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Model complexity

Which size of the tree is optimal?
Can grow tree until every leaf node contains only 1 original observation.
Clearly one should stop before. But where?
Example: Pima Indians Dataset.
The subjects were women who were at least 21 years old, of Pima Indian heritage and
living near Phoenix, Arizona. They were tested for diabetes according to World Health
Organisation criteria.
The variables measured were the number of pregnancies (npreg), the plasma glucose
concentration in an oral glucose tolerance test (glu), the diastolic blood pressure in
mmHg (bp), the triceps skin fold thickness in mm(skin), the body mass index(bbi), the
diabetes pedigree function (ped), and the age (age).



> library(rpart)
> library(MASS)
> data(Pima.tr)
> str(Pima.tr)

> > Pima.tr
npreg glu bp skin bmi ped age type

1 5 86 68 28 30.2 0.364 24 No
2 7 195 70 33 25.1 0.163 55 Yes
3 5 77 82 41 35.8 0.156 35 No
4 0 165 76 43 47.9 0.259 26 No
5 0 107 60 25 26.4 0.133 23 No
6 5 97 76 27 35.6 0.378 52 Yes
7 3 83 58 31 34.3 0.336 25 No
8 1 193 50 16 25.9 0.655 24 No
9 3 142 80 15 32.4 0.200 63 No
10 2 128 78 37 43.3 1.224 31 Yes
11 0 137 40 35 43.1 2.288 33 Yes
12 9 154 78 30 30.9 0.164 45 No
13 1 189 60 23 30.1 0.398 59 Yes
...



> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> rp
n= 200

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)

4) age< 28.5 74 4 No (0.94594595 0.05405405) *
5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) *
11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947) *
23) bp< 68 7 2 Yes (0.28571429 0.71428571) *

3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) *

7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) *



Two possible trees.

> rp1 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot(rp1);text(rp1)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control(cp=0.05))

> plot(rp2);text(rp2)
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Figure 8.4: Unpruned decision tree for the Pima Indians data set

Diabetes and Digestive and Kidney Diseases. The subjects were women who were at least 21 years old,
of Pima Indian heritage and living near Phoenix, Arizona. They were tested for diabetes according to
World Health Organisation criteria. The variables measured were the number of pregnancies (npreg),
the plasma glucose concentration in an oral glucose tolerance test (glu), the diastolic blood pressure
in mm Hg (bp), the triceps skin fold thickness in mm (skin), the body mass index (bbi), the diabetes
pedigree function (ped), and the age (age).

8.3 Pruning a tree

Growing the tree until no more decrease in impurity is possible often leads to an overfit to the training
data. We thus have to prune the tree. The most popular pruning approach is the one proposed by
Breiman et al. (1984a). The idea behind this approach is that too big trees yield an overfit. Thus
too big trees must be penalised. Denote with R(T ) a measure of fit for the tree; this can be the
misclassification rate on the training set or the entropy of the partitioning. Instead of minimising the
fit criterion R(T ) itself, we now minimise the penalised fitting criterion

R(T ) + α · size(T ),

where size(T ) is the number of leafs and α controls the amount of penalisation. If we choose α = 0,
there will be no pruning; if we choose α = +∞ all nodes but the root node are removed. Breiman
et al. (1984a) showed that there is a nested sequence of subtrees of the fitted tree such that each is
optimal for a range of α. So all we have to do is to pick one of the trees of this sequence.

If we have a validation set at hand, we can pick the subtree yielding the lowest error rate in the
validation set. Otherwise one generally uses cross-validation to pick the optimal subtree. Figure 8.5
shows the error (relative to a tree with the root node only) for the different subtrees for the Pima
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Figure 8.6: Pruned decision tree for the Pima Indians data set.



Model Complexity

What influence has the size of the tree on predictive performance?
� The larger the tree is (the more final leaf nodes), the better is the

prediction on the training samples.
� However, performance on new data / test data is deteriorating –in

general– after a certain complexity (size) of the tree is surpassed.
Want to find the optimal complexity / tree size, giving best predictive
performance for new (unseen) data.



Training and test error rate

Let L(Y, Ŷ) be a loss function that measures the loss when observing Y under
a predition Ŷ.

� For regression trees,
L(Y, Ŷ) = (Y − Ŷ)2.

� For classification trees

L(Y, Ŷ) = 1{Y �= Ŷ}.



