QOutline

Supervised Learning: Ensemble Methods

Random Forests

Random Forests

The following misclassification errors compare “Random Forests” with single

trees. RF are closely related to bagged trees.
TABLE 2
Test set misclassification error (%)

Data set Forest Single tree
Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6
Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle x103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

from Breiman: “Statistical Modelling: the two cultures”.

Random Forests (Breiman, 2001) are widely believed to be the best
“off-the-shelf” classifiers for high-dimensional data.

Similar to bagged decision trees with a few key differences:

» For each splitpoint, the search is not over all p variables but just over mtry
variables (where e.g. mtry = |p/3])

» No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).

Bagged decision trees can be seen as a special case of Random Forests (for
mtry=p), if trees are not pruned, e.g. always grown to maximal depth.

Advantages of RF over bagged decision trees
» better prediction (in general).

» almost no parameter tuning necessary with RF (although it still helps to
vary the value of mtry). Tree depth needs to be chosen carefully with
bagging, while we can always grow trees without pruning with RF.

Random Forests are implemented in package randomForest.
Looking at the Boston Housing data again (and at the help page for

randomForest first).

library (randomForest)
library (MASS)
data (Boston)

y <-— Boston[, 14]
X <— Boston[,1:13]

?randomForest

> randomForest package:randomForest R Documentation
Classification and Regression with Random Forest

Description:
"randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest (formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:

randomForest (x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))

max (floor (ncol (x)/3), 1) else floor (sgrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = if (replace) nrow(x) else ceiling(.632*nrow (x
nodesize = 1f (!is.null(y) && !is.factor(y)) 5 else 1,

importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null (y) && is.null (xtest), corr.bias=FAIL
keep.inbag=FALSE, ...)

Boston Housing data, again.

I?.

iiiii

IIIIII

B [

Pl
a 15 0 60

@ - ©
o]
™ .
i i..‘ " b o
T _,:_
.
- =~

3

%]
]

(R

2 8 4 7 0.0 08 0 60
:“l' NN 11111
- v 2] ! s
. | b : | B 3
- ©
] C o
- S

7. .
.' Ry . _-‘ E " F‘ " {4 k 3 .
: ! 3 iR . . m H #
T
10 14 22 5 20 0 60 0.4 08

10 40 0 300
[=]
& N R B .]
[=] . - e - [

.
ﬁ?s- f 4# %, g o ﬂﬂ
s B i e (B

-FEEAMNNOEMEL

EEANTOMED

o[o e o |

3
o |
=
1
Wy

FEOIIULEEEL

ugm

> rf <- randomForest (x,V)
> print (rf)
>
Call:
randomForest (x = x, y = V)
Type of random forest: regression
Number of trees: 500
No. of wvariables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot (predict(rf), vy)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot (predict (rf,newdata=x), vy)

Out-of-bag error. Training error.

> plot (predict(rf), vy) > plot (predict (rf, newdata=x), V)
> abline(c(0,1),col=2) > abline(c(0,1),col=2)

I I I I I I I I I
10 20 30 40 10 20 30 40 50

predict(rf) predict(rf, newdata = x)

Try mtry 2

> (rf <- randomForest (x,y,mtry=2))
Call:
randomForest (x = x, y = vy, mtry = 2)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest (x,y,mtry=4))
Call:

randomForest (x = x, yv = vy, mtry = 4)

Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.01574
% Var explained: 88.14

And mtry 8 and 10.

> (rf <- randomForest (x,y,mtry=8))
Call:
randomForest (x = x, y = vy, mtry = 8)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 8

Mean of squared residuals: 9.552806

[e]

% Var explained: 88.68

> > (rf <- randomForest (x,y,mtry=10))
Call:
randomForest (x = x, y = vy, mtry = 10)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10

Mean of squared residuals: 9.774435

[e)

% Var explained: 88.42

Choice of mt ry makes little difference but is the only real tuning parameter.

Variable “importance”

Despite the better predictive performance, single trees seem to have an edge
over tree ensembles in terms of interpretability.

How do you interpret a forest of trees ?

ldea: denote by ¢ the out-of bag estimate of the loss when using the original

data samples.
For each variable k € {1,...,p},
» permute randomly the k-th predictor variable to generate a new set of
samples (X1, Y1), ..., (Xy, V).
» compute the out-of-bag estimate ¢, of the prediction error with these new
samples.

A measure of importance of variable k is then ¢, — e, the increase in error rate
due to random permutation of the k-th variable.

Example for Boston Housing data.

rf <- randomForest (x,y, importance=TRUE)
varImpPlot (rf)

rm
Istat
dis e
nox o
crim o
ptratio o

age o

tax o)

indus o

black o

rad o

chas o

zn o

I I I I
5 10 15 20

%IncMSE

25

30

35

Random Forests can be seen as an adaptive nearest neighbour technique.
Let P(x, x;) € [0, 1] be the proportion of trees for which an observation x falls
into the same final leaf node as the original observation x;. If every leaf node
contains the same number of observations, the prediction of Random Forests
(in regression mode) at predictor x is

f/RF<x) _ S Plx,x)Y;

Z?zl P(x7 xi) 7

which is a weighted (adaptive) nearest neighbour scheme and the weights are
proportional to the proximities P(x, x;).

If the nodes contain different number of original observations, P(x,x;) is the
weighted proportion of trees where x and x; fall into the same leaf node, and
weights are inversely proportional for each tree to the number of samples in
the leaf node where x; falls into.

For classification, the prediction will be the weighted majority vote, where
again weights are proportional to the proximities P(x, x;).

Can visualize weights P(x;, x;) for example by MDS.
Use Glass dataset as example.

> library (MASS)
> data (Glass)
> Glass[1:10,]
RT Na Mg Al Si K Ca Ba Fe Type

1 1.52101 13.064 4.49 1.10 71.78 0.06 8.75 0 0.00 1
2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00 1
3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0.00 1
4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0.00 1
5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0.00 1
6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1
7 1.51743 13.30 3.60 1.14 73.09 0.58 8.17 O 0.00 1
g8 1.51756 13.15 3.01 1.05 73.24 0.57 8.24 0 0.00 1
9 1.51918 14.04 3.58 1.37 72.08 0.56 8.30 0 0.00 1
10 1.51755 13.00 3.60 1.36 72.99 0.57 8.40 O 0.11 1

Try to predict glass type, based on chemical composition.

> X <= Glass][,-10]
> Y <- Glass[,10]

> rf <- randomForest (X,Y,ntree=500, proximity=TRUE, cob.prox=TRUE)

Calculate the proximities P(x;, x;) based on out-of-bag observations.

> rf

Call:
randomForest (x = X, y = Y, proximity = TRUE, oob.prox
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 3

OOB estimate of error rate: 20.09%
Confusion matrix:

1 2 3 45 6 class.error
1 63 6100 O 0.1000000
2 9 060 2 2 2 1 0.2105263
37 3700 O 0.5882353
4 0 30 90 1 0.3076923
5 0 2007 0 0.2222222
6 1 3 0 0 0 25 0.1379310

TRUE)

Visualize proximities P(x;,x;) fori,j = 1,...,n by MDS, using as distance
matrix D =1 — P.

> MDSplot (rf,Y)

©
S
<
S
°
Al
o | . °
Al
£
()]
S) ‘?;....’...o“ 8e
o ®oq) ® o
. o EV il
°
[J
‘... . . e .'o\.\.’.
0%® ° ¢
°
N o .
CID — °
o0, ‘:
.'
.‘.o
« | &
o
[I I I I I
-0.4 -0.2 0.0 0.2 0.4

Nim 1

