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Linear Discriminant Analysis

LDA is the most well-known and simplest example of plug-in classification.
Assume a parametric form for fk(x) where for each class k, the distribution of
X, conditional on Y = k, is

X|Y = k ∼ N (µk,Σ),

i.e. classes have different means with the same covariance matrix Σ.
For a new observation x,

P(Y = k|X = x) ∝ πkfk(x)

∝ πk

|Σ|1/2 exp
�
−1

2
(x − µk)

TΣ−1(x − µk)

�



As arg maxk=1,...,K g(k) = arg mink=1,...,K −2 log g(k) for any real-valued function
g, choose k to minimize

−2 log P(Y = k|X = x) ∝ (x − µk)
TΣ−1(x − µk)− 2 log(πk) + const.

where the constant does not depend on the class k.
The quantity (x − µk)TΣ−1(x − µk) is called the Malahanobis distance. It
measures the distance between x and µk in the metric given by Σ.
Notice that if Σ = Ip and πk =

1
K , Ŷ(x) simply chooses the class k with the

nearest (in the Euclidean sense) mean µk.



Expanding the discriminant (x − µk)TΣ−1(x − µk), the term
−2 log P(Y = k|X = x) is seen to be proportional to

µT
k Σ

−1µk − 2µT
k Σ

−1x + xTΣ−1x − 2 log(πk) + const
= µT

k Σ
−1µk − 2µT

k Σ
−1x − 2 log(πk) + const,

where the constant does not depend on the class k.
Setting ak = µT

k Σ
−1µk − 2 log(πk) and bk = −2Σ−1µk, we obtain

−2 log P(Y = k|X = x) = ak + bT
k x + const

i.e. a linear discriminant function.
Considering when we choose class k over k�,

ak + bT
k x + const(x) < ak� + bT

k�x + const
⇔ a� + bT

�x < 0

where a� = ak − ak� and b� = bk − bk� .
Shows that the Bayes Classifier partitions X into regions with the same class
predictions via separating hyperplanes. The Bayes Classifier under these
assumptions is more commonly known as the Linear Discriminant Analysis
Classifier.



Parameter Estimation and ‘Plug-In’ Classifiers

Remember that upon assuming a parametric form for the fk(x)’s, the optimal
classification procedure under 0-1 loss is

Ŷ(x) = arg max
k=1,...,K

πkfk(x)

LDA proposes multivariate normal distributions for fk(x).
However, we still don’t know what the parameters µk, k = 1, . . . ,K and Σ that
determine fk. The statistical task becomes one of finding good estimates for
these quantities and plugging them into the derived equations to give the
‘Plug-In’ Classifier

Ŷ(x) = arg max
k=1,...,K

π̂kf̂k(x).

The a priori probabilities πk = P(Y = k) are simply estimated by the empirical
proportion of samples of class k, π̂k = |{i : Yi = k}|/n.



For estimation of Σ and µ, looking at the log-likelihood of the training set,

�(µ1, . . . , µK) = −
K�

k=1

�

j:Yj=k

1
2
(Xj − µk)

TΣ−1(Xj − µk)

−1
2

n log |Σ|+ const.

Let nk = #{j : Yj = k} be the number of observations in class k. The
log-likelihood is maximised by

µ̂k =
1
nk

�

j:Yj=k

Xj, Σ̂ =
1
n

K�

k=1

�

j:Yj=k

(Xj − µ̂k)(Xj − µ̂k)
T .



The best classifier under the assumption that X|Y = k ∼ Np(µ̂k, Σ̂) with plug-in
estimates of µ and Σ is therefore given by

Ŷlda(x) = arg min
k=1,...,K

�
(x − µ̂k)

TΣ̂−1(x − µ̂k)− 2 log(π̂k)
�

for each point x ∈ X .
Can also be written as

Ŷlda(x) = arg min
k=1,...,K

�
µ̂T

k Σ̂
−1µ̂k − 2µ̂T

k Σ̂
−1x − 2 log(π̂k)

�
.