There are two important error rates, when using observations
(X1, Y1), . . . , (Xn, Yn) and a predictor Ŷ = Ŷ(x). The fitted values at the n
observations are Ŷi := Ŷ(Xi).

� Training error rate R (or apparent error rate) is the loss for the training
sample,

Rtrain = n−1
n�

i=1

L(Yi, Ŷi).

� True error is the expected error rate/risk for new data (X, Y)

Rtest = E
�
L(Y, Ŷ)

�
,

where the expectation is with respect to drawing new random pairs (X, Y)
and using the predictor Ŷ = Ŷ(X) at the newly observed X.



Cross-Validation

Suppose we had
� training data (Xi, Yi), i = 1, . . . , n
� and a separate set of test data (X̃j, Ỹj), j = 1, . . . , ntest.

One possibility of estimating the true error rate is to
� fit the predictor Ŷ (a tree here) on the training data and then
� evaluate the error rate on the test data (which have not been used for

fitting of the tree),

R̂test = n−1
test

ntest�

j=1

L(Ỹj, Ŷ(X̃j)).

Disadvantage: if we have ntest additional samples, we could have used test
data to get a larger training set and thus a better predictor.



Leave-one out cross-validation (LOO-CV)

For all i = 1, . . . , n:
� fit the tree T(−i) by using all n observations except the i-th observation.
� compute prediction Ŷ(−i)(Xi) by running Xi down this tree.

Compute the LOO-CV estimate of generalization error as

R̂test = n−1
n�

i=1

(Ŷ(−i)(Xi)− Yi)
2

for regression and mis-classification error or entropy criterion for classification.
LOO-CV is a nearly unbiased estimate of generalization error. It can be
expensive to compute as the tree (or other predictor) needs to be
re-computed n times.



Example: Boston Housing Data
Again try to predict median house prices by using for simplicity just a single
predictor variable, (logarithm of) crime rate.
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Red line is fitted curve Ŷ(x) for a tree of depth 1 (a stump). Blue vertical bar
corresponds to residual of i = 54th observation with a squared residual of
590. Observation i was used to fit Ŷ here !



Do the same fit but leave-out observation i = 54.
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Red line is fitted curve Ŷ(−54)(x). Blue vertical bar corresponds to LOO-CV
residual of i = 54th observation with a squared residual of 590. Observation
i = 54 was now NOT used to fit Ŷ(−54) here!
Repeat for all i = 1, . . . , n.



V-fold cross-validation

Is computationally cheaper than LOO-CV and yields comparable results.
V-fold cross-validation works by splitting the dataset randomly into V sets of
equal size S1, . . . , SV , so that Sk ∩ Sk� = ∅ for all k �= k� and ∪kSk = {1, . . . , n}.
For each v = 1, . . . ,V

� compute the predictor (tree) using samples {1, . . . , n} \ Sv.
� predict the response for samples in set Sv with the found predictor
� record the test error for the set Sv.

Average the test error over all V sets.
Typical choices are V = 5 or V = 10.



Example: Boston Housing Data
Assess now a whole block Sv of about n/10 of all n observations (V=10 fold
CV).
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Red line is fitted curve Ŷ(x) for a tree of depth 1 (a stump). Blue vertical bar
corresponds to residuals of ith observation, where i is in the to be assessed
block v.



Do the same fit but leave-out observation the whole block of observations Sv.
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Red line is fitted curve without using observations in block v. Blue vertical bar
corresponds to LOO-CV residuals.
Repeat for all V = 10 blocks of all observations, each containing about n/10 of
all samples.



Choosing the optimal tree

We would like to choose the tree that minimizes the true error rate. We dont
have the test error, but can use CV-approximation R̂test instead and choose the
optimal tree T∗ as

T∗ = argminT R̂test(T).

This would require searching across all possible trees T and is clearly
infeasible.
With CV, we can however search for the optimal value of one-dimensional
so-called ‘tuning’ parameter. Here, we use tuning parameter α for tree pruning
and find α by CV.



Pruning

Let Rtrain(T) be the training error as a function of tree T (squared error on the
training set for regression, mis-classification or entropy for classification).
Minimizing Rtrain(T) leads to a tree with maximal size. Minimize instead

(∗) Rtrain(T) + α · size(T),

where the size of a tree T is measured by the number of leaf nodes.
� Either grow the tree from scratch and stop once the criterion (∗) starts to

increase.
� Or first grow the full tree and start to delete nodes (starting at the leaf

nodes), until the criterion (∗) starts to increase.

