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Multidimensional Scaling (MDS)

MDS is a class of methods based on representing high-dimensional data in a
lower dimensional space so that inter-point distances are preserved as “best”
as possible. MDS effectively “squeezes” a high-dimensional cloud of points
into a smaller number of dimensions, generally 2 or 3.
Given x1, . . . , xn ∈ R

p, we can obtain a matrix of pairwise distances D with
entries dij = d(xi, xj) using some measure of dissimilarity d. For example
Euclidean distance dij = �xi − xj�2. In most applications, only D is available.
MDS finds representations z1, . . . , zn ∈ R

k such that

d(xi, xj) ≈ d̃(zi, zj),

where d represents dissimilarity in the original p-dimensional space and d̃
represents dissimilarity in the reduced k-dimensional space. The ‘best’ values
of zi are chosen to minimise some stress function.



Metric vs Non-Metric Stress Functions

Metric
Where closeness is considered geometrically, Euclidean distance
dij = �xi − xj�2 is commonly measured with the classical stress function

Smetric(dij, d̃ij) =
�

i �=j

�
dij − d̃ij

�2

Non-Metric
Sometimes it is more important to retain the ordering of dij as good as
possible rather than the actual values assigned. Non-metric stress functions
have been developed for ordered distances
Snon-metric(dij, d̃ij) = ming monotone

1�
i �=j d̃2

ij

�
i�=j

�
g(dij)− d̃ij

�2



Solving the Metric MDS Problem

Suppose we only have an n × n matrix of Euclidean distances D = (dij) but not
the points X themselves. The Classical MDS problem is to find a configuration
of n points in p-dimensional space that yields the same Euclidean distance
matrix as X.
Infinitely many solutions exist as the distance matrix is invariant to rigid
motions (rotations, reflections and translations).
As distances are Euclidean, can write dij = �xi − xj�2 for some points
x1, . . . , xn ∈ R

p, where

d2
ij = �xi − xj�

2
2

= (xi − xj)(xi − xj)
�

= xix�i + xjx�j − 2xix�j (1)



Solving the Metric MDS Problem

We define matrix B with entries bij = xix�j , we can compute D from B but also
B from D. From this, it is possible to recover a configuration which solves this
problem.
Writing (1) in terms of bij, we have

d2
ij = bii + bjj − 2bij (2)

⇒ If two configurations of n objects in p-dimensional space have identical
matrix B = XX�, then they also share the same distance matrix D.

We can also compute bij in terms of dij assuming
�

i xi = 0 (problem sheet).



Solving the Metric MDS Problem

If two configurations of n objects in p-dimensional space have identical matrix
B = XX�, then they also share the same distance matrix D.
Considering the eigendecomposition of B, we see that B = XX� = ULU� for
some orthogonal matrix U with columns U = (u1, . . . , un) and diagonal matrix
L with entries λ1, . . . , λn. 1

So if n > p we can write

X̃ = [
�

λ1U1, . . . ,
�

λpUp]

i.e. we have found a p-dimensional configuration of n points X̃ with the same

distance matrix D as X.

1If X = UDV� is again the SVD of X, then XX� = UDD�U�. The matrix U is thus the same in
the EVD of XX� and the n × n-matrix L = DD� has the same diagonal entries as the p × p-matrix
Λ = D�D in the SVD of X�X.



MDS Example: US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric
MDS finds a configuration with the same distance matrix.

ATLA CHIG DENV HOUS LA MIAM NY SF SEAT DC
0 587 1212 701 1936 604 748 2139 2182 543
587 0 920 940 1745 1188 713 1858 1737 597
1212 920 0 879 831 1726 1631 949 1021 1494
701 940 879 0 1374 968 1420 1645 1891 1220
1936 1745 831 1374 0 2339 2451 347 959 2300
604 1188 1726 968 2339 0 1092 2594 2734 923
748 713 1631 1420 2451 1092 0 2571 2408 205
2139 1858 949 1645 347 2594 2571 0 678 2442
2182 1737 1021 1891 959 2734 2408 678 0 2329
543 597 1494 1220 2300 923 205 2442 2329 0



MDS Example: US City Flight Distances

library(MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/datamining/data/uscities.csv")

