
Outline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Boosting

Boosting is a very different method to generate multiple predictions (function
estimates) and combine them linearly. As with bagging, we have a base
procedure yielding function estimates ĝ(·) (e.g. a tree algorithm).

The so-called L2Boosting method (for regression) works as follows.
1. Fit a first function estimate from the data {(Xi, Yi); i = 1, . . . , n} yielding a

first function estimate ĝ1(·).
Compute residuals

Ui = Yi − νĝ1(Xi) (i = 1, . . . , n).

Denote by f̂1(·) = νĝ1(·) (with shrinkage 0 < ν ≤ 1).
2. For m = 2, 3, . . . ,M do:

Fit the residuals (Xi,Ui) → ĝm(·) and set

f̂m(·) = f̂m−1(·) + νĝm(·).

Compute the current residuals Ui = Yi − f̂m(Xi) for i = 1, . . . , n.

Example again Boston Housing data with single predictor variable crime rate.
First iteration: fit original observation with a stump.

|crim>=1.918

−9.076 1.925 ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

−1
0

0
10

20

CRIME RATE
R

ES
ID

U
AL

S

Fit of tree ĝ1(x) in red.
Shrunken fit νĝ1(x) in blue.
Some residuals Ui = Yi− νĝ1(Xi) plotted with vertical bars. Fit these residuals
in the next step.

second iteration: fit residuals Ui = Yi − νĝ1(Xi) from first iteration with a stump
(after setting mean of Y to 0).

|crim>=−2.647

−1.742 5.226
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−4 −2 0 2 4

−1
0

0
10

20

CRIME RATE
R

ES
ID

U
AL

S

Fit of tree ĝ2(x) in red. Shrunken fit νĝ2(x) in blue.
Some of the new residuals

Ui − νĝ2(Xi) = Yi − νĝ1(Xi)− νĝ2(Xi)

plotted with vertical bars. Fit these residuals in the next step.

after 10 iterations:

|crim>=−2.336

−0.4874 1.012
●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

−4 −2 0 2 4

−1
0

0
10

20

CRIME RATE
R

ES
ID

U
AL

S

Fit of tree ˆg10(x) in red. Shrunken fit νĝ10(x) in blue.
Note that there is not a lot of signal left in the data to be fitted by Ŷ(x). The
changes in the fit are very small after many iterations.

Some notes on Boosting:
� The shrinkage parameter ν can and should be chosen to be small, e.g.

ν = 0.1.
� The stopping parameter M is a tuning parameter of boosting. For ν small

we typically can choose M large.
Boosting is a bias reduction technique, in contrast to bagging. Boosting
typically improves the performance of a single (simple) tree model.

� We often cannot construct trees which are sufficiently large due to
thinning out of observations in the terminal nodes.

� Boosting is then a device to come up with a more complex solution by
taking linear combination of trees.

� In presence of high-dimensional predictors, boosting is also very useful
as a regularization technique for additive or interaction modeling.

Boosting can be viewed as function gradient descent.
Let L(f) be a differentiable loss function defined on the empirical data sample,
e.g. for squared error loss,

L(f) = n−1
n�

i=1

(Yi − f (Xi))
2.

The Boosting algorithm can be viewed as functional gradient descent.

1. Fit a first function estimate from {(Xi,−∇L(f ≡ 0)); i = 1, . . . , n} yielding
ĝ1(·). Denote by

f̂1(·) = νĝ1(·).
2. For m = 2, 3, . . . ,M do:

Fit the gradient (Xi, (−∇L)(f̂m−1)) → ĝm(·) and set

f̂m(·) = f̂m−1(·) + νĝm(·).

For classification with Yi ∈ {−1, 1},

L(f) = n−1
n�

i=1

φ(Yif (Xi)).

!2 !1 0 1 2

0
1

2
3

4
5

6
7

!

0!1

exponential

hinge

logistic

truncated quadratic

Figure 1: A plot of the 0-1 loss function and surrogates corresponding to various practical classifiers.
These functions are plotted as a function of the margin α = yf(x). Note that a classification error
is made if and only if the margin is negative; thus the 0-1 loss is a step function that is equal to one
for negative values of the abscissa. The curve labeled “logistic” is the negative log likelihood, or
scaled deviance, under a logistic regression model; “hinge” is the piecewise-linear loss used in the
support vector machine; and “exponential” is the exponential loss used by the Adaboost algorithm.
The deviance is scaled so as to majorize the 0-1 loss; see Lemma 8.

