Outline

Administrivia and Introduction

Course Structure Syllabus Introduction to Data Mining

Dimensionality Reduction

Introduction Principal Components Analysis Singular Value Decomposition Multidimensional Scaling

Isomap

Clustering

Introduction Hierarchical Clustering K-means Vector Quantisation Probabilistic Methods

Eigenvalue Decomposition (EVD)

Eigenvalue decomposition places significant role in PCA. PCs are eigenvectors of $X^{\top}X$ and PCA properties are derived from those of eigenvectors and eigenvalues.

- For any $p \times p$ symmetric matrix *S* (think for example $X^{\top}X$), there exists *p* eigenvectors v_1, \ldots, v_p that are pairwise orthogonal and *p* associated eigenvalues $\lambda_1, \ldots, \lambda_p$ which satisfy the eigenvalue equation $Sv_i = \lambda_i v_i \ \forall i$.
- *S* can be written as $S = V \Lambda V^{\top}$ where
 - $V = [v_1, \ldots, v_p]$ is a $p \times p$ orthogonal matrix
 - $\Lambda = diag \{\lambda_1, \ldots, \lambda_p\}$
 - and if $S_{ij} \in \mathbb{R} \ \forall i, j, \ \lambda_i \in \mathbb{R} \ \forall i$
- The relevant R-command is eigen. Look at ?eigen to get help on the command.

Singular Value Decomposition (SVD)

The SVD of a matrix X is an equally useful matrix factorisation that is related to the EVD.

- ► Though the EVD does not exist for $\mathbb{R}^{n \times p}$ matrices if $p \neq n$, SVDs *always* exists.
- X can be written as $X = UDV^{\top}$ where
 - U is an $n \times n$ matrix with orthogonal columns.
 - D is a n × p matrix with decreasing non-negative elements on the diagonal (the singular values) and zero off-diagonal elements.
 - V is a $p \times p$ matrix with orthogonal columns.

The relevant R-command is svd.

SVD can be computed using very fast and numerically stable algorithms.

Some Properties of the SVD

- Let $X = UDV^{\top}$ be again the SVD of the $n \times p$ matrix X.
- Note that

 $X^{\top}X = (UDV^{\top})^{\top}(UDV^{\top}) = VD^{\top}U^{\top}UDV^{\top} = VD^{\top}DV^{\top},$

using orthogonality $(U^{\top}U = I_n)$ of U.

- ► The eigenvalues of $S = X^T X$ are thus the squares of the singular values of X and the columns of the orthogonal matrix V are the eigenvectors of S.
- We also have

$$XX^{\top} = (UDV^{\top})(UDV^{\top})^{\top} = UDV^{\top}VD^{\top}U^{\top} = UDD^{\top}U^{\top},$$

using orthogonality $(V^{\top}V = I_p)$ of V.

Consider the following optimization problem:

 $\min_{\tilde{X}} \|\tilde{X} - X\|^2 \qquad \text{s.t. } \tilde{X} \text{ has maximum rank } r < n, p.$

This problem can be solved by keeping only the r largest singular values of X, zeroing out the smaller singular values in the SVD.