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Limitations of Maximum Likelihood

� Given a probabilistic model

P (x, y = k) = πkfk (x) ,

we typically assume a parametric form for fk (x) = f (x|φk) and compute
the MLE �θ of θ = (πk,φk)

n
k=1 based on the training data {Xi, Yi}

n
i=1.

� We then use a plug-in approach to perform classification

P
�

y = k| x, �θ
�
=

�πkf
�

x| �φk

�

�K
j=1 �πjf

�
x| �φj

� .



Limitations of Maximum Likelihood

� Even for simple models, this can prove difficult; e.g. if
f (x|φk) = N (x;µk,Σ) then the MLE estimate of Σ is not full rank for
p > n.

� One possibility is to simplify even further the model as in Nav̈e Bayes; e.g.

f (x|φk) =
p�

l=1

N

�
xl;µl

k,
�
σl

k
�2
�

but this might be too crude.
� Moreover, the plug-in approach does not take into account the

uncertainty about the parameter estimate.



A Toy Example
� Consider a trivial case where X ∈ {0, 1} and K = 2 so that

f (x|φk) = φx
k (1 − φk)

1−x .

then the MLE estimates are given by

�φk =

�n
i=1 I (xi = 1, yi = k)

nk
, �πk =

nk

n

where nk =
�n

i=1 I (yi = k) .
� Assume that all the training data for class 1 are such that xi = 0 then

�φ1 = 0 and

P
�

y = 1| x = 1, �θ
�

=
P
�

x = 1| y = 1, �θ
�

P
�

y = 1| �θ
�

P
�

y = 1| �θ
�

=
�φ1�π1

P
�

y = 1| �θ
� = 0.

� Hence if we have not observed such events in our training set, we predict
that we will never observe them, ever!



Text Classification
� Assume we are interested in classifying documents; e.g. scientific

articles or emails.
� A basic but standard model for text classification consists of considering

a pre-specified dictionary of p words (including say physics, calculus.... or
dollars, sex etc.) and summarizing each document by X =

�
X1, ...,Xp

�

where
Xl =

�
1 if word l is present in document
0 otherwise.

� To implement a probabilistic classifier, we need to model fk (x) for
k = 1, ...,K.

� A Naive Bayes approach ignores features correlations and assumes
fk (x) = f (x|φk) where

f (x|φk) =
p�

l=1

�
φl

k
�xl �

1 − φl
k
�1−xl



Maximum Likelihood for Text Classification

� Given training data, the MLE is easily obtained

�πk =
nk

n
, �φl

k =

�n
i=1 I

�
Xl

i = 1, Yi = k
�

nk

� If word l never appears in the training data for class k then �φl
k = 0 and

P
�

y = k| x =
�
x1:l−1, xl = 1, xl+1:p� , �θ

�
= 0;

i.e. we will never attribute a new document containing word l to class k.
� In many practical applications, we have p � n and this problem often

occurs.



A Bayesian Approach

� An elegant way to deal with the problem consists of using a Bayesian
approach.

� We start with the very simple case where

f (x|φ) = φx (1 − φ)1−x

and now set a Beta prior on p (φ) on φ

p (φ) = Beta (φ; a, b)

where
Beta (φ; a, b) =

Γ (a + b)
Γ (a)Γ (b)

φa−1 (1 − φ)b−1 1[0,1] (φ)

with Γ (u) =
�∞

0 tu−1e−tdt. Note that Γ (u) = (u − 1)! for u ∈ N.
(a, b) are fixed quantities called hyperparameters. For a = b = 1, the Beta
density corresponds to the uniform density.



Beta Distribution
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A Bayesian Approach

� Given a realization of X1:n = (X1, ...,Xn), inference on φ is based on the
posterior

p (φ| x1:n) =

p (φ)
n�

i=1
f (xi|φ)

π (x1:n)

= Beta (θ; a + ns, b + n − ns)

with ns =
�n

i=1 I (xi = 1).
� The prior on θ can be conveniently reinterpreted as an imaginary initial

sample of size (a + b) with a observations “1” and b observations “0”.
Provided that (a + b) is small with respect to n, the information carried by
the data is prominent.



