = α1 + α2 controls the strength of the prior. Then the posterior
mean is

E [θ|D] =
α0m1 +N1

N + α0
=

α0

N + α0
m1 +

N

N + α0

N1

N
= λm1 + (1− λ)θ̂ML (4.40)

where
λ =

α0

N + α0
(4.41)

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

(left) Updating a Beta(2,2) prior with a Binomial likelihood with ns = 3, n = 20
to yield a Beta(5,19); (center) Updating a Beta(5,2) prior with a Binomial
likelihood with ns = 11, n = 24 to yield a Beta(16,15) posterior. (right)
Sequentially updating a Beta distribution starting with a Beta(1,1) and
converging to a delta function centered on the true value.



Posterior Statistics
I We have

E (φ| x1:n) =
a + ns

a + b + n

and the posterior means behave asymptotically like ns/n (the ‘frequentist’
estimator) and converge to φ∗, the ‘true’ value of φ.

I We have

V (φ| x1:n) =
(a + ns) (b + n− ns)

(a + b + n)
2

(a + b + n + 1)

≈
φ̂
(

1− φ̂
)

n
for large n

I The posterior variance decreases to zero as n→∞, at rate n−1: the
information you get on φ gets more and more precise.

I For n large enough, the prior is washed out by the data. For a small n, its
influence can be significant.



Prediction: Plug-in Estimate vs Bayesian Approaches

I Assume you have observed X1 = · · · = Xn = 0, then the plug-in prediction
is

P
(

x = 1| φ̂
)

= φ̂

which does not account whatsoever for the uncertainty about φ.
I In a Bayesian approach, we will use the predictive distribution

P (x = 1| x1:n) =

∫
P (x = 1|φ) p (φ| x1:n) dφ

=
a + ns

a + b + n

so even if ns = 0 then P (x = 1| x1:n) > 0 and our prediction takes into
account the uncertainty about φ.
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Figure 4.12: (a) Prior predictive distribution for a Binomial likelihood withM = 10 trials, and a Beta(2,2) prior on θ. (b) Posterior predictive
distributions after seeing N1 = 3, N2 = 17. (c) Plugin approximation. Figure generated by betaBinomPostPredDemo.

This distribution has the following mean and variance

E [x] = M
α1

α1 + α2
(4.52)

var [x] =
Mα1α2

(α1 + α2)2

(α1 + α2 +M)

α1 + α2 + 1
(4.53)

If M = 1, and hence x ∈ {0, 1}, we see that the mean becomes

E [x|D] = p(x = 1|D) =
α1

α1 + α2
(4.54)

which is consistent with Equation 4.46.
This process is illustrated in Figure 4.12, where we plot prior predictive density, p(x), under a Beta(2,2) prior, as well as

the posterior predictive density after seeing N1 = 3 heads and N2 = 17 tails. Figure 4.12(c) plots a plug-in approximation
using a MAP estimate. We see that the Bayesian prediction has longer tails, spreading its probablity mass more widely, and is
therefore less prone to overfitting and black-swan type paradoxes.

4.5.2 The Dirichlet-multinomial model
We can generalize the above results from coins to dice in a straightforward fashion, as we now show.

4.5.2.1 Likelihood

From Section 3.2.3, the likelihood has the form

p(D|θ) =
K∏

k=1

θNkk (4.55)

where Nk =
∑N
i=1 I(yi = k) is the number of times event k occured.

4.5.2.2 Prior

The conjugate prior is the Dirichlet distribution4, which is the natural generalization of the beta distribution to multiple
dimensions. The pdf is defined as follows:

Dir(θ|α) :=
1

B(α)

K∏

k=1

θαk−1
k I(x ∈ SK) (4.56)

where SK is the K-dimensional probability simplex, which is the set of vectors such that 0 ≤ θk ≤ 1 and
∑K
k=1 θk = 1. In

addition, B(α1, . . . , αK) is the natural generalization of the beta function to K variables:

B(α) :=

∏K
i=1 Γ(αi)

Γ(α0)
(4.57)

4Johann Dirichlet was a German mathematician, 1805–1859.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

(left) Prior predictive dist. for a Binomial likelihood with n = 10 and a Beta(2,2)
prior. (center) Posterior predictive after having seen ns = 3, n = 20. (right)

Plug-in approximation using φ̂.



