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Supervised Learning

So far we have been interested in using EDA and clustering techniques to
understand high-dimensional data, useful for hypothesis generation. If a
response (or grouping) variable occured in examples, it was merely to
‘validate’ that the discovered clusters or projections are meaningful.
We now move to supervised learning where in addition to having n
observations of a p-dimensional predictor variable X, we also have a response
variable Y ∈ Y.

� Classification: group information is given and Y = {1, . . . ,K}.
� Regression: a numerical value is observed and Y = R.

Given training data (Xi, Yi), i = 1, . . . , n, the goal is to accurately predict the
class or response Y of new observations, when only the predictor variables X
are observed.
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Regression example: Boston Housing Data
The original data are 506 observations on 13 variables X; medv being the
response variable Y.

crim per capita crime rate by town
zn proportion of residential land zoned for lots

over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river;

0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s



> str(X)
’data.frame’: 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7.00 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

> str(Y)
num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

Goal: predict median house price Ŷ(X), given 13 predictor variables X of a
new district.



Classification example: Lymphoma data

Revisiting the lymphoma gene expression data. Now in the supervised
setting.
We have gene expression measurements of n = 62 patients for p = 4026
genes. These form the predictor variable matrix X.
For each patient, the subtype of cancer is available in a n dimensional vector
Y with entries in {0, 1}.



> str(X)
’data.frame’: 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
$ Gene 6 : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 : num -1.8755 -1.8187 0.3175 0.3873 0.0414 ...
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668 ...
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848 ...
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...
$ Gene 13 : num 0.0846 0.4820 1.5254 0.0323 -0.7563 ...
$ Gene 14 : num -1.2011 -0.0505 -0.8799 0.7518 -0.9964 ...
$ Gene 15 : num -0.9588 -0.0554 -1.0008 0.2502 -1.0235 ...

> str(Y)
num [1:62] 0 0 0 1 0 0 1 0 0 0 ...

Goal: predict ‘cancer class’ Ŷ(X) ∈ {0, 1}, given 4026 predictor variables X
(gene expressions) of a new patient.



Loss
Suppose we have trained a classifier or learner so that, upon observing a new
predictor variable X ∈ Rp, a prediction Ŷ ∈ Y is made.
How good is the prediction? We can use any loss function L : Y × Y �→ R+ to
measure the loss incurred. Typical loss functions

� Misclassification error for classification

L(Y, Ŷ) =
�

0 Y = Ŷ
1 Y �= Ŷ

.

� Squared error loss for regression

L(Y, Ŷ) = (Y − Ŷ)2.

Alternative loss functions often useful. For example, non-equal
misclassification error often appropriate. Or ‘likelihood’-loss
L(Y, Ŷ) = − log p̂(Y), where p̂(k) is the estimated probability of class k ∈ Y.



Risk and empirical risk minimization

For a given loss function L, the risk R of a learner is given by the expected loss

R(Ŷ) = E(L(Y, Ŷ)),

where Ŷ = Ŷ(X) is a function of the random predictor variable X.
Ideally, we want to find a learner or procedure that minimizes the risk. The risk
is unknown, however, as we just have finitely many samples.
Empirical risk minimization can be used, where one is trying to minimize
–instead of the risk R(Ŷ)– the empirical risk

Rn(Ŷ) = En(L(Y, Ŷ) =
1
n

n�

i=1

L(Yi, Ŷi).

The expectation is with respect to the empirical measure and hence just a
summation over the observations.



The Bayes classifier

What is the optimal classifier if the joint distribution (X, Y) were known?
The distribution f of a random predictor variable X can be written as

f (X) =
K�

k=1

fk(X)P(Y = k),

where, for k = 1, . . . ,K,
- the prior probabilities over classes are P(Y = k) = πk

- and distributions of X, conditional on Y = k, is fk(X).
Given this scenario, the problem is to construct a ‘good’ classifier Ŷ which
assigns classes to observations

Ŷ : X →
�

1, . . . ,K
�



We are interested in finding the classifier Ŷ that minimises the risk under 0-1
loss, the Bayes Classifier.

R(Ŷ) = E
�
L(Y, Ŷ(X))

�

= E
�
E[L(Y, Ŷ(x)

��X = x]
�

=

�

X
E
�
L(Y, Ŷ(x))

��X = x
�
f (x)dx

For the Bayes classifier, minimizing E
�
L(Y, Ŷ(x))

��X = x
�

for each x suffices.

That is, given X = x, want to choose Ŷ(x) ∈ {1, . . . ,K} such that the expected
conditional loss is as small as possible.



Can write E
�
L(Y, Ŷ(x))

��X = x
�

=
�K

k=1 L(k, Ŷ(x))P(Y = k|X = x).

Choosing Ŷ(x) = m with m ∈ {1, . . . ,K}, the r.h.s. is simply

E
�
L(Y, Ŷ(x))|X = x

�
= 1 − P(Y = m|X = x).

The Bayes Classifier chooses the class with the greatest posterior probability

Ŷ(x) = arg max
k=1,...,K

P(Y = k|X = x) = arg max
k=1,...,K

πkfk(x)�K
k=1 πkfk(x)

= arg max
k=1,...,K

πkfk(x).

The Bayes classifier is optimal in terms of misclassification error.



Take a simple example, where πk and fk are known for k = 1, . . . ,K. Choose
two classes {1, 2}.
Suppose X ∼ N (µY , 1), where µ1 = −1 and µ2 = 1 and assume equal priors
π1 = π2 = 1/2.
So f (x) = 1

2 f1(x) + 1
2 f2(x), where

f1(x) =
1√
2π

exp(− (x − (−1))2

2
) and f2(x) =

1√
2π

exp(− (x − 1)2

2
).
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How do you classify a new observation x = 0.1 ?
Optimal classification is

Ŷ(x) = arg max
k=1,...,K

πkfk(x),

which is class 1 if x < 0 and class 2 if x ≥ 0.
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How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2 ?
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Looking at density in a log-scale, optimal classification is class 2
if and only if x ∈ [−0.39, 2.15].
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Plug-in classification

The Bayes Classifier chooses the class with the greatest posterior probability

Ŷ(x) = arg max
k=1,...,K

πkfk(x).

Unfortunately, we usually know neither the conditional class probabilities nor
the prior probabilities.
Given

� estimates π̂k for πk and k = 1, . . . ,K and
� estimates f̂k(x) of conditional class probabilities,

the plug-in classifiers chooses the class

Ŷ(x) = arg max
k=1,...,K

π̂kf̂k(x).

Linear Discriminant Analysis will be an example of plug-in classification.