Consistency results provide reassurance that optimizing a surrogate does not ultimately hinder

the search for a function that achieves the Bayes risk, and thus allow such a search to proceed within

the scope of computationally efficient algorithms. There is, however, an additional motivation for

working with surrogates of 0-1 loss beyond the computational imperative. Minimizing the sample

average of an appropriately-behaved loss function has a regularizing effect: it is possible to obtain

uniform upper bounds on the risk of a function that minimizes the empirical average of the loss φ,

even for classes that are so rich that no such upper bounds are possible for the minimizer of the

empirical average of the 0-1 loss. Indeed a number of such results have been obtained for function

classes with infinite VC-dimension (Bartlett, 1998, Shawe-Taylor et al., 1998), such as the function

3

� Obtain L2Boosting when using the quadratic loss function

L(f) = n−1
n�

i=1

(Yi − f (Xi))
2.

� Obtain AdaBoost (the original boosting algorithm by Freund and Shapire)
when using the exponential loss (for Y ∈ {−1, 1})

L(f) = n−1
n�

i=1

exp(−Yf (Xi)).

� Obtain LogitBoost when using the logistic loss function (again
Y ∈ {−1, 1}),

L(f) = n−1
n�

i=1

log(1 + exp(−Yf (Xi))).

Boosting is implemented in package mboost.

> library(mboost)
> library(help=mboost)
> ?blackboost
blackboost package:mboost R Documentation
Gradient Boosting with Regression Trees

Description:
Gradient boosting for optimizing arbitrary loss functions where
regression trees are utilized as base learners.

Usage:
S3 method for class ’formula’:
blackboost(formula, data = list(), weights = NULL, ...)
S3 method for class ’matrix’:
blackboost(x, y, weights = NULL, ...)
blackboost_fit(object, tree_controls =

ctree_control(teststat = "max",
testtype = "Teststatistic",
mincriterion = 0,
maxdepth = 2),

fitmem = ctree_memory(object, TRUE), family = GaussReg(),
control = boost_control(), weights = NULL)

A simple cross-validation scheme.

library(mboost)
?blackboost ## help function for tree boosting
n <- length(y) ## number of observations

Mvec <- 1:500 ## Mvec is vector with various stopping times
nM <- length(Mvec) ## number of possible stopping times
loss <- numeric(nM) ## loss contains the training error
losscv <- numeric(nM) ## losscv contains the cross-validated

test error

...

...
for (mc in 1:nM){ ## loop over stopping times (not efficient)
yhat <- numeric(n) ## yhat are the fitted values
yhatcv <- numeric(n) ## yhatcv the cross-validated fitted values

M <- Mvec[mc] ## use M iterations

V <- 10 ## 10-fold cross validation
indCV contains the ‘block’ in 1,...,10
each observation falls into

indCV <- sample(rep(1:V,each=ceiling(n/V)), n)

for (cv in 1:V){ ## loop over all blocks
bb <- blackboost(y[indCV!=cv] ~ .,data=x[indCV!=cv,],

control=boost_control(mstop=M))
predict the unused observations

yhatcv[indCV==cv] <- predict(bb,x[indCV==cv,])
}
losscv[mc] <- sqrt(mean((y-yhatcv)^2)) ## CV test error

bb <- blackboost(y ~ .,data=x,control=boost_control(mstop=M))
yhat <- predict(bb,x)
loss[mc] <- sqrt(mean((y-yhat)^2)) ## training error

}

Plot CV-test error in red as a function of the boosting iterations and training
error in black.
matplot(cbind(loss,losscv), type="p",lwd=2,col=c(1,2),lty=1)
abline(h= sqrt(mean((predict(rf)-y)^2)),lwd=1,lty=2)

0 10 20 30 40 50 60

2
3

4
5

6
7

8

BOOSTING ITERATIONS

LO
SS

Comparison with RF

Both RF and Boosting are tree ensembles.
� As RF, Boosting does not seem to overfit (the CV curve stays flat).

This is not quite true, though: what is

lim
m→∞

f̂m(Xi) ?

Need to stop early (after having done M iterations)!
� The stopping parameter M needs to be adjusted by either

� cross-validation, which is computationally expensive or
� model selection, which does not work very well for trees as base learners

(what are the degrees of freedom of a tree?)
� Predictive performance is very similar.
� Properties of Boosting (and why it is successful) are rather well

understood (e.g. by bias reduction), but remain more of a mystery for RF.