Bayesian Inference for the Multinomial
I Assume we have Y1:n = (Y1, ...,Yn) where Yi =

(
Y1

i , ...,Y
K
i

)
∈ {0, 1}K

,∑K
k=1 Yk

i = 1 and

P (y|π) =

K∏

k=1

πyk

k

for πk > 0,
∑K

k=1 πk = 1.
I We have seen that the MLE estimate is

π̂k =

∑n
i=1 I

(
yk

i = 1
)

n
=

nk

n

I We introduce the Dirichlet density

p (π) = Dir (π;α) =
Γ
(∑K

k=1 αk

)

K∏
k=1

Γ (αk)

K∏

k=1

παk−1
k

for αk > 0 defined on
{
π : πk > 0 and

∑K
k=1 πk = 1

}
.



Dirichlet Distributions

(left) Support of the Dirichlet density for K = 3 (center) Dirichlet density for
αk = 10 (right) Dirichlet density for αk = 0.1.



Samples from Dirichlet Distributions

Samples from a Dirichlet distribution for K = 5 when αk = αl for k 6= l.



Bayesian Inference

I We obtain

p (π| y1:n) =

p (π)
n∏

i=1
P (yi|π)

p (y1:n)

= Dir (π;α1 + n1, . . . , αK + nK)

I We have

P (y = k| y1:n) =

∫
P (y = k|π) p (π| y1:n) dπ

=
αk + nk∑K
j=1 αj + n

.



Bayesian Text Classification
I We have θ =

(
πk,
(
φ1

k , ..., φ
p
k

))
k=1,...,K with π ∼Dir(α) and φl

k ∼ Beta (a, b) .

I Given data D = (xi, yi)i=1,...,n, classification is performed using

P (y = k|D, x) =
P (x|D, y = k) P (y = k|D)

P (y = k|D)

where
P (y = k|D) =

αk + nk∑K
j=1 αj + n

and P (x|D, y = k) =
p∏

l=1
P
(

xl
∣∣D, y = k

)
with

P
(

xl
∣∣D, y = k

)
=

a +
∑n

i=1 I
(
xl

i = 1, yi = k
)

a + b + nk
.

I A popular alternative for text data consists of using as features the
number of occurrences of words in document and using a multinomial
model for P (x|φk).



Bayesian QDA
I Let us come back to the QDA model where

f (x|φk) = N (x;µk,Σk) .

I We set improper priors on (µk,Σk) where

p (µk,Σk) ∝
exp

(
− 1

2 tr
(
Σ−1

k Bk
))

|Bk|q/2

where Bk > 0 (e.g. Bk = λIp with λ > 1.) ; i.e. flat prior on µk and
inverse-Wishart on Σk. Unimodal prior on Σk with mode Bk/q.

I It follows that

f (x|D, y = k) =

∫
N (x;µk,Σk) p (µk,Σk|D) dµkdΣk

=

(
nk

nk + 1

)p/2 Γ
(

nk+q+1
2

)

Γ
(

nk+q−p+1
2

)
∣∣ Sk+Bk

2

∣∣
nk+q

2

|Ak|
nk+q+1

2

,

Ak = 1
2

(
Sk + nk(x−µk)(x−µk)

T

nk+1 + Bk

)
,

Sk =
∑n

i=1 I (yi = k) (xi − µ̂k) (xi − µ̂k)
T
.



Bayesian QDA

Mean error rates are shown for a two-class problem where the samples from
each class are drawn from a Gaussian distribution with the same mean but
different, highly ellipsoidal covariance matrices. 40 training examples, 100 test
samples.
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Logistic Regression

Recall that for LDA, upon assuming that X|Y = k ∼ N(µk,Σ), the Bayes
Classifier classified to class 1 over class k if

0 > 2 log P(Y = k|x)− 2 log P(Y = 1|x)

= µT
k Σ−1µk − 2µT

k Σ−1x− 2 log(πk)

−(µT
1 Σ−1µ1 − 2µT

1 Σ−1x− 2 log(π1))

= ak + bT
k x

i.e. hyperplanes separate classes in the feature space X .
The separating hyperplane can be rewritten more clearly as

2 log
P(Y = k|x)

P(Y = 1|x)
= ak + bT

k x.



For QDA, X|Y = k ∼ N(µk,Σk), we in turn found a quadratic function
0 > ak + bT

k x + xTckx i.e.