Second option is preferred as the choice of tree is less sensitive to “wrong”
choices of splitpoints and variables to split on in the first stages of tree fitting.



Choice of α

Which value of α should be chosen ? Let Tα for α ∈ R+ be the tree that is the
minimizer of

Tα = argminT {Rtrain(T) + α · size(T)}.

Want to pick α∗ such that the resulting tree has minimal test error:

Tα∗ = argminTα;α∈R+ R̂test(Tα).

where we compute R̂test using CV.
Its best to visualize R̂test(Tα) as a function of α.



Can plot the generalization error R̂test of the optimal tree under criterion

Rtrain(T) + α · size(T)

as a function of α and pick the value of α which yields the smallest estimate of
the generalization error.
For Pima Indians example:
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Figure 8.5: Error rate estimated by cross-validation for the different subtrees. The vertical lines show
the standard error, and the horizontal dashed line in one standard error worse than the best subtree.
Using the “one SE rule” we would pick the first value (from the left) of the tree size for which the
curve is below the dashed line.

Indians data. The error rate was estimated using cross validation and the vertical lines indicate the
standard error of the estimates. One can now pick the subtree leading to the lowest error in cross-
validation. Breiman et al. (1984a) propose to choose the smallest tree that is not more than one
standard error worse that the best tree. (“One SE rule”). The idea behind this is that smaller trees
are generally preferable and the tree picked that way is only “insignificantly” worse than be best one.
In our example the “one Se rule” would pick a tree of size 5. Figure 8.6 shows the decision tree after
pruning (i.e. the optimal subtree) for the Pima Indians data set.

Decision trees are classifiers that are easy to interpret. Decision trees are however often outper-
formed by other methods when it come to the the accuracy of the prediction; they have a rather high
variance and are thus unstable classifiers. For this reason one should not over-interpret which splits
come first or later. A slight change in the data set sometimes causes the whole tree to “topple over.”
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Figure 8.6: Pruned decision tree for the Pima Indians data set.



Bias-Variance Tradeoff

Suppose
y = f ∗(x) +N (0,σ2)

Given a dataset (X, Y), train a model f (x;X, Y). How did we do, averaging over
datasets?

EX,Y [(y − f (x;X, Y))2]

= (f̄ (x)− f ∗(x))2 bias2

+ EX,Y [(f̄ (x)− f (x;X, Y))2] variance

+ (y − f ∗(x))2 noise

where f̄ (x) = EX,Y [f (x;X, Y)] is average prediction (averaged over datasets).



Choosing Model Complexity
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Figure 7.1: Changes in test sample and training sample error as the model complexity is varied

The training error will always decrease if the model is made more complex
(the tree grown larger). The test error will have reach a minimum at a certain
model complexity (tree size) and grow if the tree is made either larger or
smaller.



Pitfalls of using the training error rate

How deceptive can the training error be ?
� Assume we have n data samples (X1, Y1), . . . , (Xn, Yn) and

Yi ∼ N (0, 1)

so there is no information about Y in the predictor variables X.
� Assume we take a tree with size d (the size is the number of leaf nodes),

which is chosen independently of Y, so that each leaf node contains the
same number of samples.

What is the expected training (apparent) error rate, as a function of tree size
d?



Assume
� In total d leaf nodes.
� In each final leaf node, there are n/d samples j1, . . . , jn/d.

The value of β̂k in each leaf node k is simply the mean Yk over all observations
in node k.
The test error rate in each leaf node k is

Rtest = E((Y − Yk)
2) = E((Y − E(Y))2) + E((Yk − E(Y))2) = 1 + Y2

k .

Averaged over independent realizations of the new test data, the expected
test error rate is

E(Rtest) = 1 + E(Y2
k)



The training error in each node is

Rtrain =
d
n

jn/d�

j1

(Yi − Yk)
2 =

�d
n

jn/d�

j1

(Yi − E(Y))2
�

− Y2
k .

The expected value of the training error rate is

E(Rtrain) = 1 − E(Y2
k).



The mean Yk has a distribution ∼ N (0, d/n). Then n
d Y2

k ∼ χ2
1 and E(Y2

k) = d/n.
The expected value of the test error rate is thus

E(Rtest) = 1 + d/n

The expected value of the training error rate is

E(Rtrain) = 1 − d/n

In this extreme example, choosing the number of leaf nodes according to the
� training error rate leads you to choose maximal tree size d = n,
� test error rate leads you choose minimal tree size d = 0.


