Outline

Supervised Learning: Parametric Methods
Decision Theory
Linear Discriminant Analysis
Quadratic Discriminant Analysis
Naïve Bayes
Bayesian Methods
Logistic Regression
Evaluating Learning Methods

Limitations of Maximum Likelihood

- Given a probabilistic model

$$
P(x, y=k)=\pi_{k} f_{k}(x),
$$

we typically assume a parametric form for $f_{k}(x)=f\left(x \mid \phi_{k}\right)$ and compute the MLE $\widehat{\theta}$ of $\theta=\left(\pi_{k}, \phi_{k}\right)_{k=1}^{n}$ based on the training data $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$.

- We then use a plug-in approach to perform classification

$$
P(y=k \mid x, \widehat{\theta})=\frac{\widehat{\pi}_{k} f\left(x \mid \widehat{\phi}_{k}\right)}{\sum_{j=1}^{K} \widehat{\pi}_{j} f\left(x \mid \widehat{\phi}_{j}\right)} .
$$

Limitations of Maximum Likelihood

- Even for simple models, this can prove difficult; e.g. if $f\left(x \mid \phi_{k}\right)=\mathcal{N}\left(x ; \mu_{k}, \Sigma\right)$ then the MLE estimate of Σ is not full rank for $p>n$.
- One possibility is to simplify even further the model as in Nav̈e Bayes; e.g.

$$
f\left(x \mid \phi_{k}\right)=\prod_{l=1}^{p} \mathcal{N}\left(x^{l} ; \mu_{k}^{l},\left(\sigma_{k}^{l}\right)^{2}\right)
$$

but this might be too crude.

- Moreover, the plug-in approach does not take into account the uncertainty about the parameter estimate.

A Toy Example

- Consider a trivial case where $X \in\{0,1\}$ and $K=2$ so that

$$
f\left(x \mid \phi_{k}\right)=\phi_{k}^{x}\left(1-\phi_{k}\right)^{1-x} .
$$

then the MLE estimates are given by

$$
\widehat{\phi}_{k}=\frac{\sum_{i=1}^{n} \mathbb{I}\left(x_{i}=1, y_{i}=k\right)}{n_{k}}, \widehat{\pi}_{k}=\frac{n_{k}}{n}
$$

where $n_{k}=\sum_{i=1}^{n} \mathbb{I}\left(y_{i}=k\right)$.

- Assume that all the training data for class 1 are such that $x_{i}=0$ then $\widehat{\phi}_{1}=0$ and

$$
\begin{aligned}
P(y=1 \mid x=1, \widehat{\theta}) & =\frac{P(x=1 \mid y=1, \widehat{\theta}) P(y=1 \mid \widehat{\theta})}{P(y=1 \mid \widehat{\theta})} \\
& =\frac{\widehat{\phi}_{1} \widehat{\pi}_{1}}{P(y=1 \mid \widehat{\theta})}=0
\end{aligned}
$$

- Hence if we have not observed such events in our training set, we predict that we will never observe them, ever!

Text Classification

- Assume we are interested in classifying documents; e.g. scientific articles or emails.
- A basic but standard model for text classification consists of considering a pre-specified dictionary of p words (including say physics, calculus.... or dollars, sex etc.) and summarizing each document by $X=\left(X^{1}, \ldots, X^{p}\right)$ where

$$
X^{l}= \begin{cases}1 & \text { if word } l \text { is present in document } \\ 0 & \text { otherwise } .\end{cases}
$$

- To implement a probabilistic classifier, we need to $\operatorname{model} f_{k}(x)$ for $k=1, \ldots, K$.
- A Naive Bayes approach ignores features correlations and assumes $f_{k}(x)=f\left(x \mid \phi_{k}\right)$ where

$$
f\left(x \mid \phi_{k}\right)=\prod_{l=1}^{p}\left(\phi_{k}^{l}\right)^{x^{l}}\left(1-\phi_{k}^{l}\right)^{1-x^{l}}
$$

Maximum Likelihood for Text Classification

- Given training data, the MLE is easily obtained

$$
\widehat{\pi}_{k}=\frac{n_{k}}{n}, \widehat{\phi}_{k}^{l}=\frac{\sum_{i=1}^{n} \mathbb{I}\left(X_{i}^{l}=1, Y_{i}=k\right)}{n_{k}}
$$

- If word l never appears in the training data for class k then $\widehat{\phi}_{k}^{l}=0$ and

$$
P\left(y=k \mid x=\left(x^{1: l-1}, x^{l}=1, x^{l+1: p}\right), \widehat{\theta}\right)=0
$$

i.e. we will never attribute a new document containing word l to class k.

- In many practical applications, we have $p \gg n$ and this problem often occurs.