Beta Posteriors
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Figure 4.11: (a) Updating a Beta(2,2) prior with a Binomial likelihood with sufficient statistics N1 = 3, N2 = 17 to yield a Beta(5,19)
posterior. Figure generated by binomialBetaPosteriorDemo. (b) Updating a Beta(5,2) prior with a Binomial likelihood with sufficient
statistics N1 = 11,N2 = 13 to yield a Beta(16,15) posterior. (c) Sequentially updating a Beta distribution. We start with a Beta(1,1) prior
and converge to a delta function centered on the MLE. Figure generated by bernoulliBetaSequentialUpdate.

We see that the posterior has the same functional form (beta) as the prior (beta), since it is conjugate. In particular, the posterior
is obtained by adding the prior hyper-parameters αk to the empirical counts Nk. For this reason, the αk hyper-parameters are
known as pseudo counts. The strength of the prior, also known as the effective sample size of the prior, is the sum of the
pseudo counts, α1 + α2; this plays a role analogous to the data set size, N1 +N2 = N .

Figure 4.11(a) gives an example where we update a weak Beta(2,2) prior with a peaked likelihood function; we see that the
posterior is essentially identical to the likelihood. Figure 4.11(b) gives an example where we update a strong Beta(5,2) prior
with a peaked likelihood function; we see that the posterior is a “compromise” between the prior and likelihood. Compare these
to the analogous pictures for combining a Gaussian prior with a Gaussian likelihood in Figure 5.4.

Figure 4.11(c) shows what happens as the number of samples goes to infinity. Initially (for N = 5), the posterior has a
skewed shape, but then it becomes more Gaussian-like, and eventually it becomes a delta function centered at the MLE.

Note that updating the posterior sequentially is equivalent to updating in a single batch. To see this, suppose we have two
data sets D1 and D2 with sufficient statistics Na

1 , N
a
2 and N b

1 , N
b
2 . Let N1 = Na

1 +N b
1 , N2 = Na

2 +N b
2 and N = N1 +N2.

In batch mode we have

p(θ|D1,D2) ∝ Bin(θ|N1, N1 +N2)Beta(θ|α1,α2) ∝ Beta(θ|N1 + α1, N2 + α2) (4.34)

In sequential mode, we have

p(θ|D1,D2) ∝ p(D2|θ)p(θ|D1) (4.35)
∝ Bin(θ|N b

1 , N
b
1 +N b

2)Beta(θ|N
a
1 + α1, N

a
2 + α2) (4.36)

∝ Beta(θ| Na
1 +N b

1 + α1, N
a
2 +N b

2 + α2) (4.37)

This makes Bayesian inference particularly well-suited to online learning, as we will see later.

4.5.1.4 Posterior mean and mode

It is simple to show that the posterior mode, or MAP estimate, is given by

θ̂MAP =
α1 +N1 − 1

α1 + α2 +N − 2
(4.38)

By contrast, the posterior mean is given by,

θ =
α1 +N1

α1 + α2 +N
(4.39)

If we use a uniform prior, αk = 1, then the MAP estimate reduces to the MLE, but the posterior mean estimate does not. We
will exploit this fact below.

We will now show that the posterior mean is convex combination of the prior mean and the MLE. Let the prior mean be
m = (m1,m2), where m1 = α1/α0 and m2 = α2/α0; α0 = α1 + α2 controls the strength of the prior. Then the posterior
mean is

E [θ|D] =
α0m1 +N1

N + α0
=

α0

N + α0
m1 +

N

N + α0

N1

N
= λm1 + (1− λ)θ̂ML (4.40)

where
λ =

α0

N + α0
(4.41)
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(left) Updating a Beta(2,2) prior with a Binomial likelihood with ns = 3, n = 20
to yield a Beta(5,19); (center) Updating a Beta(5,2) prior with a Binomial
likelihood with ns = 11, n = 24 to yield a Beta(16,15) posterior. (right)
Sequentially updating a Beta distribution starting with a Beta(1,1) and
converging to a delta function centered on the true value.



