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Dimensionality Reduction

Multidimensional Scaling



Multidimensional Scaling (MDS)

MDS is a class of methods based on representing high-dimensional data in a
lower dimensional space so that inter-point distances are preserved as “best”
as possible. MDS effectively “squeezes” a high-dimensional cloud of points
into a smaller number of dimensions, generally 2 or 3.

Given x1,...,x, € R?, we can obtain a matrix of pairwise distances D with
entries d;; = d(x;, x;) using some measure of dissimilarity d. For example
Euclidean distance d;; = ||x; — x;j||>. In most applications, only D is available.
MDS finds representations z;, . .., z, € R* such that

d(xivxj) ~ gl(Zi,Zj),

where d represents dissimilarity in the original p-dimensional space and d
represents dissimilarity in the reduced k-dimensional space. The ‘best’ values
of z; are chosen to minimise some stress function.



Metric vs Non-Metric Stress Functions

Metric
Where closeness is considered geometrically, Euclidean distance

d;; = ||xi — xj||» is commonly measured with the classical stress function

Smetric (dija gll]) — Z (dij - giij)z
7]

Non-Metric
Sometimes it is more important to retain the ordering of d;; as good as

possible rather than the actual values assigned. Non-metric stress functions
have been developed for ordered distances
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Solving the Metric MDS Problem

Suppose we only have an n x n matrix of Euclidean distances D = (d;;) but not
the points X themselves. The Classical MDS problem is to find a configuration
of n points in p-dimensional space that yields the same Euclidean distance
matrix as X.

Infinitely many solutions exist as the distance matrix is invariant to rigid
motions (rotations, reflections and translations).

As distances are Euclidean, can write d;; = ||x; — x;||» for some points
X1,...,x, € R, where

dj = |lxi—uxll
= (—x)(n—x)
= xx; + xjij — 2x,-xjT (1)



Solving the Metric MDS Problem

We define matrix B with entries b;; = x,-ij, we can compute D from B but also

B from D. From this, it is possible to recover a configuration which solves this
problem.

Writing (1) in terms of b;;, we have
d;; = bij + by — 2b; (2)

= If two configurations of n objects in p-dimensional space have identical
matrix B = XX ', then they also share the same distance matrix D.

We can also compute b;; in terms of d;; assuming > _.x; = 0 (problem sheet).



Solving the Metric MDS Problem

If two configurations of n objects in p-dimensional space have identical matrix
B = XX, then they also share the same distance matrix D.

Considering the eigendecomposition of B, we see that B = XX' = ULU' for
some orthogonal matrix U with columns U = (uy,...,u,) and diagonal matrix
L with entries A\j, ..., \,. ]

So if n > p we can write

= VAU /AU,

i.e. we have found a p-dimensional configuration of n points X with the same
distance matrix D as X.

"f X = UDV'T is again the SVD of X, then XX = UDD " U . The matrix U is thus the same in
the EVD of XX ' and the n x n-matrix L = DD ' has the same diagonal entries as the p x p-matrix
A=D"Dinthe SVDof X" X.



MDS Example: US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric

MDS finds a configuration with the same distance matrix.

ATLA CHIG
0 587
587 O
1212 920
701 940
1936 1745
604 1188
748 713
2139 1858
2182 17377
543 597

DENV
1212
920

879
831
1726
1631
949
1021
1494

HOUS
701
940
879
0
1374
968
1420
1645
1891
1220

LA
1936
1745
831
1374

2339
2451
347
959
2300

MIAM
604
1188
1726
968
2339
0
1092
2594
27734
923

NY
748
713
1631
1420
2451
1092
0
2571
2408
205

SFE
2139
1858
949
1645
347
2594
2571

673
2442

SEAT
2182
1737
1021
1891
959

27134
2408
678

2329

DC
543
597
1494
1220
2300
923
205
2442
2329
0



MDS Example: US City Flight Distances

library (MASS)

us <- read.csv("http://www.stats.ox.ac.uk/
~teh/teaching/datamining/data/uscities.csv")

## use the classical stress function
## to find lower dimensional views of the data
## recover X 1in 2 dimensions

us.classical <—- cmdscale (d=us, k=2)

plot (us.classical)
text (us.classical, labels=names (us))



MDS Example: US City Flight Distances
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Lower-dimensional Reconstructions

Having managed to reconstruct a set of p-dimensional points with the same
distance matrix D, we would like to find lower dimensional representations
which minimise the stress function Smetric.

If the SVD of X is given by X = UDV' ", then

B=XX' =UDD'U = ULU"

Generally the representation of X (chosen so that X and X have the same
distance matrix) can be written as

5(: [\/)\711]17"'7\/)\71”[]1’]

where r is the rank of B.

Setting the smallest eigenvalues to zero reveals the ‘best’ k-dimensional view
of the data (where k is the number of non-zero eigenvalues), minimizing the
stress function (proof not given).

This is analogous to PCA, where the smallest eigenvalues of X ' X are
effectively suppressed. Indeed, both PCA and MDS under Euclidean distance
are dual and yield effectively the same result (yet MDS can also be applied to
distance matrices not generated under Euclidean distance measure).



MDS Example: Virus Data

A data set on 39 viruses with rod-shaped particles affecting various crops
(tobacco, tomato, cucumber and others), described by Fauquet et al. (1988).
These are Tobamoviruses with monopartite genomes spread by contact.

There are 18 measurements on each virus, the number of amino acid
residues per molecule of coat protein; the data come from a total of 26
sources.

We want to investigate whether there are subgroups within this group of
viruses.



MDS Example: Virus Data

Metric Scaling

Kruskal’s MDS
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Distance-based representations of the Tobamovirus group of viruses (the
variables were scaled before Euclidean distance was used).



MDS Example: Virus Data

MDS reveals some clear subgroups within the Tobamoviruses.

Viruses 7 (cucumber green mottle mosaic virus) and 21 (pepper mild mottle
virus) have been clearly separated from the other viruses in the non-metric
MDS plot, which is not the case in the metric version.

Ripley (1996) states that the non-metric MDS plot shows interpretable
groupings. The upper right is the cucumber green mottle virus, the upper left
IS the ribgrass mosaic virus. The one group of viruses at the bottom, namely
8,9,19,20,23,24, are the tobacco mild green mosaic and odontoglossum
ringspot viruses.



Example: Crabs data

library (MASS)
Crabs <- crabs|[,4:8]
Crabs.class <- factor (paste(crabs|[,1l],crabsl[,2],sep=""))

crabsmds <- cmdscale (d= dist (Crabs), k=2)
plot (crabsmds, pch=20, cex=2)



Example: Crabs data

First two MDS components.
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Example: Crabs data

With grouping information.
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Example: Crabs data

Compare with previous PCA analysis.
MDS solution corresponds to the first 2 PCs as metric scaling was used.
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Example: Crabs data
Use Kruskals non-metric multi-dimensional scaling instead.

crabsmds <- 1soMDS (d= dist (Crabs),b k=2)
plot (crabsmds$points, pch=20, cex=2)
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Example: Crabs data

With grouping information.
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Example: Language data
Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X[1:15,1:16]
V1l V2 V3 v4 V5 Vo V7 V8 V9 V10 V11 V12 V13
0O 1 0 O 0 0 0

(@)
(@)
(@)
()
(@)

Irish A
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Welsh N
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Breton_List
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Romanian List
Vlach

Italian

Ladin
Provencal
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Walloon
French_Creole_C
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Example: Language data
Using MDS with non-metric scaling.
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