A Bayesian Approach

- An elegant way to deal with the problem consists of using a Bayesian approach.
- We start with the very simple case where

$$
f(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

and now set a Beta prior on $p(\phi)$ on ϕ

$$
p(\phi)=\operatorname{Beta}(\phi ; a, b)
$$

where

$$
\operatorname{Beta}(\phi ; a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \phi^{a-1}(1-\phi)^{b-1} 1_{[0,1]}(\phi)
$$

with $\Gamma(u)=\int_{0}^{\infty} t^{u-1} e^{-t} d t$. Note that $\Gamma(u)=(u-1)!$ for $u \in \mathbb{N}$. (a, b) are fixed quantities called hyperparameters. For $a=b=1$, the Beta density corresponds to the uniform density.

Beta Distribution

beta distributions

A Bayesian Approach

- Given a realization of $X_{1: n}=\left(X_{1}, \ldots, X_{n}\right)$, inference on ϕ is based on the posterior

$$
\begin{aligned}
p\left(\phi \mid x_{1: n}\right) & =\frac{p(\phi) \prod_{i=1}^{n} f\left(x_{i} \mid \phi\right)}{\pi\left(x_{1: n}\right)} \\
& =\operatorname{Beta}\left(\theta ; a+n_{s}, b+n-n_{s}\right)
\end{aligned}
$$

with $n_{s}=\sum_{i=1}^{n} \mathbb{I}\left(x_{i}=1\right)$.

- The prior on θ can be conveniently reinterpreted as an imaginary initial sample of size $(a+b)$ with a observations " 1 " and b observations " 0 ". Provided that $(a+b)$ is small with respect to n, the information carried by the data is prominent.

Beta Posteriors

(left) Updating a Beta(2,2) prior with a Binomial likelihood with $n_{s}=3, n=20$ to yield a Beta $(5,19)$; (center) Updating a Beta $(5,2)$ prior with a Binomial likelihood with $n_{s}=11, n=24$ to yield a $\operatorname{Beta}(16,15)$ posterior. (right) Sequentially updating a Beta distribution starting with a Beta(1,1) and converging to a delta function centered on the true value.

Posterior Statistics

- We have

$$
\mathbb{E}\left(\phi \mid x_{1: n}\right)=\frac{a+n_{s}}{a+b+n}
$$

and the posterior means behave asymptotically like n_{s} / n (the 'frequentist' estimator) and converge to ϕ^{*}, the 'true' value of ϕ.

- We have

$$
\begin{aligned}
\mathbb{V}\left(\phi \mid x_{1: n}\right) & =\frac{\left(a+n_{s}\right)\left(b+n-n_{s}\right)}{(a+b+n)^{2}(a+b+n+1)} \\
& \approx \frac{\widehat{\phi}(1-\widehat{\phi})}{n} \text { for large } n
\end{aligned}
$$

- The posterior variance decreases to zero as $n \rightarrow \infty$, at rate n^{-1} : the information you get on ϕ gets more and more precise.
- For n large enough, the prior is washed out by the data. For a small n, its influence can be significant.

Prediction Plug in vs Bayesian Approaches

- Assume you have observed $X_{1}=\cdots=X_{n}=0$, then the plug-in prediction is

$$
P(x=1 \mid \widehat{\phi})=\widehat{\phi}
$$

which does not account whatsoever for the uncertainty about ϕ.

- In a Bayesian approach, we will use the predictive distribution

$$
\begin{aligned}
P\left(x=1 \mid x_{1: n}\right) & =\int P(x=1 \mid \phi) p\left(\phi \mid x_{1: n}\right) d \phi \\
& =\frac{a+n_{s}}{a+b+n}
\end{aligned}
$$

so even if $n_{s}=0$ then $P\left(x=1 \mid x_{1: n}\right)>0$ and our prediction takes into account the uncertainty about ϕ.

Beta Posteriors

(left) Prior predictive dist. for a Binomial likelihood with $n=10$ and a Beta(2,2) prior. (center) Posterior predictive after having seen $n_{s}=3, n=20$. (right) Plug-in approximation using $\widehat{\phi}$.

Bayesian Inference for the Multinomial

- Assume we have $Y_{1: n}=\left(Y_{1}, \ldots, Y_{n}\right)$ where $Y_{i}=\left(Y_{i}^{1}, \ldots, Y_{i}^{K}\right) \in\{0,1\}^{K}$, $\sum_{k=1}^{K} Y_{i}^{k}=1$ and

$$
P(y \mid \pi)=\prod_{k=1}^{K} \pi_{k}^{y^{k}}
$$

for $\pi_{k}>0, \sum_{k=1}^{K} \pi_{k}=1$.