Posterior Statistics
� We have

E (φ| x1:n) =
a + ns

a + b + n
and the posterior means behave asymptotically like ns/n (the ‘frequentist’
estimator) and converge to φ∗, the ‘true’ value of φ.

� We have

V (φ| x1:n) =
(a + ns) (b + n − ns)

(a + b + n)2 (a + b + n + 1)

≈

�φ
�

1 − �φ
�

n
for large n

� The posterior variance decreases to zero as n → ∞, at rate n−1: the
information you get on φ gets more and more precise.

� For n large enough, the prior is washed out by the data. For a small n, its
influence can be significant.



Prediction Plug in vs Bayesian Approaches

� Assume you have observed X1 = · · · = Xn = 0, then the plug-in prediction
is

P
�

x = 1| �φ
�
= �φ

which does not account whatsoever for the uncertainty about φ.
� In a Bayesian approach, we will use the predictive distribution

P (x = 1| x1:n) =

�
P (x = 1|φ) p (φ| x1:n) dφ

=
a + ns

a + b + n

so even if ns = 0 then P (x = 1| x1:n) > 0 and our prediction takes into
account the uncertainty about φ.
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Figure 4.12: (a) Prior predictive distribution for a Binomial likelihood with M = 10 trials, and a Beta(2,2) prior on θ. (b) Posterior predictive
distributions after seeing N1 = 3, N2 = 17. (c) Plugin approximation. Figure generated by betaBinomPostPredDemo.

This distribution has the following mean and variance

E [x] = M
α1

α1 + α2
(4.52)

var [x] =
Mα1α2

(α1 + α2)2
(α1 + α2 +M)

α1 + α2 + 1
(4.53)

If M = 1, and hence x ∈ {0, 1}, we see that the mean becomes

E [x|D] = p(x = 1|D) =
α1

α1 + α2
(4.54)

which is consistent with Equation 4.46.
This process is illustrated in Figure 4.12, where we plot prior predictive density, p(x), under a Beta(2,2) prior, as well as

the posterior predictive density after seeing N1 = 3 heads and N2 = 17 tails. Figure 4.12(c) plots a plug-in approximation
using a MAP estimate. We see that the Bayesian prediction has longer tails, spreading its probablity mass more widely, and is
therefore less prone to overfitting and black-swan type paradoxes.

4.5.2 The Dirichlet-multinomial model
We can generalize the above results from coins to dice in a straightforward fashion, as we now show.

4.5.2.1 Likelihood

From Section 3.2.3, the likelihood has the form

p(D|θ) =
K�

k=1

θNk
k (4.55)

where Nk =
�N

i=1 I(yi = k) is the number of times event k occured.

4.5.2.2 Prior

The conjugate prior is the Dirichlet distribution4, which is the natural generalization of the beta distribution to multiple
dimensions. The pdf is defined as follows:

Dir(θ|α) :=
1

B(α)

K�

k=1

θαk−1
k I(x ∈ SK) (4.56)

where SK is the K-dimensional probability simplex, which is the set of vectors such that 0 ≤ θk ≤ 1 and
�K

k=1 θk = 1. In
addition, B(α1, . . . ,αK) is the natural generalization of the beta function to K variables:

B(α) :=

�K
i=1 Γ(αi)

Γ(α0)
(4.57)

4Johann Dirichlet was a German mathematician, 1805–1859.
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(left) Prior predictive dist. for a Binomial likelihood with n = 10 and a Beta(2,2)
prior. (center) Posterior predictive after having seen ns = 3, n = 20. (right)

Plug-in approximation using �φ.



