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Supervised Learning: Parametric Methods

Bayesian Methods



Limitations of Maximum Likelihood

» Given a probabilistic model

P(xay — k) = Tifk (x) 3
we typically assume a parametric form for f; (x) = f (x| ¢x) and compute
the MLE 6 of 6 = (my, ¢x),_, based on the training data {X;, Y;}'_,.
» We then use a plug-in approach to perform classification

Tif <x| égk>
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Limitations of Maximum Likelihood

» Even for simple models, this can prove difficult; e.g. if
f (x| ¢x) = N (x; i, ) then the MLE estimate of X is not full rank for
p > n.

» One possibility is to simplify even further the model as in Nave Bayes; e.g.

f (x| &) = HN(X Mka )

but this might be too crude.

» Moreover, the plug-in approach does not take into account the
uncertainty about the parameter estimate.



A Toy Example

» Consider a trivial case where X € {0,1} and K = 2 so that

faln) =g (1—n)
then the MLE estimates are given by
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where ny = >0 I(y; = k).
» Assume that all the training data for class 1 are such that x; = 0 then
$»1 = 0 and

P(le\y:1,</9\>P(y:1|§)

P(y:1|5)
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» Hence if we have not observed such events in our training set, we predict
that we will never observe them, ever!

P(yzl\le,é) =




Text Classification

» Assume we are interested in classifying documents; e.g. scientific
articles or emails.

» A basic but standard model for text classification consists of considering
a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document by X = (Xl, ...,XP)

where
Xl—{ 1 if word [ is present in document

0 otherwise.

» To implement a probabilistic classifier, we need to model f; (x) for
k=1,...K.

» A Naive Bayes approach ignores features correlations and assumes

fi (x) = f (x| ¢x) where

E*@
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Maximum Likelihood for Text Classification

» Given training data, the MLE is easily obtained

7? ng (51_211H(Xl_1y_k)

n ng

» |f word [/ never appears in the training data for class & then (%{ = (0 and
P (y = k|x = (xlzl_l,xl = l,le:p) ,é\) = 0;

l.e. we will never attribute a new document containing word [ to class «.

» In many practical applications, we have p > n and this problem often
occurs.



A Bayesian Approach

» An elegant way to deal with the problem consists of using a Bayesian
approach.

» We start with the very simple case where

fxlg)=¢"(1—0¢)"

and now set a Beta prior on p (¢) on ¢

p(¢) = Beta (¢;a,b)
where
I'(a+b)
I'(a) T (b)
with I' (u) = [~ “~'e~'dr. Note that I' (u) = (u — 1)! for u € N.

(a,b) are fixed quantities called hyperparameters. For a = b = 1, the Beta
density corresponds to the uniform density.

Beta (¢;a,b) =

o (1—¢) ! Lio,17 (@)



Beta Distribution

beta distributions
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A Bayesian Approach

» Given a realization of X;., = (X1, ..., X,), inference on ¢ is based on the
posterior

p(6) I1/ (x] 6)
p (€b| xl:n) — 7;:(;171)

= Beta(0;a+ ng,b +n — ny)

withng =57 T(x; = 1).

» The prior on 6 can be conveniently reinterpreted as an imaginary initial
sample of size (a + b) with a observations “1” and b observations “0”.
Provided that (a + b) is small with respect to n, the information carried by
the data is prominent.



Beta Posteriors
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(left) Updating a Beta(2,2) prior with a Binomial likelihood with n, = 3, n = 20
to yield a Beta(5,19); (center) Updating a Beta(5,2) prior with a Binomial
likelihood with n; = 11, n = 24 to yield a Beta(16,15) posterior. (right)

Sequentially updating a Beta distribution starting with a Beta(1,1) and
converging to a delta function centered on the true value.



Posterior Statistics

» We have

a -+ ng
E<¢|x1:n) — a+b+n

and the posterior means behave asymptotically like n;/n (the ‘frequentist’
estimator) and converge to ¢*, the ‘true’ value of ¢.

» We have

; B (@ +ny) (b+n—ny)
V(Qb‘ lzn) (a+b—|-n)2(a+b+n+l)

o (1-9)

n

Q

for large n

» The posterior variance decreases to zero as n — oo, at rate n=': the
iInformation you get on ¢ gets more and more precise.

» For n large enough, the prior is washed out by the data. For a small n, its
influence can be significant.



Prediction Plug in vs Bayesian Approaches

» Assume you have observed X; = --- = X,, = 0, then the plug-in prediction
IS

P(x=110) =9
which does not account whatsoever for the uncertainty about ¢.
» |n a Bayesian approach, we will use the predictive distribution

P(X = llxl;n)

/P<x= 1 6)p (6] x1.0) d

a -+ ng
a+b+n

so even if ny = 0 then P (x = 1| x1.,) > 0 and our prediction takes into
account the uncertainty about ¢.



Beta Posteriors
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(left) Prior predictive dist. for a Binomial likelihood with » = 10 and a Beta(2,2)
prior. (center) Posterior predictive after having seen n; = 3,n = 20. (right)

Plug-in approximation using ¢.



Bayesian Inference for the Multinomial
» Assume we have Yy, = (Y, ..., Y,) where Y; = (¥}, ..., YX) € {0,1}",
Se_ YE=1and

K
k
P(ylm)=]]m
k=1

for e > 0, lec(zl m, = 1.
» \We have seen that the MLE estimate is

n

» We introduce the Dirichlet density

p(m) = Dir(m; a) =

for a, > 0 defined on {77 . > 0 and Zle T = 1} :



Dirichlet Distributions
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(left) Support of the Dirichlet density for K = 3 (center) Dirichlet density for
ay = 10 (right) Dirichlet density for o, = 0.1.



Samples from Dirichlet Distributions

Samples from Dir (alpha=0.1) Samples from Dir (alpha=1) Samples from Dir (alpha=5)
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Samples from a Dirichlet distribution for K = 5 when o = o, for k # L.



Bayesian Inference

» We obtain
p () [T P (3lm)
P{T| Yi:n — —
(1) p (i)
= Dir(m; a1 +ny,...,ax + ng)
» \We have
P(y=ky) = [P=Kmp(rly.)dr
Qi + Ny

K .



Bayesian Text Classification

» We have 0 = (7Tk7 (Qb]i, "'7¢§))k:1
» Givendata D = (x;,y:),_,

.....

.....

_ P(a]D.y=k)P(y=kD)

where N
O T N
P(y:k|D): K
jzlozj+n

and P (x| D,y =k) = ﬁP(xl‘D,yzk) with
=1
a+ Y I(xi=1,y=k)

P(xl}D,y:k): -

» A popular alternative for text data consists of using as features the
number of occurrences of words in document and using a multinomial
model for P (x| ¢x).



Bayesian QDA

» Let us come back to the QDA model where
I (x| ox) = N (x5 e, Xp) -

» We set improper priors on (uy, Xx) where
exp (—%tr (Ek_lBk))
|Bk|61/2

where B;, > 0 (e.g. By = M, with A >> 1.) ; i.e. flat prior on yu; and
inverse-Wishart on ;. Unlmodal prior on X, with mode B, /g.
» |t follows that

f(x|D,y=k) = /N(X; fics 2ic) p (s 2| D) dpuedX

P (:ukv Ek) X

n,+q
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Bayesian QDA
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Number of Feature Dimensions

Mean error rates are shown for a two-class problem where the samples from
each class are drawn from a Gaussian distribution with the same mean but
different, highly ellipsoidal covariance matrices. 40 training examples, 100 test
samples.



