Outline

```
Administrivia and Introduction
    Course Structure
    Syllabus
    Introduction to Data Mining
Dimensionality Reduction
Introduction
Principal Components Analysis
Singular Value Decomposition
Multidimensional Scaling
Isomap
Clustering
Introduction
Hierarchical Clustering
K-means
Vector Quantisation
Probabilistic Methods
```


Eigenvalue Decomposition (EVD)

Eigenvalue decomposition places significant role in PCA. PCs are eigenvectors of $X^{\top} X$ and PCA properties are derived from those of eigenvectors and eigenvalues.

- For any $p \times p$ symmetric matrix S (think for example $X^{\top} X$), there exists p eigenvectors v_{1}, \ldots, v_{p} that are pairwise orthogonal and p associated eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ which satisfy the eigenvalue equation $S v_{i}=\lambda_{i} v_{i} \forall i$.
- S can be written as $S=V \Lambda V^{\top}$ where
- $V=\left[v_{1}, \ldots, v_{p}\right]$ is a $p \times p$ orthogonal matrix
- $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$
- and if $S_{i j} \in \mathbb{R} \forall i, j, \lambda_{i} \in \mathbb{R} \forall i$
- The relevant R-command is eigen. Look at ?eigen to get help on the command.

Singular Value Decomposition (SVD)

The SVD of a matrix X is an equally useful matrix factorisation that is related to the EVD.

- Though the EVD does not exist for $\mathbb{R}^{n \times p}$ matrices if $p \neq n$, SVDs always exists.
- X can be written as $X=U D V^{\top}$ where
- U is an $n \times n$ matrix with orthogonal columns.
- D is a $n \times p$ matrix with decreasing non-negative elements on the diagonal (the singular values) and zero off-diagonal elements.
- V is a $p \times p$ matrix with orthogonal columns.

The relevant R -command is svd.

- SVD can be computed using very fast and numerically stable algorithms.

Some Properties of the SVD

- Let $X=U D V^{\top}$ be again the SVD of the $n \times p$ matrix X.
- Note that

$$
X^{\top} X=\left(U D V^{\top}\right)^{\top}\left(U D V^{\top}\right)=V D^{\top} U^{\top} U D V^{\top}=V D^{\top} D V^{\top},
$$

using orthogonality $\left(U^{\top} U=I_{n}\right)$ of U.

- The eigenvalues of $S=X^{\top} X$ are thus the squares of the singular values of X and the columns of the orthogonal matrix V are the eigenvectors of S.
- We also have

$$
X X^{\top}=\left(U D V^{\top}\right)\left(U D V^{\top}\right)^{\top}=U D V^{\top} V D^{\top} U^{\top}=U D D^{\top} U^{\top}
$$

using orthogonality $\left(V^{\top} V=I_{p}\right)$ of V.

- Consider the following optimization problem:

$$
\min _{\tilde{X}}\|\tilde{X}-X\|^{2} \quad \text { s.t. } \tilde{X} \text { has maximum rank } r<n, p .
$$

This problem can be solved by keeping only the r largest singular values of X, zeroing out the smaller singular values in the SVD.