2 log
P(Y = k|x)

P(Y = 1|x)
= ak + bT

k x + xTckx.

The exact value of the parameters ak and bk (ck) had expressions which could
be evaluated once the parameters µk and Σ (Σk) were in turn found by plug-in
estimation (via ML estimation)
We can model these decision boundaries directly instead. This is called
logistic discrimination.



Logistic discrimination model posterior probabilities P(Y = k|x) directly.
Assuming a parametric family of discriminant functions gβ(x), we model the
conditional probabilities as

P̂(Y = k|x) =
exp gβk (x)∑K
j=1 exp gβj(x)

.

Note that the log probability of a class k, with respect to a reference class 1 is:

log
P(Y = k|x)

P(Y = 1|x)
= gβk (x)− gβ1(x)

This reduces to LDA and QDA for linear and quadratic discriminant functions
(assuming also that the parameters βk were estimated as before).



The parameter β̂ = (β̂1, . . . , β̂K) is typically chosen by computing the
(Conditional) Maximum Likelihood estimate.
Given a training set, the likelihood of the model is given by

L(β) =

n∏

i=1

P(Y = yi|xi) =

n∏

i=1

exp gβyi
(xi)∑K

j=1 exp gβj(xi)

and so the (conditional) log-likelihood is

`(β) =

n∑

i=1

log P(Y = yi|xi).

Choosing gβ(x) = βTx results in linear decision boundaries and ensures that
`(β) is concave.
This particular logistic discrimination model is known as logistic regression
and is an example of empirical risk minimization, where the risk is measured
in terms of the ’logistic’ loss function.



For the case of K = 2 classes (binomial logistic regression), the log-likelihood
collapses into a much simpler form than when K > 2 (multinomial logistic
regression). We concentrate on the case where K = 2 though it should be
noted that the theory still applies for K > 2.
Looking at K = 2, we can derive an explicit expression for the log-likelihood as
follows.
For the following let Y ∈ {−1, 1}. Let gβ = βTx and β−1 ≡ 0 (so class −1 is the
reference class). Let β = β1. Then

P(Y = 1|x) =
exp(βTx)

exp(βTx) + 1
=

1
1 + exp(−βTx)

P(Y = −1|x) =
1

1 + exp(βTx)
.

Or, shorthand for both classes, P(Y = y|x) = 1
1+exp(−y·βT x) .



Continuing with this notation, the (conditional) log-likelihood is

`(β) =

n∑

i=1

log P(Y = yi|xi)

=

n∑

i=1

log
1

1 + exp(−yi · βTxi)

=

n∑

i=1

− log(1 + exp(−yi · βTxi)),

where L(y, f ) = log(1 + exp(−y · f )) is the so-called logistic loss, using notation
f = βTxi.
(Note that for under 0-1 loss, the optimal classification is 1 if f > 0 and -1 if
f ≤ 0.)



Compare the logistic loss L(y, f ) = log(1 + exp(−y · f )) with the 0-1
misclassification loss L(y, f ) = 1{sign(y) 6= sign(f )} = 1{y · f < 0}.
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As shown above, ML estimation is (in the case Y ∈ {−1, 1} equivalent to
solving the equations),

β̂ = argminβ
n∑

i=1

log(1 + exp(−yi · βTxi)),

numerical methods must be applied. A high-dimensional version of the
Newton-Raphson algorithm is typically used, where locally the objective
function is approximated by a quadratic function and the solution is then found
by iterated least squares.
When using the univariate Newton-Raphson approach, we need information
about the slope of the curve, in our case we need the Hessian matrix

∂2`(β)

∂β∂βT = −
n∑

i=1

xixT
i p(xi|β) [1− p(xi|β)] .

Extending Newton-Raphson to higher dimensions, starting with βold, a single
Newton-Raphson update is given by

βnew = βold −
(
∂2`(β)

∂β∂βT

)−1
∂`(β)

∂β

where the derivatives are evaluated at βold.