- We have seen that the MLE estimate is

$$
\widehat{\pi}_{k}=\frac{\sum_{i=1}^{n} \mathbb{I}\left(y_{i}^{k}=1\right)}{n}=\frac{n_{k}}{n}
$$

- We introduce the Dirichlet density

$$
p(\pi)=\operatorname{Dir}(\pi ; \alpha)=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1}
$$

for $\alpha_{k}>0$ defined on $\left\{\pi: \pi_{k}>0\right.$ and $\left.\sum_{k=1}^{K} \pi_{k}=1\right\}$.

Dirichlet Distributions

a=10.00

$0=0.10$

(left) Support of the Dirichlet density for $K=3$ (center) Dirichlet density for $\alpha_{k}=10$ (right) Dirichlet density for $\alpha_{k}=0.1$.

Samples from Dirichlet Distributions

Samples from a Dirichlet distribution for $K=5$ when $\alpha_{k}=\alpha_{l}$ for $k \neq l$.

Bayesian Inference

- We obtain

$$
\begin{aligned}
p\left(\pi \mid y_{1: n}\right) & =\frac{p(\pi) \prod_{i=1}^{n} P\left(y_{i} \mid \pi\right)}{p\left(y_{1: n}\right)} \\
& =\operatorname{Dir}\left(\pi ; \alpha_{1}+n_{1}, \ldots, \alpha_{K}+n_{K}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
P\left(y=k \mid y_{1: n}\right) & =\int P(y=k \mid \pi) p\left(\pi \mid y_{1: n}\right) d \pi \\
& =\frac{\alpha_{k}+n_{k}}{\sum_{j=1}^{K} \alpha_{j}+n}
\end{aligned}
$$

Bayesian Text Classification

- We have $\theta=\left(\pi_{k},\left(\phi_{k}^{1}, \ldots, \phi_{k}^{p}\right)\right)_{k=1, \ldots, K}$ with $\pi \sim \operatorname{Dir}(\alpha)$ and $\phi_{k}^{l} \sim \operatorname{Beta}(a, b)$.
- Given data $D=\left(x_{i}, y_{i}\right)_{i=1, \ldots, n}$, classification is performed using

$$
P(y=k \mid D, x)=\frac{P(x \mid D, y=k) P(y=k \mid D)}{P(y=k \mid D)}
$$

where

$$
P(y=k \mid D)=\frac{\alpha_{k}+n_{k}}{\sum_{j=1}^{K} \alpha_{j}+n}
$$

and $P(x \mid D, y=k)=\prod_{l=1}^{p} P\left(x^{l} \mid D, y=k\right)$ with

$$
P\left(x^{l} \mid D, y=k\right)=\frac{a+\sum_{i=1}^{n} \mathbb{I}\left(x_{i}^{l}=1, y_{i}=k\right)}{a+b+n_{k}}
$$

- A popular alternative for text data consists of using as features the number of occurrences of words in document and using a multinomial model for $P\left(x \mid \phi_{k}\right)$.

Bayesian QDA

- Let us come back to the QDA model where

$$
f\left(x \mid \phi_{k}\right)=\mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)
$$

- We set improper priors on $\left(\mu_{k}, \Sigma_{k}\right)$ where

$$
p\left(\mu_{k}, \Sigma_{k}\right) \propto \frac{\exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma_{k}^{-1} B_{k}\right)\right)}{\left|B_{k}\right|^{q / 2}}
$$

where $B_{k}>0$ (e.g. $B_{k}=\lambda I_{p}$ with $\lambda \gg 1$.) ; i.e. flat prior on μ_{k} and inverse-Wishart on Σ_{k}. Unimodal prior on Σ_{k} with mode B_{k} / q.

- It follows that

$$
\begin{aligned}
f(x \mid D, y=k) & =\int \mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right) p\left(\mu_{k}, \Sigma_{k} \mid D\right) d \mu_{k} d \Sigma_{k} \\
& =\left(\frac{n_{k}}{n_{k}+1}\right)^{p / 2} \frac{\Gamma\left(\frac{n_{k}+q+1}{2}\right)}{\Gamma\left(\frac{n_{k}+q-p+1}{2}\right)} \frac{\left|\frac{S_{k}+B_{k}}{2}\right|^{\frac{n_{k}+q}{2}}}{\left|A_{k}\right|^{\frac{n_{k}+q+1}{2}}} \\
A_{k} & =\frac{1}{2}\left(S_{k}+\frac{n_{k}\left(x-\mu_{k}\right)\left(x-\mu_{k}\right)^{T}}{n_{k}+1}+B_{k}\right) \\
S_{k} & =\sum_{i=1}^{n} I\left(y_{i}=k\right)\left(x_{i}-\widehat{\mu}_{k}\right)\left(x_{i}-\widehat{\mu}_{k}\right)^{T}
\end{aligned}
$$

Bayesian QDA

Mean error rates are shown for a two-class problem where the samples from each class are drawn from a Gaussian distribution with the same mean but different, highly ellipsoidal covariance matrices. 40 training examples, 100 test samples.

