
Outline

Administrivia and Introduction
Course Structure
Syllabus
Introduction to Data Mining

Dimensionality Reduction
Introduction
Principal Components Analysis
Singular Value Decomposition
Multidimensional Scaling
Isomap

Clustering
Introduction
Hierarchical Clustering
K-means
Vector Quantisation
Probabilistic Methods

Probabilistic Methods

� So far, we have found clusters in high-dimensional data by posing
sensible partition based problems and hierarchical clustering problems
which were tackled with heuristic approaches.

� Probabilistic methods attempt to find clusters in high-dimensional data
using a model based approach by fitting mixture models to data.

� Though well founded in probabilistic arguments, such an approach
comes at the expense of greater computation.

� Such methods can work well if good models are proposed (or if the
distribution of the data is close to the proposed model in a suitable
sense).

� We again need to specify/estimate the number of clusters K.

Mixture Models

� Probabilistic methods for clustering work by seeking to model the
distribution of points in R

p using mixture models. In doing so, areas of
high density (i.e. clusters) can be accurately described.

� Mixture models have densities of the form

f (x|θ) =
K�

k=1

πkf (x|φk)

for some densities fk(x|φk) and priors over these densities π1, . . . ,πK

which satisfy πk ≥ 0 ∀k and
�K

k=1 πk = 1.
� We want to estimate the unknown parameters θ = {πk,φk}

K
k=1 given x1:n.

Mixture Models

� To make things easier, let f (x|θk) = f (x|µk,Σk) ∼ Np(µk,Σk) where

f (x|µk,Σk) =
1�

(2π)p · |Σk|
exp

�
−

1
2
(x − µk)

TΣ−1
k (x − µk)

�
.

� Posing a Gaussian Mixture Model corresponds to assuming that each of
the K clusters that we intend to model...

� is Gaussian with different means µk and covariance structures Σk.
� and each observation x comes from cluster k with probability πk.

� Allowing each cluster to have its own mean and covariance structure
allows greater flexibility in the model.

Gaussian Mixture Models: Examples

Different covariances

Identical covariances

Different, but diagonal covariances

Identical and spherical covariances

Fitting Gaussian Mixture Models
� To fit such a model, we need to estimate the parameters

θ = {πk,µk,Σk}
K
k=1

from the data.
� We can do this by maximum likelihood choosing θ to maximise

L(θ) =
�n

i=1 f (xi|θ) or equivalently �(θ) =
�n

i=1 log f (xi|θ) where

�(θ) =
n�

i=1

log
�
π1fµ1,Σ1(xi) + . . .+ πKfµK ,ΣK (xi)

�
.

� Differentiating to maximise such a log-likelihood analytically or even
numerically is difficult as there are too many unknowns to handle
simultaneously.

� The Expectation-Maximisation (EM) Algorithm is a very popular method
to help find maximum likelihood estimates in the presence of unobserved
variables.

Likelihood Surface for a Simple Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

320 compBody.tex

−30 −20 −10 0 10 20 30
0

5

10

15

20

25

30

35

(a)

mu
1

m
u

2

−15.5 −10.5 −5.5 −0.5 4.5 9.5 14.5 19.5

−15.5

−10.5

−5.5

−0.5

4.5

9.5

14.5

19.5

(b)

Figure 11.6: Left: N = 200 data points sampled from a mixture of 2 Gaussians in 1d, with πk = 0.5, σk = 5, µ1 = −10 and µ2 = 10.
Right: Likelihood surface p(D|µ1, µ2), with all other parameters set to their true values. We see the two symmetric modes, reflecting the
unidentifiability of the parameters. Produced by mixGaussLikSurfaceDemo.

11.4.2.5 Unidentifiability

Note that mixture models are not identifiable, which means there are many settings of the parameters which have the same
likelihood. Specifically, in a mixture model with K components, there are K! equivalent parameter settings, which differ merely
by permuting the labels of the hidden states. See Figure 11.6 for an illustration. The existence of equivalent global modes does
not matter when computing a single point estimate, such as the ML or MAP estimate, but it does complicate Bayesian inference,
as we will in Section 12.5.6.3. Unfortunately, even finding just one of these global modes is computationally difficult. The EM
algorithm is only guaranteed to find a local mode. A variety of methods can be used to increase the chance of finding a good
local optimum. The simplest, and most widely used, is to perform multiple random restarts.