Logistic Regression
I Writing everything in vectorial form,

- c = (Yi)
n
i=1, a vector of the classes

- p =
(
P(Yi = 1|Xi, β

old)
)n

i=1
, the vector of fitted probabilities

- X, an n× p matrix with ith row as Xi

- W, a diagonal matrix with ith diagonal as
P(Yi = 1|Xi, β

old)
(
1− P(Yi = 1|Xi, β

old)
)

I Lets us write ∂`(β)
∂β = XT(c− p) and ∂2`(β)

∂β∂βT = −XTWX so

βnew = βold − (
∂2`(β)

∂β∂βT )−1 ∂`(β)

∂β

= βold + (XTWX)−1XT(c− p)

= (XTWX)−1XTW
[
Xβold + W−1(c− p)

]

Each Newton-Raphson step can be seen as a weighted least squares step,
this algorithm is more commonly known as Iteratively Reweighted Least
Squares.
A few (even just 2 or 3) steps of the algorithm are usually sufficient.



Example: O-ring failures during shuttle starts (preceeeding the Challenger
incident), as a function of temperatures.

library(alr3)
data(challeng)
temp <- challeng[,1]
failure <- challeng[,3]
Y <- as.numeric(failure>0)

plot(temp,Y,xlab="TEMPERATURE",
ylab="O-RING FAILURES",cex=2)



LEFT: Number of failures.
RIGHT: Number of O-Ring failures reduced here to “Failures Yes/No” binary
variable.
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Fit logistic regression with glm function and plot ‘link’ function f = βTX, where
X is here simply temperature (p = 1).

log_reg <- glm( Y ~ temp ,family=binomial)
xvec <- seq(min(temp),max(temp),length=200)
g <- predict(log_reg,newdata=data.frame(temp=xvec),

type="link")
plot(xvec, g ,

type="l",lwd=1.8,
xlab="TEMPERATURE",ylab="g(TEMPERATURE)")
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Now plot P(Y = 1|X) = 1/(1 + exp(−βTX)).

prob <- predict(log_reg,newdata=data.frame(temp=xvec),
type="response")

plot(xvec, prob ,
type="l",lwd=1.8,
xlab="TEMPERATURE",ylab="P(Y=1| TEMP)",ylim=c(0,1))

points(temp,Y,cex=2)
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Logistic Regression or LDA?

Both LR and LDA possess linear decision boundaries
I LDA as a consequence of assuming X|Y = k ∼ Np(µk,Σ) and
I Logistic Regression by construction of the log-odds. However, we can

easily replace a, say, two-dimensional predictor with intercept,
x = (1, x(1), x(2)) with x̃ = (1, x(1), x(2), (x(1))2, (x(2))2) to model non-linear
decision boundaries.

However, actual decision boundaries for both models differ and do so
because of differences in how the coefficients of class decision boundaries
(hyperplanes) are estimated, which approach is ‘better’?

I Where X|Y = k ∼ Np(µk,Σ) is true, LDA seems better positioned.
I It can be shown that where X|Y = k ∼ Np(µk,Σ), using LR results in a
∼30% reduction in the efficiency.

I However, if the assumptions are far from true LDA will suffer.



In support of Logistic Regression over LDA, it can be noted that Logistic
Regression is simply a generalised linear model (GLM).
Knowing this, we can take advantage of all of the theory developed for GLMs.

I assessment of fit via deviance and plots,
I interpretation of βk’s via odds-ratios,
I fitting categorical data (code it via indicator functions),
I well founded approaches to removing insignificant terms (via the drop-in

deviance test and the Wald test),
I model selection via AIC/BIC.

Ultimately, we have to let the data speak!



Spam dataset: Look at examples of spam emails and non-spam emails. The
predictor variables count occurrence of specific words/characters. Look at the
first 2 emails in the database (which are spam).
> library(kernlab)
> data(spam)
> dim(spam)
[1] 4601 58

> spam[1:2,]
make address all num3d our over remove internet order mail receive will

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.64
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.79
people report addresses free business email you credit your font num000

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.00
2 0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43
money hp hpl george num650 lab labs telnet num857 data num415 num85

1 0.00 0 0 0 0 0 0 0 0 0 0 0
2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology num1999 parts pm direct cs meeting original project re edu table

1 0 0.00 0 0 0 0 0 0 0 0 0 0
2 0 0.07 0 0 0 0 0 0 0 0 0 0
conference charSemicolon charRoundbracket charSquarebracket charExclamation

1 0 0 0.000 0 0.778
2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitalLong capitalTotal type

1 0.00 0.000 3.756 61 278 spam
2 0.18 0.048 5.114 101 1028 spam
>



Fit a GLM to the data (look at ?glm for help on the command).