## use the classical stress function
## to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale(d=us,k=2)

plot(us.classical)
text(us.classical,labels=names(us))



MDS Example: US City Flight Distances
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Lower-dimensional Reconstructions
Having managed to reconstruct a set of p-dimensional points with the same
distance matrix D, we would like to find lower dimensional representations
which minimise the stress function Smetric.
If the SVD of X is given by X = UDV�, then

B = XX� = UDD�U = ULU�

Generally the representation of X̃ (chosen so that X̃ and X have the same
distance matrix) can be written as

X̃ = [
�
λ1U1, . . . ,

�
λrUr]

where r is the rank of B.
Setting the smallest eigenvalues to zero reveals the ‘best’ k-dimensional view
of the data (where k is the number of non-zero eigenvalues), minimizing the
stress function (proof not given).
This is analogous to PCA, where the smallest eigenvalues of X�X are
effectively suppressed. Indeed, both PCA and MDS under Euclidean distance
are dual and yield effectively the same result (yet MDS can also be applied to
distance matrices not generated under Euclidean distance measure).



MDS Example: Virus Data

A data set on 39 viruses with rod-shaped particles affecting various crops
(tobacco, tomato, cucumber and others), described by Fauquet et al. (1988).
These are Tobamoviruses with monopartite genomes spread by contact.

There are 18 measurements on each virus, the number of amino acid
residues per molecule of coat protein; the data come from a total of 26
sources.

We want to investigate whether there are subgroups within this group of
viruses.



MDS Example: Virus Data
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variables were scaled before Euclidean distance was used).



MDS Example: Virus Data

MDS reveals some clear subgroups within the Tobamoviruses.

Viruses 7 (cucumber green mottle mosaic virus) and 21 (pepper mild mottle
virus) have been clearly separated from the other viruses in the non-metric
MDS plot, which is not the case in the metric version.

Ripley (1996) states that the non-metric MDS plot shows interpretable
groupings. The upper right is the cucumber green mottle virus, the upper left
is the ribgrass mosaic virus. The one group of viruses at the bottom, namely
8,9,19,20,23,24, are the tobacco mild green mosaic and odontoglossum
ringspot viruses.



Example: Crabs data

library(MASS)
Crabs <- crabs[,4:8]
Crabs.class <- factor(paste(crabs[,1],crabs[,2],sep=""))

crabsmds <- cmdscale(d= dist(Crabs),k=2)
plot(crabsmds, pch=20, cex=2)



Example: Crabs data
First two MDS components.
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Example: Crabs data
With grouping information.
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Example: Crabs data
Compare with previous PCA analysis.
MDS solution corresponds to the first 2 PCs as metric scaling was used.
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Example: Crabs data
Use Kruskals non-metric multi-dimensional scaling instead.

crabsmds <- isoMDS(d= dist(Crabs),k=2)
plot(crabsmds$points, pch=20, cex=2)
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Example: Crabs data
With grouping information.
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Example: Language data
Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X[1:15,1:16]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

Irish_A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Irish_B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Welsh_N 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Welsh_C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Breton_List 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Breton_SE 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Breton_ST 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Romanian_List 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vlach 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Italian 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ladin 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Provencal 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
French 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Walloon 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
French_Creole_C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Example: Language data
Using MDS with non-metric scaling.

MDS (i.e. cmdscale) which minimizes (d2
ij − d̃2

ij)
2. Sammon thereby puts

more weight on reproducing the separation of points which are close by
forcing them apart. Projection by MDS(Jaccard/sammon) with cluster dis-
covery by k-means (Jaccard): There is an obvious east to west (top-left to
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bottom-right) separation of languages in the MDS and the clusters in the
MDS grouping agree with the clusters discovered by agglomerative clus-
tering and k-means. The two clustering methods group languages slightly
differently with k-means splitting the Germanic languages.

## (alternative/MDS) make a field to display the clusters
## use MDS - sammon does this nicely
di.sam <- sammon(D,magic=0.20000002,niter=1000,tol=1e-8)
eqscplot(di.sam$points,pch=km$cluster,col=km$cluster)
text(di.sam$points,labels=row.names(X),pos=4,col=km$cluster)
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