
Outline

Supervised Learning: Ensemble Methods
Bagging
Random Forests
Boosting

Random Forests

The following misclassification errors compare “Random Forests” with single
trees. RF are closely related to bagged trees.

STATISTICAL MODELING: THE TWO CULTURES 207

Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

from Breiman: “Statistical Modelling: the two cultures”.

Random Forests (Breiman, 2001) are widely believed to be the best
“off-the-shelf” classifiers for high-dimensional data.

Similar to bagged decision trees with a few key differences:
� For each splitpoint, the search is not over all p variables but just over mtry

variables (where e.g. mtry = �p/3�)
� No pruning necessary. Trees can be grown until each node contains just

very few observations (1 or 5).

Bagged decision trees can be seen as a special case of Random Forests (for
mtry=p), if trees are not pruned, e.g. always grown to maximal depth.

Advantages of RF over bagged decision trees
� better prediction (in general).
� almost no parameter tuning necessary with RF (although it still helps to

vary the value of mtry). Tree depth needs to be chosen carefully with
bagging, while we can always grow trees without pruning with RF.

Random Forests are implemented in package randomForest.
Looking at the Boston Housing data again (and at the help page for
randomForest first).

library(randomForest)
library(MASS)
data(Boston)

y <- Boston[,14]
x <- Boston[,1:13]

?randomForest

> randomForest package:randomForest R Documentation

Classification and Regression with Random Forest

Description:
’randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

Boston Housing data, again.

> rf <- randomForest(x,y)
> print(rf)
>
Call:
randomForest(x = x, y = y)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot(predict(rf), y)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot(predict(rf,newdata=x), y)

Out-of-bag error.

> plot(predict(rf), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●●●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●
●●

●
●

●● ●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●● ●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●
●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

predict(rf)

y
Training error.

> plot(predict(rf,newdata=x), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40 50
10

20
30

40
50

predict(rf, newdata = x)

y

Try mtry 2

> (rf <- randomForest(x,y,mtry=2))
Call:
randomForest(x = x, y = y, mtry = 2)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest(x,y,mtry=4))
Call:
randomForest(x = x, y = y, mtry = 4)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.01574
% Var explained: 88.14

And mtry 8 and 10.

> (rf <- randomForest(x,y,mtry=8))
Call:
randomForest(x = x, y = y, mtry = 8)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 8

Mean of squared residuals: 9.552806
% Var explained: 88.68

> > (rf <- randomForest(x,y,mtry=10))
Call:
randomForest(x = x, y = y, mtry = 10)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

Choice of mtry makes little difference but is the only real tuning parameter.

Variable “importance”

Despite the better predictive performance, single trees seem to have an edge
over tree ensembles in terms of interpretability.
How do you interpret a forest of trees ?
Idea: denote by ê the out-of bag estimate of the loss when using the original
data samples.
For each variable k ∈ {1, . . . , p},

� permute randomly the k-th predictor variable to generate a new set of
samples (X̃1, Y1), . . . , (X̃n, Yn).

� compute the out-of-bag estimate êk of the prediction error with these new
samples.

A measure of importance of variable k is then êk − ê, the increase in error rate
due to random permutation of the k-th variable.

Example for Boston Housing data.

rf <- randomForest(x,y,importance=TRUE)
varImpPlot(rf)

zn
chas
rad
black
indus
tax
age
ptratio
crim
nox
dis
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30 35

%IncMSE

Random Forests can be seen as an adaptive nearest neighbour technique.
Let P(x, xi) ∈ [0, 1] be the proportion of trees for which an observation x falls
into the same final leaf node as the original observation xi. If every leaf node
contains the same number of observations, the prediction of Random Forests
(in regression mode) at predictor x is

ŶRF(x) =
�n

i=1 P(x, xi)Yi�n
i=1 P(x, xi)

,

which is a weighted (adaptive) nearest neighbour scheme and the weights are
proportional to the proximities P(x, xi).
If the nodes contain different number of original observations, P(x, xi) is the
weighted proportion of trees where x and xi fall into the same leaf node, and
weights are inversely proportional for each tree to the number of samples in
the leaf node where xi falls into.
For classification, the prediction will be the weighted majority vote, where
again weights are proportional to the proximities P(x, xi).

Can visualize weights P(xi, xj) for example by MDS.
Use Glass dataset as example.

> library(MASS)
> data(Glass)
> Glass[1:10,]

RI Na Mg Al Si K Ca Ba Fe Type
1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0 0.00 1
2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00 1
3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0.00 1
4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0.00 1
5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0.00 1
6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1
7 1.51743 13.30 3.60 1.14 73.09 0.58 8.17 0 0.00 1
8 1.51756 13.15 3.61 1.05 73.24 0.57 8.24 0 0.00 1
9 1.51918 14.04 3.58 1.37 72.08 0.56 8.30 0 0.00 1
10 1.51755 13.00 3.60 1.36 72.99 0.57 8.40 0 0.11 1

Try to predict glass type, based on chemical composition.

> X <- Glass[,-10]
> Y <- Glass[,10]
> rf <- randomForest(X,Y,ntree=500,proximity=TRUE,oob.prox=TRUE)

Calculate the proximities P(xi, xj) based on out-of-bag observations.

> rf

Call:
randomForest(x = X, y = Y, proximity = TRUE, oob.prox = TRUE)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 20.09%
Confusion matrix:

1 2 3 4 5 6 class.error
1 63 6 1 0 0 0 0.1000000
2 9 60 2 2 2 1 0.2105263
3 7 3 7 0 0 0 0.5882353
4 0 3 0 9 0 1 0.3076923
5 0 2 0 0 7 0 0.2222222
6 1 3 0 0 0 25 0.1379310

Visualize proximities P(xi, xj) for i, j = 1, . . . , n by MDS, using as distance
matrix D = 1 − P.
> MDSplot(rf,Y)

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●● ●

●

●● ●

●

● ●

● ●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●●●● ●●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●●●●
●●

●●
●

●
●● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●●●
●

●

●

●

●

●

●
●●

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Dim 1

D
im

 2