library(kernlab)
data(spam)

## let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric(spam[, ncol(spam)])-1
X <- spam[ ,-ncol(spam)]

gl <- glm(Y ~ ., data=X,family=binomial)

Which predictor variables seem to be important? Can for example check
which ones are significant in the GLM.

summary(gl)



> summary(gl)

Call:
glm(formula = Y ~ ., family = binomial, data = X)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.127e+00 -2.030e-01 -1.967e-06 1.140e-01 5.364e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.569e+00 1.420e-01 -11.044 < 2e-16 ***
make -3.895e-01 2.315e-01 -1.683 0.092388 .
address -1.458e-01 6.928e-02 -2.104 0.035362 *
all 1.141e-01 1.103e-01 1.035 0.300759
num3d 2.252e+00 1.507e+00 1.494 0.135168
our 5.624e-01 1.018e-01 5.524 3.31e-08 ***
over 8.830e-01 2.498e-01 3.534 0.000409 ***
remove 2.279e+00 3.328e-01 6.846 7.57e-12 ***
internet 5.696e-01 1.682e-01 3.387 0.000707 ***
order 7.343e-01 2.849e-01 2.577 0.009958 **
mail 1.275e-01 7.262e-02 1.755 0.079230 .
receive -2.557e-01 2.979e-01 -0.858 0.390655
will -1.383e-01 7.405e-02 -1.868 0.061773 .
people -7.961e-02 2.303e-01 -0.346 0.729557
report 1.447e-01 1.364e-01 1.061 0.288855
addresses 1.236e+00 7.254e-01 1.704 0.088370 .
...



...
business 9.599e-01 2.251e-01 4.264 2.01e-05 ***
email 1.203e-01 1.172e-01 1.027 0.304533
you 8.131e-02 3.505e-02 2.320 0.020334 *
credit 1.047e+00 5.383e-01 1.946 0.051675 .
your 2.419e-01 5.243e-02 4.615 3.94e-06 ***
font 2.013e-01 1.627e-01 1.238 0.215838
num000 2.245e+00 4.714e-01 4.762 1.91e-06 ***
money 4.264e-01 1.621e-01 2.630 0.008535 **
hp -1.920e+00 3.128e-01 -6.139 8.31e-10 ***
hpl -1.040e+00 4.396e-01 -2.366 0.017966 *
george -1.177e+01 2.113e+00 -5.569 2.57e-08 ***
num650 4.454e-01 1.991e-01 2.237 0.025255 *
lab -2.486e+00 1.502e+00 -1.656 0.097744 .
labs -3.299e-01 3.137e-01 -1.052 0.292972
telnet -1.702e-01 4.815e-01 -0.353 0.723742
num857 2.549e+00 3.283e+00 0.776 0.437566
data -7.383e-01 3.117e-01 -2.369 0.017842 *
num415 6.679e-01 1.601e+00 0.417 0.676490
num85 -2.055e+00 7.883e-01 -2.607 0.009124 **
technology 9.237e-01 3.091e-01 2.989 0.002803 **
num1999 4.651e-02 1.754e-01 0.265 0.790819
parts -5.968e-01 4.232e-01 -1.410 0.158473
pm -8.650e-01 3.828e-01 -2.260 0.023844 *
direct -3.046e-01 3.636e-01 -0.838 0.402215
cs -4.505e+01 2.660e+01 -1.694 0.090333 .
meeting -2.689e+00 8.384e-01 -3.207 0.001342 **
original -1.247e+00 8.064e-01 -1.547 0.121978
project -1.573e+00 5.292e-01 -2.973 0.002953 **
re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
edu -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672 *
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 **
charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ***
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 ***
charHash 2.403e+00 1.113e+00 2.159 0.030883 *
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitalLong 9.118e-03 2.521e-03 3.618 0.000297 ***
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

Number of Fisher Scoring iterations: 13



...
project -1.573e+00 5.292e-01 -2.973 0.002953 **
re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
edu -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672 *
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 **
charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ***
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 ***
charHash 2.403e+00 1.113e+00 2.159 0.030883 *
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitalLong 9.118e-03 2.521e-03 3.618 0.000297 ***
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

Number of Fisher Scoring iterations: 13



How good is the classification?