Bayesian Inference for the Multinomial
� Assume we have Y1:n = (Y1, ..., Yn) where Yi =

�
Y1

i , ..., YK
i
�
∈ {0, 1}K ,�K

k=1 Yk
i = 1 and

P (y|π) =
K�

k=1

πyk

k

for πk > 0,
�K

k=1 πk = 1.
� We have seen that the MLE estimate is

�πk =

�n
i=1 I

�
yk

i = 1
�

n
=

nk

n

� We introduce the Dirichlet density

p (π) = Dir (π;α) =
Γ
��K

k=1 αk

�

K�
k=1

Γ (αk)

K�

k=1

παk−1
k

for αk > 0 defined on
�
π : πk > 0 and

�K
k=1 πk = 1

�
.



Dirichlet Distributions
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Figure 4.13: (a) The Dirichlet distribution when K = 3 defines a distribution over the simplex, which can be represented by the triangular
surface. Points on this surface satisfy 0 ≤ θk ≤ 1 and

�3
k=1 θk = 1. (b) Plot of the Dirichlet density when αk = 10. (c) Plot of the Dirichlet

density when αk = 0.1. (The comb-like structure on the edges is a plotting artefact.) Based on Figure 2.5 of [Bis06b]. Figure generated by
dirichlet3dPlot. (See also visDirichletGui by Jonathan Huang.)

(a) (b) (c)

Figure 4.14: Samples from a 5-dimensional symmetric Dirichlet distribution for different parameter values. Figure generated by
dirichletHistogramDemo.

where α0 :=
�K

k=1 αk.
Figure 4.13 shows some plots of the Dirichlet when K = 3, and Figure 4.14 for some sampled probability vectors. We

see that α0 =
�K

k=1 αk controls the strength of the distribution (how peaked it is), and the αk control where the peak oc-
curs. For example, Dir(1, 1, 1) is a uniform distribution, Dir(2, 2, 2) is a broad distribution centered at (1/3, 1/3, 1/3), and
Dir(20, 20, 20) is a narrow distribution centered at (1/3, 1/3, 1/3). If αk < 1 for all k, we get “spikes” at the corner of the
simplex.

The distribution has these properties

E [θk] =
αk

α0
(4.58)

mode [θk] =
αk − 1

α0 −K
(4.59)

var [θk] =
αk(α0 − αk)

α2
0(α0 + 1)

(4.60)

where α0 =
�K

k=1 αk. Often we use a symmetric Dirichlet prior of the form αk = α/K. In this case, the mean becomes
1/K, and the variance becomes var [θk] =

K−1
K2(α+1) . So increasing α increases the precision (decreases the variance) of the

distribution.
Note that marginals of a Dirichlet are Dirichlet (Exercise 2.16). For example, if

(θ1, . . . , θK) ∼ Dir(α1, . . . ,αK) (4.61)

then we have

(θ1 + θ2, . . . , θK) ∼ Dir(α1 + α2,α3, . . . ,αK) (4.62)
(θ1 + θ2 + · · ·+ θK−1, θK) ∼ Beta(α1 + α2 + · · ·+ αK−1,αK) (4.63)

This is called the agglomerative property of Dirichlet distributions.

c� Kevin P. Murphy. Draft — not for circulation.

(left) Support of the Dirichlet density for K = 3 (center) Dirichlet density for
αk = 10 (right) Dirichlet density for αk = 0.1.



Samples from Dirichlet Distributions
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(a) (b) (c)

Figure 4.13: (a) The Dirichlet distribution when K = 3 defines a distribution over the simplex, which can be represented by the triangular
surface. Points on this surface satisfy 0 ≤ θk ≤ 1 and

�3
k=1 θk = 1. (b) Plot of the Dirichlet density when αk = 10. (c) Plot of the Dirichlet

density when αk = 0.1. (The comb-like structure on the edges is a plotting artefact.) Based on Figure 2.5 of [Bis06b]. Figure generated by
dirichlet3dPlot. (See also visDirichletGui by Jonathan Huang.)
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Figure 4.14: Samples from a 5-dimensional symmetric Dirichlet distribution for different parameter values. Figure generated by
dirichletHistogramDemo.

where α0 :=
�K

k=1 αk.
Figure 4.13 shows some plots of the Dirichlet when K = 3, and Figure 4.14 for some sampled probability vectors. We

see that α0 =
�K

k=1 αk controls the strength of the distribution (how peaked it is), and the αk control where the peak oc-
curs. For example, Dir(1, 1, 1) is a uniform distribution, Dir(2, 2, 2) is a broad distribution centered at (1/3, 1/3, 1/3), and
Dir(20, 20, 20) is a narrow distribution centered at (1/3, 1/3, 1/3). If αk < 1 for all k, we get “spikes” at the corner of the
simplex.