11.4.2.6 K-means algorithm

There is a variant of the EM algorithm for GMMs known as the K-means algorithm, which we now discuss.
Consider a GMM in which we make the following assumptions: Σk = σ2ID is fixed, and πk = 1/K is fixed, so only the

cluster centers, µk ∈ R
D, have to be estimated. Now consider an approximation to EM in which we make the approximation

p(zi = k|xi,θ) ≈ I(k = z∗i) (11.61)

where zi∗ = argmaxk p(zi = k|xi,θ). This is sometimes called hard EM, since we are making a hard assignment of points
to clusters. Since we assumed an equal spherical covariance matrix for each cluster, the most probable cluster for xi can be
computed by finding the nearest prototype:

z∗i = argmin
k

||xi − µk||
2 (11.62)

Hence in each E step, we must find the Euclidean distance between N data points and K cluster centers, which takes O(NKD)
time. However, this can be sped up using various techniques, such as applying the triangle inequality to avoid some redundant
computations [Elk03]. Given the hard cluster assignments, the M step updates each cluster center by computing the mean of all
points assigned to it:

µk =
1

Nk

�

i:zi=k

xi (11.63)

The resulting method is equivalent to the K-means algorithm. See Algorithm 5 for the pseudo-code.

Algorithm 3: K-means algorithm
initialize mk, k ← 1 to K1

repeat2

Assign each data point to its closest cluster center: zi = argmink ||xi − µk||
23

Update each cluster center by computing the mean of all points assigned to it: µk = 1
Nk

�
i:zi=k xi4

until converged5

Since K-means is not a proper EM algorithm, it is not maximizing likelihood. Instead, it can be interpreted as a greedy
algorithm for approximately minimizing the reconstruction error created by using vector quantization, as discussed in Sec-
tion 8.5.3.3. (See also Section 20.2.1.)

c� Kevin P. Murphy. Draft — not for circulation.

(left) n = 200 data points from a mixture of two 1D Gaussians with
π1 = π2 = 0.5, σ1 = σ2 = 5 and µ1 = −µ2 = 10. (right) Log-Likelihood surface
� (µ1, µ2) , all the other parameters being assumed known.

The EM Algorithm

� EM is a very popular approach to maximize � (θ) in this missing data
context.

� The key idea is to introduce explicitly the unobserved cluster labels zi
which indicate from which cluster data xi is coming from.

� If the cluster labels where known then we would estimate θ by
maximizing the so-called complete likelihood

�c (θ) =
n�

i=1

log p (xi, zi| θ)

=
n�

i=1

log πzi f (xi|φzi)

Maximization of Complete Likelihood

� We have

�c (θ) =
K�

k=1

�
�

i:zi=k

log πzi f (xi|φzi)

�

=
K�

k=1

nk log (πk) +
�

i:zi=k

log f (xi|φk)

where nk =
�

i:zi=k 1 is the number of observations assigned to cluster k.
� We would obtain the MLE for the complete likelihood

�πk =
nk

n
,

�φk =arg max
φk

n�

i=1:zi=k

log f (xi|φk)

Finite Mixture of Scalar Gaussians
� In this case, φ =

�
µ,σ2

�

f (x|φ) = 1
√

2πσ2
exp

�
−
(x − µ)2

2σ2

�

and θ =
�
πk, µk,σ2

�K
k=1.

� The resulting MLE estimate of the complete likelihood is

�πk =
nk

n
,

�µk =
1
nk

n�

i=1:zi=k

xi,

�σ2
k =

1
nk

n�

i=1:zi=k

(xi − �µk)
2

� Problem: We don’t have access to the cluster labels!

Expectation-Maximization
EM is an iterative algorithm which generates a sequence of estimates

�
θ(t)

�

such that
�
�
θ(t)

�
≥ �

�
θ(t−1)

�
.

At iteration t, we compute

F

�
θ, θ(t−1)

�

=E

�
�c (θ)| x1:n, θ

(t−1)
�

=
�

z1:n∈{1,2,...,K}
n

p
�

z1:n| x1:n, θ
(t−1)

��
n�

i=1

log p (xi, zi| θ)

�

=
n�

i=1

K�

k=1

p
�

zi = k| xi, θ
(t−1)

�
log p (xi, zi = k| θ)

and set

θ(t) = arg max
θ

F

�
θ, θ(t−1)

�

Expectation-Maximization
We have

F

�
θ, θ(t−1)

�
=

n�

i=1

K�

k=1

p
�

zi = k| xi|θ
(t−1)