> proba <- predict(gl,type="response")
> predicted_spam <- as.numeric( proba>0.5)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2666 194
1 122 1619

> predicted_spam <- as.numeric( proba>0.99)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2776 1095
1 12 718

So out of 730 emails marked as spam, 12 were actually not spam. Would you
expect a similar success rate for future classifications?
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Training and Test error
Important distinction:

I Training error is the empirical risk

n−1
n∑

i=1

L(yi, ŷi)

For 0-1 loss in classification, this is the misclassification error on the
training data, which were used in fitting ŷ.

I Test error is the empirical risk on new, previously unseen, observations

m−1
m∑

i=1

L(yi, ŷi)

which were NOT used in fitting.
The test error is in general larger than the training error (as we are fitting
partially noise – depending on the complexity of the classifier). It is a much
better gauge of how well the method will do on future data.



Success rate is calculated on the same data that the GLM is trained on!
Separate in training and test set.

n <- length(Y)
intrain <- sample( rep(c(TRUE,FALSE),each=n/2) ,

round(n/2) ,replace=TRUE )
train <- (1:n)[intrain]
test <- (1:n)[!intrain]

Fit only on training set and predict on both training and test set.

gl <- glm(Y[train] ~ ., data=X[train,],family=binomial)

proba_train <- predict(gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

predicted_spam_train <- as.numeric(proba_train > 0.95)
predicted_spam_test <- as.numeric(proba_test > 0.95)



Results for training and test set:

> table(predicted_spam_train, Y[train])
predicted_spam_train 0 1

0 1403 354
1 11 567

> table(predicted_spam_test, Y[test])
predicted_spam_test 0 1

0 1346 351
1 28 541

Its no coincidence that the success rate is worse on the test data.



Compare with LDA.

library(MASS)
ldares <- lda(x=X[train,],grouping=Y[train])

With following result

> Call:
lda(X, grouping = Y)

Prior probabilities of groups:
0 1

0.6059552 0.3940448

...



...

Coefficients of linear discriminants:
LD1

make -0.2053433845
address -0.0496520077
all 0.1618979041
num3d 0.0491205095
our 0.3470862316
over 0.4898352934
remove 0.8776953914
internet 0.3874021379
order 0.2987224576
mail 0.0621045827
receive 0.2343512301
will -0.1148308781
people 0.0490659059
....
charHash 0.1141464080
capitalAve 0.0009590191
capitalLong 0.0002751450
capitalTotal 0.0003291749



Compare prediction on test set.

library(MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda <- predict(lda_res,newdata=X[test,])$posterior[,2]
predicted_spam_lda <- as.numeric(proba_lda > 0.95)

> table(predicted_spam_test, Y[test])
predicted_spam_test 0 1

0 1346 351
1 28 541

> table(predicted_spam_lda, Y[test])
predicted_spam_lda 0 1

0 1364 533
1 10 359

It seems as if LDA beats Linear Regression here, but would need to adjust
cutpoint to get proper comparison. Use ROC curves.



ROC curves

We can change the cutpoint c

predicted_spam_lda <- as.numeric(proba_lda > c)

to get different tradeoffs between
I Sensitivity: probability of predicting spam given true state is spam
I Specificity: probability of predicting non-spam given true state is

non-spam

TRUE STATE 0 1 0 1
PREDICTION 0 1364 533 normalize 0 0.9972 0.5975

1 10 359 ----> 1 0.0072 0.4024
TOTAL 1374 892 1 1



ROC curve is sensitivity versus specificity

cvec <- seq(0.001,0.999,length=1000)
specif <- numeric(length(cvec))
sensit <- numeric(length(cvec))

for (cc in 1:length(cvec)){
sensit[cc] <- sum( proba_lda> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specif[cc] <- sum( proba_lda<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)

}
plot(specif,sensit,

xlab="SPECIFICITY",ylab="SENSITIVITY",type="l",lwd=2)



ROC curve for LDA and Logistic Regression classification of spam dataset.
LDA = unbroken black line; LR = broken red line.
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Obvious now that LR is better for this dataset than LDA, contrary to the first
impression.




	Supervised Learning: Parametric Methods
	Decision Theory
	Linear Discriminant Analysis
	Quadratic Discriminant Analysis
	Naïve Bayes
	Bayesian Methods
	Logistic Regression
	Evaluating Learning Methods