The distribution has these properties

E [θk] =
αk

α0
(4.58)

mode [θk] =
αk − 1

α0 −K
(4.59)

var [θk] =
αk(α0 − αk)

α2
0(α0 + 1)

(4.60)

where α0 =
�K

k=1 αk. Often we use a symmetric Dirichlet prior of the form αk = α/K. In this case, the mean becomes
1/K, and the variance becomes var [θk] =

K−1
K2(α+1) . So increasing α increases the precision (decreases the variance) of the

distribution.
Note that marginals of a Dirichlet are Dirichlet (Exercise 2.16). For example, if

(θ1, . . . , θK) ∼ Dir(α1, . . . ,αK) (4.61)

then we have

(θ1 + θ2, . . . , θK) ∼ Dir(α1 + α2,α3, . . . ,αK) (4.62)
(θ1 + θ2 + · · ·+ θK−1, θK) ∼ Beta(α1 + α2 + · · ·+ αK−1,αK) (4.63)

This is called the agglomerative property of Dirichlet distributions.

c� Kevin P. Murphy. Draft — not for circulation.

Samples from a Dirichlet distribution for K = 5 when αk = αl for k �= l.



Bayesian Inference

� We obtain

p (π| y1:n) =

p (π)
n�

i=1
P (yi|π)

p (y1:n)

= Dir (π;α1 + n1, . . . ,αK + nK)

� We have

P (y = k| y1:n) =

�
P (y = k|π) p (π| y1:n) dπ

=
αk + nk�K
j=1 αj + n

.



Bayesian Text Classification
� We have θ =

�
πk,

�
φ1

k , ...,φ
p
k
��

k=1,...,K with π ∼Dir(α) and φl
k ∼ Beta (a, b) .

� Given data D = (xi, yi)i=1,...,n, classification is performed using

P (y = k|D, x) =
P (x|D, y = k)P (y = k|D)

P (y = k|D)

where
P (y = k|D) =

αk + nk�K
j=1 αj + n

and P (x|D, y = k) =
p�

l=1
P
�

xl
��D, y = k

�
with

P
�

xl��D, y = k
�
=

a +
�n

i=1 I
�
xl

i = 1, yi = k
�

a + b + nk
.

� A popular alternative for text data consists of using as features the
number of occurrences of words in document and using a multinomial
model for P (x|φk).



Bayesian QDA
� Let us come back to the QDA model where

f (x|φk) = N (x;µk,Σk) .

� We set improper priors on (µk,Σk) where

p (µk,Σk) ∝
exp

�
−

1
2 tr

�
Σ−1

k Bk
��

|Bk|
q/2

where Bk > 0 (e.g. Bk = λIp with λ >> 1.) ; i.e. flat prior on µk and
inverse-Wishart on Σk. Unimodal prior on Σk with mode Bk/q.

� It follows that

f (x|D, y = k) =

�
N (x;µk,Σk) p (µk,Σk|D) dµkdΣk

=

�
nk

nk + 1

�p/2 Γ
�

nk+q+1
2

�

Γ
�

nk+q−p+1
2

�
�� Sk+Bk

2

��
nk+q

2

|Ak|
nk+q+1

2

,

Ak =
1
2

�
Sk +

nk(x−µk)(x−µk)
T

nk+1 + Bk

�
,

Sk =
�n

i=1 I (yi = k) (xi − �µk) (xi − �µk)
T .



Bayesian QDA

Mean error rates are shown for a two-class problem where the samples from
each class are drawn from a Gaussian distribution with the same mean but
different, highly ellipsoidal covariance matrices. 40 training examples, 100 test
samples.