Iris example

library(MASS)
data(iris)

##save class labels
ct <- rep(1:3,each=50)
##pairwise plot
pairs(iris[,1:4],col=ct)

##save petal.length and petal.width
iris.data <- iris[,3:4]
plot(iris.data,col=ct+1,pch=20,cex=1.5,cex.lab=1.4)
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Just focus on two predictor variables.
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Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour(x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



LDA boundaries.
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Fishers Linear Discriminant Analysis

We have derived LDA as the plug-in Bayes classifier under the assumption of
multivariate normality for all classes with common covariance matrix.
Alternative view (without making any assumption on underlying densities):
Find a direction a ∈ Rp to maximize the variance ratio

aTBa
aTΣa

,

where

Σ =
1

n − 1

n�

i=1

(Xi − µYi)(Xi − µYi)
� (within class covariance)

B =
1

n − 1

K�

k=1

nk(µYi − X̄)(µYi − X̄))� (between class covariance)

B has rank at most K − 1.



Discriminant Coordinates

The variance ratio satisfies

aTBa
aTΣa

=
bT(Σ− 1

2 )TBΣ− 1
2 b

bTb
,

where b = Σ
1
2 a and B∗ = (Σ− 1

2 )TBΣ− 1
2 .

The maximization over b is achieved by the first eigenvector v1 of B∗. We also
look at the remaining eigenvectors vl associated to the non-zero eigenvalues
and defined the discriminant coordinates as al = Σ− 1

2 vl.
These directions al span exactly the space of all linear discriminant functions
for all pairwise comparisons and are often used for plotting (ie in the function
lda).
Data are then projected onto these directions (these vectors are given as the
“linear discriminant” functions in the R-function lda).



Crabs data example

Crabs data, again.

library(MASS)
data(crabs)

## numeric and text class labels
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)

## Projection on Fisher’s linear discriminant directions
print(cb.lda <- lda(log(crabs[,4:8]),ct))



> > > > > > > > > Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
0 1 2 3

0.25 0.25 0.25 0.25

Group means:
FL RW CL CW BD

0 2.564985 2.475174 3.312685 3.462327 2.441351
1 2.852455 2.683831 3.529370 3.649555 2.733273
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3

FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3

0.6891 0.3018 0.0091



Plot predictions
cb.ldp <- predict(cb.lda)
eqscplot(cb.ldp$x,pch=ct+1,col=ct+1)
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> ct
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3
[112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[149] 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> predict(cb.lda)
$class

[1] 2 2 2 2 2 2 0 2 2 0 2 0 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3
[112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[149] 3 3 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Levels: 0 1 2 3

$posterior
0 1 2 3

1 4.058456e-02 1.579991e-10 9.594150e-01 4.367517e-07
2 4.912087e-01 2.057493e-09 5.087911e-01 2.314634e-07
3 2.001047e-02 4.368642e-16 9.799895e-01 2.087757e-13
4 7.867144e-04 9.148327e-15 9.992133e-01 2.087350e-09
5 2.094626e-03 2.381970e-11 9.979020e-01 3.335500e-06
6 3.740294e-03 3.170411e-13 9.962597e-01 2.545022e-08
7 7.291360e-01 1.625743e-09 2.708639e-01 6.637005e-08



## display the decision boundaries
## take a lattice of points in LD-space
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y,0))
m <- length(x)
n <- length(y)

## predict onto the grid
cb.ldap <- lda(cb.ldp$x,ct)
cb.ldpp <- predict(cb.ldap,z)$class

## classes are 0,1,2 and 3 so set contours
## at 0.5,1.5 and 2.5
contour(x,y,matrix(cb.ldpp,m,n),

levels=c(0.5,2.5),
add=TRUE,d=FALSE,lty=2,lwd=2)
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Compare with PCA plots.

library(lattice)
cb.pca <- princomp(log(crabs[,4:8]))
cb.pcp <- predict(cb.pca)
splom(~cb.pcp[,1:3],pch=ct+1,col=ct+1)



Scatter Plot Matrix
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LDA separates the groups better.