�
log p (xi, zi = k| θ)

=
n�

i=1

K�

k=1

p
�

zi = k| xi, θ
(t−1)

�
{log πk + log f (xi|φk)}

=
K�

k=1

�
n�

i=1

p
�

zi = k| xi, θ
(t−1)

��
{logπk + log f (xi|φk)}

We obtain

�π(t)
k =

�n
i=1 p

�
zi = k| xi, θ(t−1)

�

n
,

φ(t)
k = arg max

φk

n�

i=1

p
�

zi = k| xi, θ
(t−1)

�
log f (xi|φk)

Finite mixture of scalar Gaussians

In this case, the EM algorithm iterates

�π(t)
k =

�n
i=1 p

�
zi = k| xi, θ(t−1)

�

n

�µ(t)
k =

�n
i=1 xip

�
zi = k| xi, θ(t−1)

�
�n

i=1 p
�

zi = k| xi, θ(t−1)
� ,

�σ2 (t)
k =

�n
i=1 p

�
zi = k| xi, θ(t−1)

� �
xi − �µ(t)

k

�2

�n
i=1 p

�
zi = k| xi, θ(t−1)

� .

with

p (zi = k|xi, θ) =
πkf (xi|φk)�
� π�f (xi|φ�)

Proof of Convergence for EM Algorithm

Proposition: �
�
θ(t+1)

�
≥ �

�
θ(t)

�
for θ(t+1) = arg max

θ
F
�
θ, θ(t)

�
.

Proof: We have

p (z1:n| θ, x1:n) =
p (x1:n,z1:n| θ)

p (x1:n| θ)
⇔ p (x1:n| θ) =

p (x1:n,z1:n| θ)

p (z1:n| θ, x1:n)

thus
� (θ) = log p (x1:n| θ) = log p (x1:n,z1:n| θ)− log p (z1:n| θ, x1:n)

and for any value θ(t)

� (θ) =
�

z1:n

p
�

z1:n| θ
(t), x1:n

�
log p (x1:n,z1:n| θ)

� �� �
=F(θ,θ(t))

−

�

z1:n

p
�

z1:n| θ
(t), x1:n

�
log p (z1:n| θ, x1:n) .

Proof of Convergence for EM Algorithm

We want to show that �
�
θ(t+1)

�
≥ �

�
θ(t)

�
for the EM, so if we prove that

�

z1:n

p
�

z1:n| θ
(t), x1:n

�
log p

�
z1:n| θ

(t+1), x1:n

�

≤

�

z1:n

p
�

z1:n| θ
(t), x1:n

�
log p

�
z1:n| θ

(t), x1:n

�

then we are done. We have

�

z1:n

p
�

z1:n| θ
(t), x1:n

�
log

p
�

z1:n| θ(t+1), x1:n
�

p
�

z1:n| θ(t), x1:n
�

≤ log
�

z1:n

p
�

z1:n| θ
(t), x1:n

� p
�

z1:n| θ(t+1), x1:n
�

p
�

z1:n| θ(t), x1:n
� (Jensen)

= log 1 = 0.

Example: Mixture of 3 Gaussians
An example with 3 clusters.

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−5 0 5 10

−5
0

5

X1

X2

Example: Mixture of 3 Gaussians
After 1st E and M step.

!5 0 5 10

!
5

0
5

data[,1]

d
a
ta
[,
2
]

Iteration 1

Example: Mixture of 3 Gaussians
After 2nd E and M step.

!5 0 5 10

!
5

0
5

data[,1]

d
a
ta
[,
2
]

Iteration 2

Example: Mixture of 3 Gaussians
After 3rd E and M step.

!5 0 5 10

!
5

0
5

data[,1]

d
a
ta
[,
2
]

Iteration 3

Example: Mixture of 3 Gaussians
After 4th E and M step.

!5 0 5 10

!
5

0
5

data[,1]

d
a
ta
[,
2
]

Iteration 4

Example: Mixture of 3 Gaussians
After 5th E and M step.

!5 0 5 10

!
5

0
5

data[,1]

d
a
ta
[,
2
]

Iteration 5

Pros and Cons of the EM Algorithm

Some good things about EM
� no learning rate (step-size) parameter
� automatically enforces parameter constraints
� very fast for low dimensions
� each iteration guaranteed to improve likelihood

Some bad things about EM
� can get stuck in local minima so multiple starts are recommended
� can be slower than conjugate gradient (especially near convergence)
� requires expensive inference step

